diff --git a/.gitattributes b/.gitattributes index a6344aac8c09253b3b630fb776ae94478aa0275b..552fa94c09b139f61137af3c85850dfc82b59dad 100644 --- a/.gitattributes +++ b/.gitattributes @@ -33,3 +33,56 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text *.zip filter=lfs diff=lfs merge=lfs -text *.zst filter=lfs diff=lfs merge=lfs -text *tfevents* filter=lfs diff=lfs merge=lfs -text +pytorch_model-00052-of-00053.bin filter=lfs diff=lfs merge=lfs -text +pytorch_model-00030-of-00053.bin filter=lfs diff=lfs merge=lfs -text +pytorch_model-00041-of-00053.bin filter=lfs diff=lfs merge=lfs -text +pytorch_model-00045-of-00053.bin filter=lfs diff=lfs merge=lfs -text +pytorch_model-00003-of-00053.bin filter=lfs diff=lfs merge=lfs -text +pytorch_model-00008-of-00053.bin filter=lfs diff=lfs merge=lfs -text +pytorch_model-00032-of-00053.bin filter=lfs diff=lfs merge=lfs -text +pytorch_model-00046-of-00053.bin filter=lfs diff=lfs merge=lfs -text +pytorch_model-00048-of-00053.bin filter=lfs diff=lfs merge=lfs -text +pytorch_model-00012-of-00053.bin filter=lfs diff=lfs merge=lfs -text +pytorch_model-00049-of-00053.bin filter=lfs diff=lfs merge=lfs -text +pytorch_model-00050-of-00053.bin filter=lfs diff=lfs merge=lfs -text +pytorch_model-00013-of-00053.bin filter=lfs diff=lfs merge=lfs -text +pytorch_model-00027-of-00053.bin filter=lfs diff=lfs merge=lfs -text +pytorch_model-00006-of-00053.bin filter=lfs diff=lfs merge=lfs -text +pytorch_model-00022-of-00053.bin filter=lfs diff=lfs merge=lfs -text +pytorch_model-00023-of-00053.bin filter=lfs diff=lfs merge=lfs -text +pytorch_model-00036-of-00053.bin filter=lfs diff=lfs merge=lfs -text +pytorch_model-00010-of-00053.bin filter=lfs diff=lfs merge=lfs -text +pytorch_model-00011-of-00053.bin filter=lfs diff=lfs merge=lfs -text +pytorch_model-00016-of-00053.bin filter=lfs diff=lfs merge=lfs -text +pytorch_model-00040-of-00053.bin filter=lfs diff=lfs merge=lfs -text +pytorch_model-00014-of-00053.bin filter=lfs diff=lfs merge=lfs -text +pytorch_model-00029-of-00053.bin filter=lfs diff=lfs merge=lfs -text +pytorch_model-00037-of-00053.bin filter=lfs diff=lfs merge=lfs -text +pytorch_model-00044-of-00053.bin filter=lfs diff=lfs merge=lfs -text +pytorch_model-00005-of-00053.bin filter=lfs diff=lfs merge=lfs -text +pytorch_model-00028-of-00053.bin filter=lfs diff=lfs merge=lfs -text +pytorch_model-00035-of-00053.bin filter=lfs diff=lfs merge=lfs -text +pytorch_model-00009-of-00053.bin filter=lfs diff=lfs merge=lfs -text +pytorch_model-00021-of-00053.bin filter=lfs diff=lfs merge=lfs -text +pytorch_model-00039-of-00053.bin filter=lfs diff=lfs merge=lfs -text +pytorch_model-00047-of-00053.bin filter=lfs diff=lfs merge=lfs -text +pytorch_model-00017-of-00053.bin filter=lfs diff=lfs merge=lfs -text +pytorch_model-00019-of-00053.bin filter=lfs diff=lfs merge=lfs -text +pytorch_model-00020-of-00053.bin filter=lfs diff=lfs merge=lfs -text +pytorch_model-00004-of-00053.bin filter=lfs diff=lfs merge=lfs -text +pytorch_model-00034-of-00053.bin filter=lfs diff=lfs merge=lfs -text +pytorch_model-00002-of-00053.bin filter=lfs diff=lfs merge=lfs -text +pytorch_model-00033-of-00053.bin filter=lfs diff=lfs merge=lfs -text +pytorch_model-00038-of-00053.bin filter=lfs diff=lfs merge=lfs -text +pytorch_model-00043-of-00053.bin filter=lfs diff=lfs merge=lfs -text +pytorch_model-00053-of-00053.bin filter=lfs diff=lfs merge=lfs -text +pytorch_model-00024-of-00053.bin filter=lfs diff=lfs merge=lfs -text +pytorch_model-00031-of-00053.bin filter=lfs diff=lfs merge=lfs -text +pytorch_model-00025-of-00053.bin filter=lfs diff=lfs merge=lfs -text +pytorch_model-00026-of-00053.bin filter=lfs diff=lfs merge=lfs -text +pytorch_model-00051-of-00053.bin filter=lfs diff=lfs merge=lfs -text +pytorch_model-00001-of-00053.bin filter=lfs diff=lfs merge=lfs -text +pytorch_model-00042-of-00053.bin filter=lfs diff=lfs merge=lfs -text +pytorch_model-00015-of-00053.bin filter=lfs diff=lfs merge=lfs -text +pytorch_model-00007-of-00053.bin filter=lfs diff=lfs merge=lfs -text +pytorch_model-00018-of-00053.bin filter=lfs diff=lfs merge=lfs -text diff --git a/config.json b/config.json new file mode 100644 index 0000000000000000000000000000000000000000..82b194d760d0395c6db5e144d169e50a47a9a4a8 --- /dev/null +++ b/config.json @@ -0,0 +1,27 @@ +{ + "architectures": [ + "SkyworkForCausalLM" + ], + "auto_map": { + "AutoConfig": "configuration_skywork.SkyworkConfig", + "AutoModelForCausalLM": "modeling_skywork.SkyworkForCausalLM" + }, + "bos_token_id": 1, + "eos_token_id": 2, + "pad_token_id": 0, + "hidden_act": "silu", + "hidden_size": 4608, + "initializer_range": 0.01, + "intermediate_size": 12288, + "max_position_embeddings": 4096, + "model_type": "skywork", + "num_attention_heads": 36, + "num_hidden_layers": 52, + "num_key_value_heads": 36, + "rms_norm_eps": 1e-06, + "tie_word_embeddings": false, + "torch_dtype": "bfloat16", + "transformers_version": "4.33.1", + "use_cache": true, + "vocab_size": 65519 +} \ No newline at end of file diff --git a/configuration_skywork.py b/configuration_skywork.py new file mode 100644 index 0000000000000000000000000000000000000000..a61c89d2004fd4143b0357794d67202fc026a090 --- /dev/null +++ b/configuration_skywork.py @@ -0,0 +1,76 @@ +# Copyright (c) SkyworkAI and the HuggingFace Inc. team. All rights reserved. +# This code is built upon Huggingface's transformers repository. + +from transformers.configuration_utils import PretrainedConfig +from transformers.utils import logging + + +logger = logging.get_logger(__name__) + +Skywork_PRETRAINED_CONFIG_ARCHIVE_MAP = {} + + +class SkyworkConfig(PretrainedConfig): + + model_type = "skywork" + keys_to_ignore_at_inference = ["past_key_values"] + + def __init__( + self, + vocab_size=32000, + hidden_size=4096, + intermediate_size=11008, + num_hidden_layers=32, + num_attention_heads=32, + num_key_value_heads=None, + hidden_act="silu", + max_position_embeddings=2048, + initializer_range=0.02, + rms_norm_eps=1e-6, + use_cache=True, + pad_token_id=0, + bos_token_id=1, + eos_token_id=2, + pretraining_tp=1, + tie_word_embeddings=False, + rope_scaling=None, + rope_theta=10000.0, + attention_bias=False, + use_flash_attention=False, + **kwargs, + ): + self.vocab_size = vocab_size + self.max_position_embeddings = max_position_embeddings + self.hidden_size = hidden_size + self.intermediate_size = intermediate_size + self.num_hidden_layers = num_hidden_layers + self.num_attention_heads = num_attention_heads + + # for backward compatibility + if num_key_value_heads is None: + num_key_value_heads = num_attention_heads + + self.num_key_value_heads = num_key_value_heads + self.hidden_act = hidden_act + self.initializer_range = initializer_range + self.rms_norm_eps = rms_norm_eps + self.pretraining_tp = pretraining_tp + self.use_cache = use_cache + self.rope_scaling = rope_scaling + self.rope_theta = rope_theta + self.attention_bias = attention_bias + self.use_flash_attention = use_flash_attention + if self.use_flash_attention: + try: + from flash_attn.flash_attn_interface import flash_attn_varlen_func + from einops import rearrange + except: + raise ValueError("`use_flash_attention` requires Flash Attention 2+ and einops.\nTry `pip install einops` and installing Flash Attention from from https://github.com/Dao-AILab/flash-attention") + + super().