--- license: llama2 base_model: StanfordAIMI/RadLLaMA-7b tags: - generated_from_trainer model-index: - name: GREEN results: [] --- # StanfordAIMI/GREEN This model is a fine-tuned version of [StanfordAIMI/RadLLaMA-7b](https://huggingface.co/StanfordAIMI/RadLLaMA-7b). It achieves the following results on the evaluation set: - Loss: 0.0644 ## Model description and Training procedure Please see the project website at https://stanford-aimi.github.io/green.html. ## Intended uses & limitations This model is finetuned to evaluate the difference between the reference and candidate radiology report for Chest Xrays. ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - distributed_type: multi-GPU - num_devices: 8 - gradient_accumulation_steps: 32 - total_train_batch_size: 2048 - total_eval_batch_size: 64 - optimizer: Adam with betas=(0.9,0.95) and epsilon=1e-08 - lr_scheduler_type: cosine - lr_scheduler_warmup_ratio: 0.05 - num_epochs: 3.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 0.2634 | 0.64 | 25 | 0.2924 | | 0.1216 | 1.28 | 50 | 0.0898 | | 0.0833 | 1.92 | 75 | 0.0718 | | 0.062 | 2.56 | 100 | 0.0644 | ### Framework versions - Transformers 4.38.0.dev0 - Pytorch 2.2.0+cu121 - Datasets 2.16.1 - Tokenizers 0.15.1