--- license: apache-2.0 base_model: ntu-spml/distilhubert tags: - generated_from_trainer datasets: - marsyas/gtzan metrics: - accuracy model-index: - name: distilhubert-finetuned-gtzan results: - task: name: Audio Classification type: audio-classification dataset: name: GTZAN type: marsyas/gtzan config: all split: train args: all metrics: - name: Accuracy type: accuracy value: 0.35 --- # distilhubert-finetuned-gtzan This model is a fine-tuned version of [ntu-spml/distilhubert](https://huggingface.co/ntu-spml/distilhubert) on the GTZAN dataset. It achieves the following results on the evaluation set: - Loss: 2.1821 - Accuracy: 0.35 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-06 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 11 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 2.2909 | 1.0 | 113 | 2.2939 | 0.16 | | 2.2793 | 2.0 | 226 | 2.2789 | 0.2 | | 2.2729 | 3.0 | 339 | 2.2617 | 0.19 | | 2.2645 | 4.0 | 452 | 2.2446 | 0.28 | | 2.2211 | 5.0 | 565 | 2.2290 | 0.29 | | 2.2382 | 6.0 | 678 | 2.2162 | 0.31 | | 2.2631 | 7.0 | 791 | 2.2039 | 0.31 | | 2.247 | 8.0 | 904 | 2.1946 | 0.32 | | 2.2255 | 9.0 | 1017 | 2.1877 | 0.33 | | 2.1932 | 10.0 | 1130 | 2.1834 | 0.35 | | 2.2213 | 11.0 | 1243 | 2.1821 | 0.35 | ### Framework versions - Transformers 4.32.0.dev0 - Pytorch 2.0.1+cu118 - Datasets 2.13.1 - Tokenizers 0.13.3