__init__( + pad_token_id=pad_token_id, + bos_token_id=bos_token_id, + eos_token_id=eos_token_id, + tie_word_embeddings=tie_word_embeddings, + **kwargs, + ) diff --git a/generation_config.json b/generation_config.json new file mode 100644 index 0000000000000000000000000000000000000000..7a52fbdba828d4f91fc5ba4be3b92a099a3e9cc3 --- /dev/null +++ b/generation_config.json @@ -0,0 +1,10 @@ +{ + "bos_token_id": 1, + "do_sample": true, + "eos_token_id": 2, + "max_length": 4096, + "pad_token_id": 0, + "temperature": 0.6, + "top_p": 0.9, + "transformers_version": "4.34.0" +} \ No newline at end of file diff --git a/modeling_skywork.py b/modeling_skywork.py new file mode 100644 index 0000000000000000000000000000000000000000..f915f3a69753844c5045ed6cc0516dc4ee7131ae --- /dev/null +++ b/modeling_skywork.py @@ -0,0 +1,1111 @@ +# Copyright (c) SkyworkAI and the HuggingFace Inc. team. All rights reserved. +# This code is built upon Huggingface's transformers repository. +import math +from typing import List, Optional, Tuple, Union + +import torch +import torch.nn.functional as F +import torch.utils.checkpoint +from torch import nn +from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss + +from transformers.activations import ACT2FN +from transformers.modeling_outputs import BaseModelOutputWithPast, CausalLMOutputWithPast, SequenceClassifierOutputWithPast +from transformers.modeling_utils import PreTrainedModel +from transformers.pytorch_utils import ALL_LAYERNORM_LAYERS +from transformers.utils import ( + add_start_docstrings, + add_start_docstrings_to_model_forward, + is_flash_attn_available, + logging, + replace_return_docstrings, +) +from .configuration_skywork import SkyworkConfig + + +if is_flash_attn_available(): + from flash_attn import flash_attn_func, flash_attn_varlen_func + from flash_attn.bert_padding import index_first_axis, pad_input, unpad_input # noqa + + +logger = logging.get_logger(__name__) + +_CONFIG_FOR_DOC = "SkyworkConfig" + + +def _get_unpad_data(padding_mask): + seqlens_in_batch = padding_mask.sum(dim=-1, dtype=torch.int32) + indices = torch.nonzero(padding_mask.flatten(), as_tuple=False).flatten() + max_seqlen_in_batch = seqlens_in_batch.max().item() + cu_seqlens = F.pad(torch.cumsum(seqlens_in_batch, dim=0, dtype=torch.torch.int32), (1, 0)) + return ( + indices, + cu_seqlens, + max_seqlen_in_batch, + ) + + +# Copied from transformers.models.bart.modeling_bart._make_causal_mask +def _make_causal_mask( + input_ids_shape: torch.Size, dtype: torch.dtype, device: torch.device, past_key_values_length: int = 0 +): + """ + Make causal mask used for bi-directional self-attention. + """ + bsz, tgt_len = input_ids_shape + mask = torch.full((tgt_len, tgt_len), torch.finfo(dtype).min, device=device) + mask_cond = torch.arange(mask.size(-1), device=device) + mask.masked_fill_(mask_cond < (mask_cond + 1).view(mask.size(-1), 1), 0) + mask = mask.to(dtype) + + if past_key_values_length > 0: + mask = torch.cat([torch.zeros(tgt_len, past_key_values_length, dtype=dtype, device=device), mask], dim=-1) + return mask[None, None, :, :].expand(bsz, 1, tgt_len, tgt_len + past_key_values_length) + + +# Copied from transformers.models.bart.modeling_bart._expand_mask +def _expand_mask(mask: torch.Tensor, dtype: torch.dtype, tgt_len: Optional[int] = None): + """ + Expands attention_mask from `[bsz, seq_len]` to `[bsz, 1, tgt_seq_len, src_seq_len]`. + """ + bsz, src_len = mask.size() + tgt_len = tgt_len if tgt_len is not None else src_len + + expanded_mask = mask[:, None, None, :].expand(bsz, 1, tgt_len, src_len).to(dtype) + + inverted_mask = 1.0 - expanded_mask + + return inverted_mask.masked_fill(inverted_mask.to(torch.bool), torch.finfo(dtype).min) + + +class SkyworkRMSNorm(nn.Module): + def __init__(self, hidden_size, eps=1e-6): + """ + SkyworkRMSNorm is equivalent to T5LayerNorm + """ + super().__init__() + self.weight = nn.Parameter(torch.ones(hidden_size)) + self.variance_epsilon = eps + + def forward(self, hidden_states): + input_dtype = hidden_states.dtype + hidden_states = hidden_states.to(torch.float32) + variance = hidden_states.pow(2).mean(-1, keepdim=True) + hidden_states = hidden_states * torch.rsqrt(variance + self.variance_epsilon) + return self.weight * hidden_states.to(input_dtype) + + +ALL_LAYERNORM_LAYERS.append(SkyworkRMSNorm) + + +class SkyworkRotaryEmbedding(nn.Module): + def __init__(self, dim, max_position_embeddings=2048, base=10000, device=None): + super().__init__() + + self.dim = dim + self.max_position_embeddings = max_position_embeddings + self.base = base + inv_freq = 1.0 / (self.base ** (torch.arange(0, self.dim, 2).float().to(device) / self.dim)) + self.register_buffer("inv_freq", inv_freq, persistent=False) + + # Build here to make `torch.jit.trace` work. + self._set_cos_sin_cache( + seq_len=max_position_embeddings, device=self.inv_freq.device, dtype=torch.get_default_dtype() + ) + + def _set_cos_sin_cache(self, seq_len, device, dtype): + self.max_seq_len_cached = seq_len + t = torch.arange(self.max_seq_len_cached, device=device, dtype=self.inv_freq.dtype) + + freqs = torch.einsum("i,j->ij", t, self.inv_freq) + # Different from paper, but it uses a different permutation in order to obtain the same calculation + emb = torch.cat((freqs, freqs), dim=-1) + self.register_buffer("cos_cached", emb.cos().to(dtype), persistent=False) + self.register_buffer("sin_cached", emb.sin().to(dtype), persistent=False) + + def forward(self, x, seq_len=None): + # x: [bs, num_attention_heads, seq_len, head_size] + if seq_len > self.max_seq_len_cached: + self._set_cos_sin_cache(seq_len=seq_len, device=x.device, dtype=x.dtype) + + return ( + self.cos_cached[:seq_len].to(dtype=x.dtype), + self.sin_cached[:seq_len].to(dtype=x.dtype), + ) + + +class SkyworkLinearScalingRotaryEmbedding(SkyworkRotaryEmbedding): + """SkyworkRotaryEmbedding extended with linear scaling. Credits to the Reddit user /u/kaiokendev""" + + def __init__(self, dim, max_position_embeddings=2048, base=10000, device=None, scaling_factor=1.0): + self.scaling_factor = scaling_factor + super().__init__(dim, max_position_embeddings, base, device) + + def _set_cos_sin_cache(self, seq_len, device, dtype): + self.max_seq_len_cached = seq_len + t = torch.arange(self.max_seq_len_cached, device=device, dtype=self.inv_freq.dtype) + t = t / self.scaling_factor + + freqs = torch.einsum("i,j->ij", t, self.inv_freq) + # Different from paper, but it uses a different permutation in order to obtain the same calculation + emb = torch.cat((freqs, freqs), dim=-1) + self.register_buffer("cos_cached", emb.cos().to(dtype), persistent=False) + self.register_buffer("sin_cached", emb.sin().to(dtype), persistent=False) + + +class SkyworkDynamicNTKScalingRotaryEmbedding(SkyworkRotaryEmbedding): + """SkyworkRotaryEmbedding extended with Dynamic NTK scaling. Credits to the Reddit users /u/bloc97 and /u/emozilla""" + + def __init__(self, dim, max_position_embeddings=2048, base=10000, device=None, scaling_factor=1.0): + self.scaling_factor = scaling_factor + super().__init__(dim, max_position_embeddings, base, device) + + def _set_cos_sin_cache(self, seq_len, device, dtype): + self.max_seq_len_cached = seq_len + + if seq_len > self.max_position_embeddings: + base = self.base * ( + (self.scaling_factor * seq_len / self.max_position_embeddings) - (self.scaling_factor - 1) + ) ** (self.dim / (self.dim - 2)) + inv_freq = 1.0 / (base ** (torch.arange(0, self.dim, 2).float().to(device) / self.dim)) + self.register_buffer("inv_freq", inv_freq, persistent=False) + + t = torch.arange(self.max_seq_len_cached, device=device, dtype=self.inv_freq.dtype) + + freqs = torch.einsum("i,j->ij", t, self.inv_freq) + # Different from paper, but it uses a different permutation in order to obtain the same calculation + emb = torch.cat((freqs, freqs), dim=-1) + self.register_buffer("cos_cached", emb.cos().to(dtype), persistent=False) + self.register_buffer("sin_cached", emb.sin().to(dtype), persistent=False) + + +def rotate_half(x): + """Rotates half the hidden dims of the input.""" + x1 = x[..., : x.shape[-1] // 2] + x2 = x[..., x.shape[-1] // 2 :] + return torch.cat((-x2, x1), dim=-1) + + +# Copied from transformers.models.gpt_neox.modeling_gpt_neox.apply_rotary_pos_emb +def apply_rotary_pos_emb(q, k, cos, sin, position_ids): + cos = cos[position_ids].unsqueeze(1) # [seq_len, dim] -> [batch_size, 1, seq_len, head_dim] + sin = sin[position_ids].unsqueeze(1) + q_embed = (q * cos) + (rotate_half(q) * sin) + k_embed = (k * cos) + (rotate_half(k) * sin) + return q_embed, k_embed + + +class SkyworkMLP(nn.Module): + def __init__(self, config): + super().__init__() + self.config = config + self.hidden_size = config.hidden_size + self.intermediate_size = config.intermediate_size + self.gate_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=False) + self.up_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=False) + self.down_proj = nn.Linear(self.intermediate_size, self.hidden_size, bias=False) + self.act_fn = ACT2FN[config.hidden_act] + + def forward(self, x): + if self.config.pretraining_tp > 1: + slice = self.intermediate_size // self.config.pretraining_tp + gate_proj_slices = self.gate_proj.weight.split(slice, dim=0) + up_proj_slices = self.up_proj.weight.split(slice, dim=0) + down_proj_slices = self.down_proj.weight.split(slice, dim=1) + + gate_proj = torch.cat( + [F.linear(x, gate_proj_slices[i]) for i in range(self.config.pretraining_tp)], dim=-1 + ) + up_proj = torch.cat([F.linear(x, up_proj_slices[i]) for i in range(self.config.pretraining_tp)], dim=-1) + + intermediate_states = (self.act_fn(gate_proj) * up_proj).split(slice, dim=2) + down_proj = [ + F.linear(intermediate_states[i], down_proj_slices[i]) for i in range(self.config.pretraining_tp) + ] + down_proj = sum(down_proj) + else: + down_proj = self.down_proj(self.act_fn(self.gate_proj(x)) * self.up_proj(x)) + + return down_proj + + +def repeat_kv(hidden_states: torch.Tensor, n_rep: int) -> torch.Tensor: + """ + This is the equivalent of torch.repeat_interleave(x, dim=1, repeats=n_rep). The hidden states go from (batch, + num_key_value_heads, seqlen, head_dim) to (batch, num_attention_heads, seqlen, head_dim) + """ + batch, num_key_value_heads, slen, head_dim = hidden_states.shape + if n_rep == 1: + return hidden_states + hidden_states = hidden_states[:, :, None, :, :].expand(batch, num_key_value_heads, n_rep, slen, head_dim) + return hidden_states.reshape(batch, num_key_value_heads * n_rep, slen, head_dim) + + +class SkyworkAttention(nn.Module): + """Multi-headed attention from 'Attention Is All You Need' paper""" + + def __init__(self, config: SkyworkConfig): + super().