roberta-base-bne-finetuned-ner-finetuned2-ner
This model is a fine-tuned version of StivenLancheros/roberta-base-bne-finetuned-ner on the conll2002 dataset. It achieves the following results on the evaluation set:
- Loss: 0.1067
- Precision: 0.8698
- Recall: 0.8794
- F1: 0.8745
- Accuracy: 0.9809
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 3e-05
- train_batch_size: 5
- eval_batch_size: 5
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 4
Training results
Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
---|---|---|---|---|---|---|---|
0.0582 | 1.0 | 1665 | 0.0852 | 0.8697 | 0.8759 | 0.8728 | 0.9800 |
0.0297 | 2.0 | 3330 | 0.0919 | 0.8841 | 0.8867 | 0.8854 | 0.9817 |
0.0121 | 3.0 | 4995 | 0.0950 | 0.8751 | 0.8807 | 0.8779 | 0.9812 |
0.0056 | 4.0 | 6660 | 0.1067 | 0.8698 | 0.8794 | 0.8745 | 0.9809 |
Framework versions
- Transformers 4.12.3
- Pytorch 1.10.0+cu111
- Datasets 1.15.1
- Tokenizers 0.10.3
- Downloads last month
- 3
Dataset used to train StivenLancheros/Roberta-base-bne-NER-EN-ES
Evaluation results
- Precision on conll2002self-reported0.870
- Recall on conll2002self-reported0.879
- F1 on conll2002self-reported0.875
- Accuracy on conll2002self-reported0.981