--- license: apache-2.0 base_model: bert-base-multilingual-cased tags: - generated_from_trainer metrics: - f1 - recall - accuracy - precision model-index: - name: bert-base-fine-tuned-text-classificarion-ds-dropout results: [] --- # bert-base-fine-tuned-text-classificarion-ds-dropout This model is a fine-tuned version of [bert-base-multilingual-cased](https://huggingface.co/bert-base-multilingual-cased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.0721 - F1: 0.7307 - Recall: 0.7499 - Accuracy: 0.7499 - Precision: 0.7427 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 | Recall | Accuracy | Precision | |:-------------:|:-----:|:----:|:---------------:|:------:|:------:|:--------:|:---------:| | No log | 1.0 | 442 | 2.6972 | 0.4056 | 0.4819 | 0.4819 | 0.4782 | | 3.5527 | 2.0 | 884 | 1.6292 | 0.5981 | 0.6559 | 0.6559 | 0.6035 | | 2.1075 | 3.0 | 1326 | 1.2669 | 0.6801 | 0.7117 | 0.7117 | 0.6923 | | 1.2767 | 4.0 | 1768 | 1.0995 | 0.7133 | 0.7437 | 0.7437 | 0.7336 | | 0.9148 | 5.0 | 2210 | 1.0721 | 0.7307 | 0.7499 | 0.7499 | 0.7427 | ### Framework versions - Transformers 4.33.1 - Pytorch 2.0.1+cu118 - Datasets 2.14.5 - Tokenizers 0.13.3