__init__() + self.config = config + self.hidden_size = config.hidden_size + self.num_heads = config.num_attention_heads + self.head_dim = self.hidden_size // self.num_heads + self.num_key_value_heads = config.num_key_value_heads + self.num_key_value_groups = self.num_heads // self.num_key_value_heads + self.max_position_embeddings = config.max_position_embeddings + self.rope_theta = config.rope_theta + + if (self.head_dim * self.num_heads) != self.hidden_size: + raise ValueError( + f"hidden_size must be divisible by num_heads (got `hidden_size`: {self.hidden_size}" + f" and `num_heads`: {self.num_heads})." + ) + self.q_proj = nn.Linear(self.hidden_size, self.num_heads * self.head_dim, bias=config.attention_bias) + self.k_proj = nn.Linear(self.hidden_size, self.num_key_value_heads * self.head_dim, bias=config.attention_bias) + self.v_proj = nn.Linear(self.hidden_size, self.num_key_value_heads * self.head_dim, bias=config.attention_bias) + self.o_proj = nn.Linear(self.num_heads * self.head_dim, self.hidden_size, bias=config.attention_bias) + self._init_rope() + + def _init_rope(self): + if self.config.rope_scaling is None: + self.rotary_emb = SkyworkRotaryEmbedding( + self.head_dim, + max_position_embeddings=self.max_position_embeddings, + base=self.rope_theta, + ) + else: + scaling_type = self.config.rope_scaling["type"] + scaling_factor = self.config.rope_scaling["factor"] + if scaling_type == "linear": + self.rotary_emb = SkyworkLinearScalingRotaryEmbedding( + self.head_dim, + max_position_embeddings=self.max_position_embeddings, + scaling_factor=scaling_factor, + base=self.rope_theta, + ) + elif scaling_type == "dynamic": + self.rotary_emb = SkyworkDynamicNTKScalingRotaryEmbedding( + self.head_dim, + max_position_embeddings=self.max_position_embeddings, + scaling_factor=scaling_factor, + base=self.rope_theta, + ) + else: + raise ValueError(f"Unknown RoPE scaling type {scaling_type}") + + def _shape(self, tensor: torch.Tensor, seq_len: int, bsz: int): + return tensor.view(bsz, seq_len, self.num_heads, self.head_dim).transpose(1, 2).contiguous() + + def forward( + self, + hidden_states: torch.Tensor, + attention_mask: Optional[torch.Tensor] = None, + position_ids: Optional[torch.LongTensor] = None, + past_key_value: Optional[Tuple[torch.Tensor]] = None, + output_attentions: bool = False, + use_cache: bool = False, + padding_mask: Optional[torch.LongTensor] = None, + ) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]: + bsz, q_len, _ = hidden_states.size() + + if self.config.pretraining_tp > 1: + key_value_slicing = (self.num_key_value_heads * self.head_dim) // self.config.pretraining_tp + query_slices = self.q_proj.weight.split( + (self.num_heads * self.head_dim) // self.config.pretraining_tp, dim=0 + ) + key_slices = self.k_proj.weight.split(key_value_slicing, dim=0) + value_slices = self.v_proj.weight.split(key_value_slicing, dim=0) + + query_states = [F.linear(hidden_states, query_slices[i]) for i in range(self.config.pretraining_tp)] + query_states = torch.cat(query_states, dim=-1) + + key_states = [F.linear(hidden_states, key_slices[i]) for i in range(self.config.pretraining_tp)] + key_states = torch.cat(key_states, dim=-1) + + value_states = [F.linear(hidden_states, value_slices[i]) for i in range(self.config.pretraining_tp)] + value_states = torch.cat(value_states, dim=-1) + + else: + query_states = self.q_proj(hidden_states) + key_states = self.k_proj(hidden_states) + value_states = self.v_proj(hidden_states) + + query_states = query_states.view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2) + key_states = key_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2) + value_states = value_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2) + + kv_seq_len = key_states.shape[-2] + if past_key_value is not None: + kv_seq_len += past_key_value[0].shape[-2] + cos, sin = self.rotary_emb(value_states, seq_len=kv_seq_len) + query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin, position_ids) + + if past_key_value is not None: + # reuse k, v, self_attention + key_states = torch.cat([past_key_value[0], key_states], dim=2) + value_states = torch.cat([past_key_value[1], value_states], dim=2) + + past_key_value = (key_states, value_states) if use_cache else None + + key_states = repeat_kv(key_states, self.num_key_value_groups) + value_states = repeat_kv(value_states, self.num_key_value_groups) + + attn_weights = torch.matmul(query_states, key_states.transpose(2, 3)) / math.sqrt(self.head_dim) + + if attn_weights.size() != (bsz, self.num_heads, q_len, kv_seq_len): + raise ValueError( + f"Attention weights should be of size {(bsz, self.num_heads, q_len, kv_seq_len)}, but is" + f" {attn_weights.size()}" + ) + + if attention_mask is not None: + if attention_mask.size() != (bsz, 1, q_len, kv_seq_len): + raise ValueError( + f"Attention mask should be of size {(bsz, 1, q_len, kv_seq_len)}, but is {attention_mask.size()}" + ) + attn_weights = attn_weights + attention_mask + + # upcast attention to fp32 + attn_weights = nn.functional.softmax(attn_weights, dim=-1, dtype=torch.float32).to(query_states.dtype) + attn_output = torch.matmul(attn_weights, value_states) + + if attn_output.size() != (bsz, self.num_heads, q_len, self.head_dim): + raise ValueError( + f"`attn_output` should be of size {(bsz, self.num_heads, q_len, self.head_dim)}, but is" + f" {attn_output.size()}" + ) + + attn_output = attn_output.transpose(1, 2).contiguous() + + attn_output = attn_output.reshape(bsz, q_len, self.hidden_size) + + if self.config.pretraining_tp > 1: + attn_output = attn_output.split(self.hidden_size // self.config.pretraining_tp, dim=2) + o_proj_slices = self.o_proj.weight.split(self.hidden_size // self.config.pretraining_tp, dim=1) + attn_output = sum([F.linear(attn_output[i], o_proj_slices[i]) for i in range(self.config.pretraining_tp)]) + else: + attn_output = self.o_proj(attn_output) + + if not output_attentions: + attn_weights = None + + return attn_output, attn_weights, past_key_value + + +class SkyworkFlashAttention2(SkyworkAttention): + """ + Skywork flash attention module. This module inherits from `SkyworkAttention` as the weights of the module stays + untouched. The only required change would be on the forward pass where it needs to correctly call the public API of + flash attention and deal with padding tokens in case the input contains any of them. + """ + + def forward( + self, + hidden_states: torch.Tensor, + attention_mask: Optional[torch.Tensor] = None, + position_ids: Optional[torch.LongTensor] = None, + past_key_value: Optional[Tuple[torch.Tensor]] = None, + output_attentions: bool = False, + use_cache: bool = False, + padding_mask: Optional[torch.LongTensor] = None, + ) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]: + # SkyworkFlashAttention2 attention does not support output_attentions + output_attentions = False + + bsz, q_len, _ = hidden_states.size() + + query_states = self.q_proj(hidden_states) + key_states = self.k_proj(hidden_states) + value_states = self.v_proj(hidden_states) + + # Flash attention requires the input to have the shape + # batch_size x seq_length x head_dime x hidden_dim + # therefore we just need to keep the original shape + query_states = query_states.view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2) + key_states = key_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2) + value_states = value_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2) + + kv_seq_len = key_states.shape[-2] + if past_key_value is not None: + kv_seq_len += past_key_value[0].shape[-2] + + cos, sin = self.rotary_emb(value_states, seq_len=kv_seq_len) + + query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin, position_ids) + + if past_key_value is not None: + # reuse k, v, self_attention + key_states = torch.cat([past_key_value[0], key_states], dim=2) + value_states = torch.cat([past_key_value[1], value_states], dim=2) + + past_key_value = (key_states, value_states) if use_cache else None + + query_states = query_states.transpose(1, 2) + key_states = key_states.transpose(1, 2) + value_states = value_states.transpose(1, 2) + + # TODO: skywork does not have dropout in the config?? + # It is recommended to use dropout with FA according to the docs + # when training. + dropout_rate = 0.0 # if not self.training else self.attn_dropout + + # In PEFT, usually we cast the layer norms in float32 for training stability reasons + # therefore the input hidden states gets silently casted in float32. Hence, we need + # cast them back in float16 just to be sure everything works as expected. + # This might slowdown training & inference so it is recommended to not cast the LayerNorms + # in fp32. (SkyworkRMSNorm handles it correctly) + input_dtype = query_states.dtype + if input_dtype == torch.float32: + logger.warning_once( + "The input hidden states seems to be silently casted in float32, this might be related to" + " the fact you have upcasted embedding or layer norm layers in float32. We will cast back the input in" + " float16." + ) + + query_states = query_states.to(torch.float16) + key_states = key_states.to(torch.float16) + value_states = value_states.to(torch.float16) + + attn_output = self._flash_attention_forward( + query_states, key_states, value_states, padding_mask, q_len, dropout=dropout_rate + ) + + attn_output = attn_output.reshape(bsz, q_len, self.hidden_size).contiguous() + attn_output = self.o_proj(attn_output) + + if not output_attentions: + attn_weights = None + + return attn_output, attn_weights, past_key_value + + def _flash_attention_forward( + self, query_states, key_states, value_states, padding_mask, query_length, dropout=0.0, softmax_scale=None + ): + """ + Calls the forward method of Flash Attention - if the input hidden states contain at least one padding token + first unpad the input, then computes the attention scores and pad the final attention scores. + + Args: + query_states (`torch.Tensor`): + Input query states to be passed to Flash Attention API + key_states (`torch.Tensor`): + Input key states to be passed to Flash Attention API + value_states (`torch.Tensor`): + Input value states to be passed to Flash Attention API + padding_mask (`torch.Tensor`): + The padding mask - corresponds to a tensor of size `(batch_size, seq_len)` where 0 stands for the + position of padding tokens and 1 for the position of non-padding tokens. + dropout (`int`, *optional*): + Attention dropout + softmax_scale (`float`, *optional*): + The scaling of QK^T before applying softmax. Default to 1 / sqrt(head_dim) + """ + # Contains at least one padding token in the sequence + if padding_mask is not None: + batch_size = query_states.shape[0] + query_states, key_states, value_states, indices_q, cu_seq_lens, max_seq_lens = self._upad_input( + query_states, key_states, value_states, padding_mask, query_length + ) + + cu_seqlens_q, cu_seqlens_k = cu_seq_lens + max_seqlen_in_batch_q, max_seqlen_in_batch_k = max_seq_lens + + attn_output_unpad = flash_attn_varlen_func( + query_states, + key_states, + value_states, + cu_seqlens_q=cu_seqlens_q, + cu_seqlens_k=cu_seqlens_k, + max_seqlen_q=max_seqlen_in_batch_q, + max_seqlen_k=max_seqlen_in_batch_k, + dropout_p=dropout, + softmax_scale=softmax_scale, + causal=True, + ) + + attn_output = pad_input(attn_output_unpad, indices_q, batch_size, query_length) + else: + attn_output = flash_attn_func( + query_states, key_states, value_states, dropout, softmax_scale=softmax_scale, causal=True + ) + + return attn_output + + def _upad_input(self, query_layer, key_layer, value_layer, padding_mask, query_length): + indices_k, cu_seqlens_k, max_seqlen_in_batch_k = _get_unpad_data(padding_mask) + batch_size, kv_seq_len, num_key_value_heads, head_dim = key_layer.shape + + key_layer = index_first_axis( + key_layer.reshape(batch_size * kv_seq_len, num_key_value_heads, head_dim), indices_k + ) + value_layer = index_first_axis( + value_layer.reshape(batch_size * kv_seq_len, num_key_value_heads, head_dim), indices_k + ) + if query_length == kv_seq_len: + query_layer = index_first_axis( + query_layer.reshape(batch_size * kv_seq_len, self.num_heads, head_dim), indices_k + ) + cu_seqlens_q = cu_seqlens_k + max_seqlen_in_batch_q = max_seqlen_in_batch_k + indices_q = indices_k + elif query_length == 1: + max_seqlen_in_batch_q = 1 + cu_seqlens_q = torch.arange( + batch_size + 1, dtype=torch.int32, device=query_layer.device + ) # There is a memcpy here, that is very bad. + indices_q = cu_seqlens_q[:-1] + query_layer = query_layer.squeeze(1) + else: + # The -q_len: slice assumes left padding. + padding_mask = padding_mask[:, -query_length:] + query_layer, indices_q, cu_seqlens_q, max_seqlen_in_batch_q = unpad_input(query_layer, padding_mask) + + return ( + query_layer, + key_layer, + value_layer, + indices_q, + (cu_seqlens_q, cu_seqlens_k), + (max_seqlen_in_batch_q, max_seqlen_in_batch_k), + ) + + +class SkyworkDecoderLayer(nn.Module): + def __init__(self, config: SkyworkConfig): + super().__init__() + self.hidden_size = config.hidden_size + self.self_attn = ( + SkyworkAttention(config=config) + if not getattr(config, "_flash_attn_2_enabled", False) + else SkyworkFlashAttention2(config=config) + ) + self.mlp = SkyworkMLP(config) + self.input_layernorm = SkyworkRMSNorm(config.hidden_size, eps=config.rms_norm_eps) + self.post_attention_layernorm = SkyworkRMSNorm(config.hidden_size, eps=config.rms_norm_eps) + + def forward( + self, + hidden_states: torch.Tensor, + attention_mask: Optional[torch.Tensor] = None, + position_ids: Optional[torch.LongTensor] = None, + past_key_value: Optional[Tuple[torch.Tensor]] = None, + output_attentions: Optional[bool] = False, + use_cache: Optional[bool] = False, + padding_mask: Optional[torch.LongTensor] = None, + ) -> Tuple[torch.FloatTensor, Optional[Tuple[torch.FloatTensor, torch.FloatTensor]]]: + """ + Args: + hidden_states (`torch.FloatTensor`): input to the layer of shape `(batch, seq_len, embed_dim)` + attention_mask (`torch.FloatTensor`, *optional*): attention mask of size + `(batch, 1, tgt_len, src_len)` where padding elements are indicated by very large negative values. + output_attentions (`bool`, *optional*): + Whether or not to return the attentions tensors of all attention layers. See `attentions` under + returned tensors for more detail. + use_cache (`bool`, *optional*): + If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding + (see `past_key_values`). + past_key_value (`Tuple(torch.FloatTensor)`, *optional*): cached past key and value projection states + """ + + residual = hidden_states + + hidden_states = self.input_layernorm(hidden_states) + + # Self Attention + hidden_states, self_attn_weights, present_key_value = self.self_attn( + hidden_states=hidden_states, + attention_mask=attention_mask, + position_ids=position_ids, + past_key_value=past_key_value, + output_attentions=output_attentions, + use_cache=use_cache, + padding_mask=padding_mask, + ) + hidden_states = residual + hidden_states + + # Fully Connected + residual = hidden_states + hidden_states = self.post_attention_layernorm(hidden_states) + hidden_states = self.mlp(hidden_states) + hidden_states = residual + hidden_states + + outputs = (hidden_states,) + + if output_attentions: + outputs += (self_attn_weights,) + + if use_cache: + outputs += (present_key_value,) + + return outputs + +class SkyworkPreTrainedModel(PreTrainedModel): + config_class = SkyworkConfig + base_model_prefix = "model" + supports_gradient_checkpointing = True + _no_split_modules = ["SkyworkDecoderLayer"] + _skip_keys_device_placement = "past_key_values" + _supports_flash_attn_2 = True + + def _init_weights(self, module): + std = self.config.initializer_range + if isinstance(module, nn.Linear): + module.weight.data.normal_(mean=0.0, std=std) + if module.bias is not None: + module.bias.data.zero_() + elif isinstance(module, nn.Embedding): + module.weight.data.normal_(mean=0.0, std=std) + if module.padding_idx is not None: + module.weight.data[module.padding_idx].zero_() + + def _set_gradient_checkpointing(self, module, value=False): + if isinstance(module, SkyworkModel): + module.gradient_checkpointing = value + +class SkyworkModel(SkyworkPreTrainedModel): + """ + Transformer decoder consisting of *config.num_hidden_layers* layers. Each layer is a [`SkyworkDecoderLayer`] + + Args: + config: SkyworkConfig + """ + + def __init__(self, config: SkyworkConfig): + super().