--- tags: - merge - mergekit - Etheria base_model: - brucethemoose/Yi-34B-200K-DARE-megamerge-v8 license: apache-2.0 --- # VerA-Etheria-55b ![image/png](https://cdn-uploads.huggingface.co/production/uploads/64545af5ec40bbbd01242ca6/UrQv8fprq0VAjWcH5tx16.png) An attempt to make a functional goliath style merge with One yi-34b-200k model Merged to make a [Etheria] 55b-200k Model, this is Version A or VerA, it is a single Model Passthrough merge. # Roadmap: Depending on quality, I Might private the other Version. Then generate a sacrificial 55b and perform a 55b Dare ties merge or Slerp merge. 1: If the Dual Model Merge performs well I will make a direct inverse of the config then merge. 2: If the single model performs well I will generate a 55b of the most performant model then either Slerp or Dare ties merge. 3: If both models perform well, then I will complete both 1 & 2 then change the naming scheme to match each of the new models. ## 🧩 Configuration ```yaml dtype: bfloat16 slices: - sources: - model: brucethemoose/Yi-34B-200K-DARE-megamerge-v8 layer_range: [0, 14] - sources: - model: brucethemoose/Yi-34B-200K-DARE-megamerge-v8 layer_range: [7, 21] - sources: - model: brucethemoose/Yi-34B-200K-DARE-megamerge-v8 layer_range: [15, 29] - sources: - model: brucethemoose/Yi-34B-200K-DARE-megamerge-v8 layer_range: [22, 36] - sources: - model: brucethemoose/Yi-34B-200K-DARE-megamerge-v8 layer_range: [30, 44] - sources: - model: brucethemoose/Yi-34B-200K-DARE-megamerge-v8 layer_range: [37, 51] - sources: - model: brucethemoose/Yi-34B-200K-DARE-megamerge-v8 layer_range: [45, 59] merge_method: passthrough ``` ## 💻 Usage ```python !pip install -qU transformers accelerate from transformers import AutoTokenizer import transformers import torch model = "steelskull/VA-Etheria-55b" messages = [{"role": "user", "content": "What is a large language model?"}] tokenizer = AutoTokenizer.from_pretrained(model) prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True) pipeline = transformers.pipeline( "text-generation", model=model, torch_dtype=torch.float16, device_map="auto", ) outputs = pipeline(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95) print(outputs[0]["generated_text"]) ```