--- library_name: transformers language: - sr license: apache-2.0 base_model: openai/whisper-small tags: - generated_from_trainer datasets: - common_voice_17_0 metrics: - wer model-index: - name: Whisper - Serbian Model results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: common_voice_17_0 type: common_voice_17_0 config: sr split: None args: sr metrics: - name: Wer type: wer value: 26.91173920582625 --- # Whisper - Serbian Model This model is a fine-tuned version of [openai/whisper-small](https://huggingface.co/openai/whisper-small) on the common_voice_17_0 dataset. It achieves the following results on the evaluation set: - Loss: 0.4936 - Wer: 26.9117 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - training_steps: 4000 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-------:|:----:|:---------------:|:-------:| | 0.0366 | 4.6083 | 1000 | 0.3116 | 27.6227 | | 0.002 | 9.2166 | 2000 | 0.4394 | 27.1892 | | 0.0003 | 13.8249 | 3000 | 0.4845 | 27.1198 | | 0.0002 | 18.4332 | 4000 | 0.4936 | 26.9117 | ### Framework versions - Transformers 4.45.2 - Pytorch 2.5.1 - Datasets 3.1.0 - Tokenizers 0.20.1