__init__(config) + self.padding_idx = config.pad_token_id + self.vocab_size = config.vocab_size + + self.embed_tokens = nn.Embedding(config.vocab_size, config.hidden_size, self.padding_idx) + self.layers = nn.ModuleList([SkyworkDecoderLayer(config) for _ in range(config.num_hidden_layers)]) + self.norm = SkyworkRMSNorm(config.hidden_size, eps=config.rms_norm_eps) + + self.gradient_checkpointing = False + # Initialize weights and apply final processing + self.post_init() + + def get_input_embeddings(self): + return self.embed_tokens + + def set_input_embeddings(self, value): + self.embed_tokens = value + + # Copied from transformers.models.bart.modeling_bart.BartDecoder._prepare_decoder_attention_mask + def _prepare_decoder_attention_mask(self, attention_mask, input_shape, inputs_embeds, past_key_values_length): + # create causal mask + # [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len] + combined_attention_mask = None + if input_shape[-1] > 1: + combined_attention_mask = _make_causal_mask( + input_shape, + inputs_embeds.dtype, + device=inputs_embeds.device, + past_key_values_length=past_key_values_length, + ) + + if attention_mask is not None: + # [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len] + expanded_attn_mask = _expand_mask(attention_mask, inputs_embeds.dtype, tgt_len=input_shape[-1]).to( + inputs_embeds.device + ) + combined_attention_mask = ( + expanded_attn_mask if combined_attention_mask is None else expanded_attn_mask + combined_attention_mask + ) + + return combined_attention_mask + + def forward( + self, + input_ids: torch.LongTensor = None, + attention_mask: Optional[torch.Tensor] = None, + position_ids: Optional[torch.LongTensor] = None, + past_key_values: Optional[List[torch.FloatTensor]] = None, + inputs_embeds: Optional[torch.FloatTensor] = None, + use_cache: Optional[bool] = None, + output_attentions: Optional[bool] = None, + output_hidden_states: Optional[bool] = None, + return_dict: Optional[bool] = None, + ) -> Union[Tuple, BaseModelOutputWithPast]: + output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions + output_hidden_states = ( + output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states + ) + use_cache = use_cache if use_cache is not None else self.config.use_cache + + return_dict = return_dict if return_dict is not None else self.config.use_return_dict + + # retrieve input_ids and inputs_embeds + if input_ids is not None and inputs_embeds is not None: + raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time") + elif input_ids is not None: + batch_size, seq_length = input_ids.shape + elif inputs_embeds is not None: + batch_size, seq_length, _ = inputs_embeds.shape + else: + raise ValueError("You have to specify either input_ids or inputs_embeds") + + seq_length_with_past = seq_length + past_key_values_length = 0 + + if past_key_values is not None: + past_key_values_length = past_key_values[0][0].shape[2] + seq_length_with_past = seq_length_with_past + past_key_values_length + + if position_ids is None: + device = input_ids.device if input_ids is not None else inputs_embeds.device + position_ids = torch.arange( + past_key_values_length, seq_length + past_key_values_length, dtype=torch.long, device=device + ) + position_ids = position_ids.unsqueeze(0) + + if inputs_embeds is None: + inputs_embeds = self.embed_tokens(input_ids) + # embed positions + if attention_mask is None: + attention_mask = torch.ones( + (batch_size, seq_length_with_past), dtype=torch.bool, device=inputs_embeds.device + ) + padding_mask = None + else: + if 0 in attention_mask: + padding_mask = attention_mask + else: + padding_mask = None + + attention_mask = self._prepare_decoder_attention_mask( + attention_mask, (batch_size, seq_length), inputs_embeds, past_key_values_length + ) + + hidden_states = inputs_embeds + + if self.gradient_checkpointing and self.training: + if use_cache: + logger.warning_once( + "`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..." + ) + use_cache = False + + # decoder layers + all_hidden_states = () if output_hidden_states else None + all_self_attns = () if output_attentions else None + next_decoder_cache = () if use_cache else None + + for idx, decoder_layer in enumerate(self.layers): + if output_hidden_states: + all_hidden_states += (hidden_states,) + + past_key_value = past_key_values[idx] if past_key_values is not None else None + + if self.gradient_checkpointing and self.training: + + def create_custom_forward(module): + def custom_forward(*inputs): + # None for past_key_value + return module(*inputs, past_key_value, output_attentions, padding_mask=padding_mask) + + return custom_forward + + layer_outputs = torch.utils.checkpoint.checkpoint( + create_custom_forward(decoder_layer), hidden_states, attention_mask, position_ids + ) + else: + layer_outputs = decoder_layer( + hidden_states, + attention_mask=attention_mask, + position_ids=position_ids, + past_key_value=past_key_value, + output_attentions=output_attentions, + use_cache=use_cache, + padding_mask=padding_mask, + ) + + hidden_states = layer_outputs[0] + + if use_cache: + next_decoder_cache += (layer_outputs[2 if output_attentions else 1],) + + if output_attentions: + all_self_attns += (layer_outputs[1],) + + hidden_states = self.norm(hidden_states) + + # add hidden states from the last decoder layer + if output_hidden_states: + all_hidden_states += (hidden_states,) + + next_cache = next_decoder_cache if use_cache else None + if not return_dict: + return tuple(v for v in [hidden_states, next_cache, all_hidden_states, all_self_attns] if v is not None) + return BaseModelOutputWithPast( + last_hidden_state=hidden_states, + past_key_values=next_cache, + hidden_states=all_hidden_states, + attentions=all_self_attns, + ) + + +class SkyworkForCausalLM(SkyworkPreTrainedModel): + _tied_weights_keys = ["lm_head.weight"] + + def __init__(self, config): + super().__init__(config) + self.model = SkyworkModel(config) + self.vocab_size = config.vocab_size + self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False) + + # Initialize weights and apply final processing + self.post_init() + + def get_input_embeddings(self): + return self.model.embed_tokens + + def set_input_embeddings(self, value): + self.model.embed_tokens = value + + def get_output_embeddings(self): + return self.lm_head + + def set_output_embeddings(self, new_embeddings): + self.lm_head = new_embeddings + + def set_decoder(self, decoder): + self.model = decoder + + def get_decoder(self): + return self.model + + @replace_return_docstrings(output_type=CausalLMOutputWithPast, config_class=_CONFIG_FOR_DOC) + def forward( + self, + input_ids: torch.LongTensor = None, + attention_mask: Optional[torch.Tensor] = None, + position_ids: Optional[torch.LongTensor] = None, + past_key_values: Optional[List[torch.FloatTensor]] = None, + inputs_embeds: Optional[torch.FloatTensor] = None, + labels: Optional[torch.LongTensor] = None, + use_cache: Optional[bool] = None, + output_attentions: Optional[bool] = None, + output_hidden_states: Optional[bool] = None, + return_dict: Optional[bool] = None, + ) -> Union[Tuple, CausalLMOutputWithPast]: + r""" + Args: + labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): + Labels for computing the masked language modeling loss. Indices should either be in `[0, ..., + config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored + (masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`. + + Returns: + + Example: + + ```python + >>> from transformers import AutoTokenizer, SkyworkForCausalLM + + >>> model = SkyworkForCausalLM.from_pretrained(PATH_TO_CONVERTED_WEIGHTS) + >>> tokenizer = AutoTokenizer.from_pretrained(PATH_TO_CONVERTED_TOKENIZER) + + >>> prompt = "Hey, are you conscious? Can you talk to me?" + >>> inputs = tokenizer(prompt, return_tensors="pt") + + >>> # Generate + >>> generate_ids = model.generate(inputs.input_ids, max_length=30) + >>> tokenizer.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0] + "Hey, are you conscious? Can you talk to me?\nI'm not conscious, but I can talk to you." + ```""" + + output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions + output_hidden_states = ( + output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states + ) + return_dict = return_dict if return_dict is not None else self.config.use_return_dict + + # decoder outputs consists of (dec_features, layer_state, dec_hidden, dec_attn) + outputs = self.model( + input_ids=input_ids, + attention_mask=attention_mask, + position_ids=position_ids, + past_key_values=past_key_values, + inputs_embeds=inputs_embeds, + use_cache=use_cache, + output_attentions=output_attentions, + output_hidden_states=output_hidden_states, + return_dict=return_dict, + ) + + hidden_states = outputs[0] + if self.config.pretraining_tp > 1: + lm_head_slices = self.lm_head.weight.split(self.vocab_size // self.config.pretraining_tp, dim=0) + logits = [F.linear(hidden_states, lm_head_slices[i]) for i in range(self.config.pretraining_tp)] + logits = torch.cat(logits, dim=-1) + else: + logits = self.lm_head(hidden_states) + logits = logits.float() + + loss = None + if labels is not None: + # Shift so that tokens < n predict n + shift_logits = logits[..., :-1, :].contiguous() + shift_labels = labels[..., 1:].contiguous() + # Flatten the tokens + loss_fct = CrossEntropyLoss() + shift_logits = shift_logits.view(-1, self.config.vocab_size) + shift_labels = shift_labels.view(-1) + # Enable model parallelism + shift_labels = shift_labels.to(shift_logits.device) + loss = loss_fct(shift_logits, shift_labels) + + if not return_dict: + output = (logits,) + outputs[1:] + return (loss,) + output if loss is not None else output + + return CausalLMOutputWithPast( + loss=loss, + logits=logits, + past_key_values=outputs.past_key_values, + hidden_states=outputs.hidden_states, + attentions=outputs.attentions, + ) + + def prepare_inputs_for_generation( + self, input_ids, past_key_values=None, attention_mask=None, inputs_embeds=None, **kwargs + ): + if past_key_values: + input_ids = input_ids[:, -1:] + + position_ids = kwargs.get("position_ids", None) + if attention_mask is not None and position_ids is None: + # create position_ids on the fly for batch generation + position_ids = attention_mask.long().cumsum(-1) - 1 + position_ids.masked_fill_(attention_mask == 0, 1) + if past_key_values: + position_ids = position_ids[:, -1].unsqueeze(-1) + + # if `inputs_embeds` are passed, we only want to use them in the 1st generation step + if inputs_embeds is not None and past_key_values is None: + model_inputs = {"inputs_embeds": inputs_embeds} + else: + model_inputs = {"input_ids": input_ids} + + model_inputs.update( + { + "position_ids": position_ids, + "past_key_values": past_key_values, + "use_cache": kwargs.get("use_cache"), + "attention_mask": attention_mask, + } + ) + return model_inputs + + @staticmethod + def _reorder_cache(past_key_values, beam_idx): + reordered_past = () + for layer_past in past_key_values: + reordered_past += ( + tuple(past_state.index_select(0, beam_idx.to(past_state.device)) for past_state in layer_past), + ) + return reordered_past + +class SkyworkForSequenceClassification(SkyworkPreTrainedModel): + def __init__(self, config): + super().__init__(config) + self.num_labels = config.num_labels + self.model = SkyworkModel(config) + self.score = nn.Linear(config.hidden_size, self.num_labels, bias=False) + + # Initialize weights and apply final processing + self.post_init() + + def get_input_embeddings(self): + return self.model.embed_tokens + + def set_input_embeddings(self, value): + self.model.embed_tokens = value + + def forward( + self, + input_ids: torch.LongTensor = None, + attention_mask: Optional[torch.Tensor] = None, + position_ids: Optional[torch.LongTensor] = None, + past_key_values: Optional[List[torch.FloatTensor]] = None, + inputs_embeds: Optional[torch.FloatTensor] = None, + labels: Optional[torch.LongTensor] = None, + use_cache: Optional[bool] = None, + output_attentions: Optional[bool] = None, + output_hidden_states: Optional[bool] = None, + return_dict: Optional[bool] = None, + ) -> Union[Tuple, SequenceClassifierOutputWithPast]: + r""" + labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*): + Labels for computing the sequence classification/regression loss. Indices should be in `[0, ..., + config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If + `config.num_labels > 1` a classification loss is computed (Cross-Entropy). + """ + return_dict = return_dict if return_dict is not None else self.config.use_return_dict + + transformer_outputs = self.model( + input_ids, + attention_mask=attention_mask, + position_ids=position_ids, + past_key_values=past_key_values, + inputs_embeds=inputs_embeds, + use_cache=use_cache, + output_attentions=output_attentions, + output_hidden_states=output_hidden_states, + return_dict=return_dict, + ) + hidden_states = transformer_outputs[0] + logits = self.score(hidden_states) + + if input_ids is not None: + batch_size = input_ids.shape[0] + else: + batch_size = inputs_embeds.shape[0] + + if self.config.pad_token_id is None and batch_size != 1: + raise ValueError("Cannot handle batch sizes > 1 if no padding token is defined.") + if self.config.pad_token_id is None: + sequence_lengths = -1 + else: + if input_ids is not None: + sequence_lengths = (torch.eq(input_ids, self.config.pad_token_id).long().argmax(-1) - 1).to( + logits.device + ) + else: + sequence_lengths = -1 + + pooled_logits = logits[torch.arange(batch_size, device=logits.device), sequence_lengths] + + loss = None + if labels is not None: + labels = labels.to(logits.device) + if self.config.problem_type is None: + if self.num_labels == 1: + self.config.problem_type = "regression" + elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int): + self.config.problem_type = "single_label_classification" + else: + self.config.problem_type = "multi_label_classification" + + if self.config.problem_type == "regression": + loss_fct = MSELoss() + if self.num_labels == 1: + loss = loss_fct(pooled_logits.squeeze(), labels.squeeze()) + else: + loss = loss_fct(pooled_logits, labels) + elif self.config.problem_type == "single_label_classification": + loss_fct = CrossEntropyLoss() + loss = loss_fct(pooled_logits.view(-1, self.num_labels), labels.view(-1)) + elif self.config.problem_type == "multi_label_classification": + loss_fct = BCEWithLogitsLoss() + loss = loss_fct(pooled_logits, labels) + if not return_dict: + output = (pooled_logits,) + transformer_outputs[1:] + return ((loss,) + output) if loss is not None else output + + return SequenceClassifierOutputWithPast( + loss=loss, + logits=pooled_logits, + past_key_values=transformer_outputs.past_key_values, + hidden_states=transformer_outputs.hidden_states, + attentions=transformer_outputs.attentions, + ) \ No newline at end of file diff --git a/pytorch_model-00001-of-00053.bin b/pytorch_model-00001-of-00053.bin new file mode 100644 index 0000000000000000000000000000000000000000..2ac39e729e1c8a84dae673ab77f570335a178c22 --- /dev/null +++ b/pytorch_model-00001-of-00053.bin @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:68940720301857dba24c7f68a2560e165076a577622da9c3ecef68f7963f5cff +size 509629447 diff --git a/pytorch_model-00002-of-00053.bin b/pytorch_model-00002-of-00053.bin new file mode 100644 index 0000000000000000000000000000000000000000..5dda57502d5a4d393d8d6d706c6deda132307503 --- /dev/null +++ b/pytorch_model-00002-of-00053.bin @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:e205c6182bb23ed7e38bc67a371a7fd73550720f04812a6d2d40f935dd0e23a1 +size 509629447 diff --git a/pytorch_model-00003-of-00053.bin b/pytorch_model-00003-of-00053.bin new file mode 100644 index 0000000000000000000000000000000000000000..94dc42c7531630048d966d6a25f014ba906b2fa6 --- /dev/null +++ b/pytorch_model-00003-of-00053.bin @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:d28f1778e9d1c25129ce2c1efa57bb9a4f0481f20ea599e838ead0b0503fe51b +size 509629447 diff --git a/pytorch_model-00004-of-00053.bin b/pytorch_model-00004-of-00053.bin new file mode 100644 index 0000000000000000000000000000000000000000..6a8955d29ecd5c06559c8ac8fc8661b77cdbbaa5 --- /dev/null +++ b/pytorch_model-00004-of-00053.bin @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:492050395a7cb564ef08be3ae8d1c41b045a0946e5b3963f9eccf2d7a83c756e +size 509629447 diff --git a/pytorch_model-00005-of-00053.bin b/pytorch_model-00005-of-00053.bin new file mode 100644 index 0000000000000000000000000000000000000000..334ed28a94e4437436a529fe2eb0fcab2be6e315 --- /dev/null +++ b/pytorch_model-00005-of-00053.bin @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:9754fc15b494d09fb7e69061945e99f3581c04b92155615eaac613f795f90af2 +size 509629447 diff --git a/pytorch_model-00006-of-00053.bin b/pytorch_model-00006-of-00053.bin new file mode 100644 index 0000000000000000000000000000000000000000..67d1d9081e427a0fbfb5d66715bbd2835cb581ce --- /dev/null +++ b/pytorch_model-00006-of-00053.bin @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:289188fd00cb91892ff5892c318a1c95ca7f116b26f61f1333da002591b8aa4e +size 509629447 diff --git a/pytorch_model-00007-of-00053.bin b/pytorch_model-00007-of-00053.bin new file mode 100644 index 0000000000000000000000000000000000000000..11229b4cae0fe47291424f666f29a5c0cbe1d5c1 --- /dev/null +++ b/pytorch_model-00007-of-00053.bin @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:6df94cae029ebf292724c215cc98278a6f5094dd389ee737010aae267b4615f0 +size 509629447 diff --git a/pytorch_model-00008-of-00053.bin b/pytorch_model-00008-of-00053.bin new file mode 100644 index 0000000000000000000000000000000000000000..9aa7793b63e3ae2cc8a1f7ab9db83f34242d4acf --- /dev/null +++ b/pytorch_model-00008-of-00053.bin @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:2f1fbf1ecdea5d2e884a9f5b4f490cd25190ca6e136e21b6a5742502a7314ce1 +size 509629447 diff --git a/pytorch_model-00009-of-00053.bin b/pytorch_model-00009-of-00053.bin new file mode 100644 index 0000000000000000000000000000000000000000..da841b7797f1fb998639052f921415f1c58869bb --- /dev/null +++ b/pytorch_model-00009-of-00053.bin @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:662acb1bbf08baa2339cbb5a1b6751d9f666a5b4bdc5b3e2bae0dd3e9a978816 +size 509629447 diff --git a/pytorch_model-00010-of-00053.bin b/pytorch_model-00010-of-00053.bin new file mode 100644 index 0000000000000000000000000000000000000000..29d7dd648e19dc2a8bee5fff6ac62c9a01bd91a7 --- /dev/null +++ b/pytorch_model-00010-of-00053.bin @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:38147ea6887d0daeb9ffb680e50fdda895aaa00fbd7abb3831da45443f335bce +size 509629447 diff --git a/pytorch_model-00011-of-00053.bin b/pytorch_model-00011-of-00053.bin new file mode 100644 index 0000000000000000000000000000000000000000..a8da5f1746928d06b3f12ab1d1e677ab95d282b2 --- /dev/null +++ b/pytorch_model-00011-of-00053.bin @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:302cf0a909d5da00e667f58c982d59d3fc69afb8e51082e568f015da170cdf17 +size 509629511 diff --git a/pytorch_model-00012-of-00053.bin b/pytorch_model-00012-of-00053.bin new file mode 100644 index 0000000000000000000000000000000000000000..5cfbcd098b24b0924500659f46b8042343cd0ed5 --- /dev/null +++ b/pytorch_model-00012-of-00053.bin @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:ceff426fbfaf9a6911d36fdaf5d7bc098506fe0bae5cd006f1a7a76f738a0f09 +size 509629511 diff --git a/pytorch_model-00013-of-00053.bin b/pytorch_model-00013-of-00053.bin new file mode 100644 index 0000000000000000000000000000000000000000..8dd8b998a09ece1ffe8039d66cc1fa6c252bf143 --- /dev/null +++ b/pytorch_model-00013-of-00053.bin @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:63fa9883b515fafbd78d935e9570710b1bdd244c81a4743337b66dd402a2e288 +size 509629511 diff --git a/pytorch_model-00014-of-00053.bin b/pytorch_model-00014-of-00053.bin new file mode 100644 index 0000000000000000000000000000000000000000..a85c6678230d58cd3a4ef63ee6a2de4e68cf2419 --- /dev/null +++ b/pytorch_model-00014-of-00053.bin @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:29a39a5d252dc31a4b60a20cc4d3651931062e0bdd97391005c761877e00f84e +size 509629511 diff --git a/pytorch_model-00015-of-00053.bin b/pytorch_model-00015-of-00053.bin new file mode 100644 index 0000000000000000000000000000000000000000..c29f3080800edf683f9c25eed8b71639ca7d87a7 --- /dev/null +++ b/pytorch_model-00015-of-00053.bin @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:fbbdd55cb635c442b06906a76a36500ebfa8ec5a6fd8d33a99123f2761aa0598 +size 509629511 diff --git a/pytorch_model-00016-of-00053.bin b/pytorch_model-00016-of-00053.bin new file mode 100644 index 0000000000000000000000000000000000000000..38b381c3c205f01228b1c55fb9dd24bcdd5080f3 --- /dev/null +++ b/pytorch_model-00016-of-00053.bin @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:4afa21eaf0a5ca8341d7dcec5b76dba960f797de9ac2fca96b6076a0cb137826 +size 509629511 diff --git a/pytorch_model-00017-of-00053.bin b/pytorch_model-00017-of-00053.bin new file mode 100644 index 0000000000000000000000000000000000000000..8cecf2c5ebc78120ebd3bb8f38dbf06d52ba7a36 --- /dev/null +++ b/pytorch_model-00017-of-00053.bin @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:9862fb9399bf64c00f5d7956d7c47e390a8fe58a2a9fe20b1dec66ffaa77e486 +size 509629511 diff --git a/pytorch_model-00018-of-00053.bin b/pytorch_model-00018-of-00053.bin new file mode 100644 index 0000000000000000000000000000000000000000..457184605fc5d7685e854379e4e77b2b285e35df --- /dev/null +++ b/pytorch_model-00018-of-00053.bin @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:b1e97e33b7d6de423a52c2cbfcfb6ab1ec64a47b73c5680fe1acb6664b613af7 +size 509629511 diff --git a/pytorch_model-00019-of-00053.bin b/pytorch_model-00019-of-00053.bin new file mode 100644 index 0000000000000000000000000000000000000000..9f1c95485682c7f8cbedb5235de5f87034219cfd --- /dev/null +++ b/pytorch_model-00019-of-00053.bin @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:0bc3079f15219c1f453a21aaa410a14cdd8aa3416e0c37ec8c5ddb1c708eccbb +size 509629511 diff --git a/pytorch_model-00020-of-00053.bin b/pytorch_model-00020-of-00053.bin new file mode 100644 index 0000000000000000000000000000000000000000..b442f6b428ffddd08fb4c57565bd48540a9f1233 --- /dev/null +++ b/pytorch_model-00020-of-00053.bin @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:b3b0b92ea03f7e8e457b3362b6b72aa814294b562a173613c3763103973be8f2 +size 509629511 diff --git a/pytorch_model-00021-of-00053.bin b/pytorch_model-00021-of-00053.bin new file mode 100644 index 0000000000000000000000000000000000000000..ddeea49bab60f48d31e6008d319d84d910cddfdd --- /dev/null +++ b/pytorch_model-00021-of-00053.bin @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:410de3915493f0c984db3636d195b79e29c36a8a04070a6f84499e7ba30228b9 +size 509629511 diff --git a/pytorch_model-00022-of-00053.bin b/pytorch_model-00022-of-00053.bin new file mode 100644 index 0000000000000000000000000000000000000000..04a77ed7a67339341f03fc026bd9f4417dff8e99 --- /dev/null +++ b/pytorch_model-00022-of-00053.bin @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:faf930f0ee2069fd60baff35cb8015274abe05f83878407fc405287ebbf1ff0d +size 509629511 diff --git a/pytorch_model-00023-of-00053.bin b/pytorch_model-00023-of-00053.bin new file mode 100644 index 0000000000000000000000000000000000000000..f99621bbe83cd5204857ee9f488ce26f8533ac90 --- /dev/null +++ b/pytorch_model-00023-of-00053.bin @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:23feb32029849bbacc1ad52089ca50cdc0ccbd1847db5bcd740c6070c89ed8fe +size 509629511 diff --git a/pytorch_model-00024-of-00053.bin b/pytorch_model-00024-of-00053.bin new file mode 100644 index 0000000000000000000000000000000000000000..a75c2c827bbf46ccad1a035b30085eba26d4187a --- /dev/null +++ b/pytorch_model-00024-of-00053.bin @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:57a66e21dbdbd69f0bdc0531c334d2e1d718d8a5f2f1c81fe4c7d8e328978f7c +size 509629511 diff --git a/pytorch_model-00025-of-00053.bin b/pytorch_model-00025-of-00053.bin new file mode 100644 index 0000000000000000000000000000000000000000..7a0e4489c556f2b8c751412d4e5e8936d7bd99a6 --- /dev/null +++ b/pytorch_model-00025-of-00053.bin @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:e225e949dc5185b44f1c210cf027306991f1299080f06289013644dd426c905c +size 509629511 diff --git a/pytorch_model-00026-of-00053.bin b/pytorch_model-00026-of-00053.bin new file mode 100644 index 0000000000000000000000000000000000000000..277f23149e21c72bdc999a5fea846851594b73c2 --- /dev/null +++ b/pytorch_model-00026-of-00053.bin @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:1f21ed93e2c3b7d5ce4f35b018dd9662e2ff9aca328939715c8e538f9dae6a51 +size 509629511 diff --git a/pytorch_model-00027-of-00053.bin b/pytorch_model-00027-of-00053.bin new file mode 100644 index 0000000000000000000000000000000000000000..8b0955ea08febabe3a8cb9bbbccc8b2b16929103 --- /dev/null +++ b/pytorch_model-00027-of-00053.bin @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:959c22c54dc5e35033e061c95a2cf6579d72c64263ef969337df463ed240023e +size 509629511 diff --git a/pytorch_model-00028-of-00053.bin b/pytorch_model-00028-of-00053.bin new file mode 100644 index 0000000000000000000000000000000000000000..40eadc0c8b04c079e842cb8d1705dfb6609b741c --- /dev/null +++ b/pytorch_model-00028-of-00053.bin @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:eb537adaac04127fb050014845363a3b929b9d0d1b9a15c9f853ebe8479c0b00 +size 509629511 diff --git a/pytorch_model-00029-of-00053.bin b/pytorch_model-00029-of-00053.bin new file mode 100644 index 0000000000000000000000000000000000000000..f962374997940fb817e1ff276971d7bfd9fb0567 --- /dev/null +++ b/pytorch_model-00029-of-00053.bin @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:796cd3b42ce08e128f8f84bf5e9f9ea174f63a13711349cbfe8b9d4eb08d4814 +size 509629511 diff --git a/pytorch_model-00030-of-00053.bin b/pytorch_model-00030-of-00053.bin new file mode 100644 index 0000000000000000000000000000000000000000..a52b047514ec057e363147a8cbfcd3d058d3936f --- /dev/null +++ b/pytorch_model-00030-of-00053.bin @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:1a2713d082266c6f286d093399910ef7542bf25b5d41680ecf2e92918b2ffde3 +size 509629511 diff --git a/pytorch_model-00031-of-00053.bin b/pytorch_model-00031-of-00053.bin new file mode 100644 index 0000000000000000000000000000000000000000..fb4e057e70f592ffe4e19020ed01c48141358bc0 --- /dev/null +++ b/pytorch_model-00031-of-00053.bin @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:85fae9975fa5af1d748200bae1a47e09a8ebd942c8b37a312044cbd0d8654345 +size 509629511 diff --git a/pytorch_model-00032-of-00053.bin b/pytorch_model-00032-of-00053.bin new file mode 100644 index 0000000000000000000000000000000000000000..958c22fea5791ed5a516a7072870200c800c4190 --- /dev/null +++ b/pytorch_model-00032-of-00053.bin @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:6eb5b97e5cf86189304dfa7d163a266827ed4a50b8ea9bc14c7ff8cc117800e3 +size 509629511 diff --git a/pytorch_model-00033-of-00053.bin b/pytorch_model-00033-of-00053.bin new file mode 100644 index 0000000000000000000000000000000000000000..486b9b041f73bee314575f6703e0e4af2b100b1f --- /dev/null +++ b/pytorch_model-00033-of-00053.bin @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:0a91cc0c084b84e4a7d18946f153ce4ae79723df5e7537b35612f6a2d0d78350 +size 509629511 diff --git a/pytorch_model-00034-of-00053.bin b/pytorch_model-00034-of-00053.bin new file mode 100644 index 0000000000000000000000000000000000000000..137d7de2602863a8b5ca04e9aea404eaf8578347 --- /dev/null +++ b/pytorch_model-00034-of-00053.bin @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:e06e3c2c0c61e96d282c46e858c681080c03fa8f501d7a5e5961c2e797560fb0 +size 509629511 diff --git a/pytorch_model-00035-of-00053.bin b/pytorch_model-00035-of-00053.bin new file mode 100644 index 0000000000000000000000000000000000000000..3c38f9cee7ad8b5ac2d7cec4d5c3385e21e4c1ae --- /dev/null +++ b/pytorch_model-00035-of-00053.bin @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:01617a64df649449201a8284bab3044fa8e61ce8ce4bb63d975bf5f580f79bff +size 509629511 diff --git a/pytorch_model-00036-of-00053.bin b/pytorch_model-00036-of-00053.bin new file mode 100644 index 0000000000000000000000000000000000000000..36aa61cac4a583d4bafaa6e1869e3469571dedde --- /dev/null +++ b/pytorch_model-00036-of-00053.bin @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:45b2ca00bdb605af8bd785ba122268cbd491d8ec7bdaa597774edb489fcd0298 +size 509629511 diff --git a/pytorch_model-00037-of-00053.bin b/pytorch_model-00037-of-00053.bin new file mode 100644 index 0000000000000000000000000000000000000000..b81daa273663644eca1a727fcecf9f65ea21caf9 --- /dev/null +++ b/pytorch_model-00037-of-00053.bin @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:139dbbcbb259f4dda361d015b87ea7f12ec19b6b8e0897fedd0e2a3614c3b37e +size 509629511 diff --git a/pytorch_model-00038-of-00053.bin b/pytorch_model-00038-of-00053.bin new file mode 100644 index 0000000000000000000000000000000000000000..2b1dc6f71b9e4afad0f1e0d781bb70e0146f359d --- /dev/null +++ b/pytorch_model-00038-of-00053.bin @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:10ac7a95b8bde058ea0d5c7a8a55af1d4aed65d9ae12e286fec88b3a9256f636 +size 509629511 diff --git a/pytorch_model-00039-of-00053.bin b/pytorch_model-00039-of-00053.bin new file mode 100644 index 0000000000000000000000000000000000000000..4d8235f4c4b8ada8bdb9d63aa33fa9144e723eb7 --- /dev/null +++ b/pytorch_model-00039-of-00053.bin @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:9dece182f9bfb4f56d689437396ce2a65318d08aff9de5ede050eb4240e70a09 +size 509629511 diff --git a/pytorch_model-00040-of-00053.bin b/pytorch_model-00040-of-00053.bin new file mode 100644 index 0000000000000000000000000000000000000000..75cac0be8485ea057340e737450beae2ef9f38be --- /dev/null +++ b/pytorch_model-00040-of-00053.bin @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:6cbd32d4ec97b7c2438be4fb3863251c09cf40a8ab6d5918935a5c7f4c620f20 +size 509629511 diff --git a/pytorch_model-00041-of-00053.bin b/pytorch_model-00041-of-00053.bin new file mode 100644 index 0000000000000000000000000000000000000000..13b9bf33a0b00d3122a8a9dcdbdc301675f6c772 --- /dev/null +++ b/pytorch_model-00041-of-00053.bin @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:8681905b13bbfe3384af79f9da47d7a05c79f8cb5e0c36f5e0626b20f9655e08 +size 509629511 diff --git a/pytorch_model-00042-of-00053.bin b/pytorch_model-00042-of-00053.bin new file mode 100644 index 0000000000000000000000000000000000000000..4bd492f1f4276c6b7a30e1b3d2ff35fc24cefd42 --- /dev/null +++ b/pytorch_model-00042-of-00053.bin @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:1e3c7df5786804b1f93dc1488847e0aecd23aa2b4c133ccd2476a26ad8a25dde +size 509629511 diff --git a/pytorch_model-00043-of-00053.bin b/pytorch_model-00043-of-00053.bin new file mode 100644 index 0000000000000000000000000000000000000000..0e0a2a1b2495af42d6a63dac6551f0f6c7f00cfe --- /dev/null +++ b/pytorch_model-00043-of-00053.bin @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:6c9ecdfb82b40f8b0185eb3f63271cd351d08a028d250e327f5c287ec726cf3c +size 509629511 diff --git a/pytorch_model-00044-of-00053.bin b/pytorch_model-00044-of-00053.bin new file mode 100644 index 0000000000000000000000000000000000000000..aec40c0e4f970ac06e7ee9a7bd5da5c21224b4c4 --- /dev/null +++ b/pytorch_model-00044-of-00053.bin @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:38c0296e8c1aff535c03b641d527142c54af30339261a11555ff949caf84f338 +size 509629511 diff --git a/pytorch_model-00045-of-00053.bin b/pytorch_model-00045-of-00053.bin new file mode 100644 index 0000000000000000000000000000000000000000..cd9613e6face18cf3065bd80407136068e08df9e --- /dev/null +++ b/pytorch_model-00045-of-00053.bin @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:a628a44063a617d465cc8bc44deea8bbc0808042f8232b0f5ffb0b3a73feddea +size 509629511 diff --git a/pytorch_model-00046-of-00053.bin b/pytorch_model-00046-of-00053.bin new file mode 100644 index 0000000000000000000000000000000000000000..2f10d87b20891c7f9fa4d214d19a3f1a63353745 --- /dev/null +++ b/pytorch_model-00046-of-00053.bin @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:c096d5b8f2aafaa5b117124061979353b84e590b80bd4c5eb683f43cedc7e4a6 +size 509629511 diff --git a/pytorch_model-00047-of-00053.bin b/pytorch_model-00047-of-00053.bin new file mode 100644 index 0000000000000000000000000000000000000000..242679c47e333eb4934449141880478195843f07 --- /dev/null +++ b/pytorch_model-00047-of-00053.bin @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:bce5d2a5d123520d4a539ecaef35c85f6b3ef1fdeb71c08cec272df5d6a94758 +size 509629511 diff --git a/pytorch_model-00048-of-00053.bin b/pytorch_model-00048-of-00053.bin new file mode 100644 index 0000000000000000000000000000000000000000..01f6321f5921e254e97ae887a1a6aadc4d985d66 --- /dev/null +++ b/pytorch_model-00048-of-00053.bin @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:760fc07ac215be0a090b34a34635103e8a2394fb3555dc8bd91c9564c2b9e6d1 +size 509629511 diff --git a/pytorch_model-00049-of-00053.bin b/pytorch_model-00049-of-00053.bin new file mode 100644 index 0000000000000000000000000000000000000000..4410f30720a1a99307eff688a551842edbbc02d1 --- /dev/null +++ b/pytorch_model-00049-of-00053.bin @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:f0c4d923c6ea9ea5dadae1b76058eaee454ba9119d55b1115eef90d8b6146482 +size 509629511 diff --git a/pytorch_model-00050-of-00053.bin b/pytorch_model-00050-of-00053.bin new file mode 100644 index 0000000000000000000000000000000000000000..6b7a24e2475872f99dd309968daab6687f397b73 --- /dev/null +++ b/pytorch_model-00050-of-00053.bin @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:e5d99e5756f5c2e1330e41d5bab211b2c54e1d040f0e1c07efe9c804d2e60e15 +size 509629511 diff --git a/pytorch_model-00051-of-00053.bin b/pytorch_model-00051-of-00053.bin new file mode 100644 index 0000000000000000000000000000000000000000..e47dae98246b481e91d0b83cbc2580d867a372de --- /dev/null +++ b/pytorch_model-00051-of-00053.bin @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:1b320759b4be5903937791af67d46f90a39514a8f89a78278402e974aa7c50ae +size 509629511 diff --git a/pytorch_model-00052-of-00053.bin b/pytorch_model-00052-of-00053.bin new file mode 100644 index 0000000000000000000000000000000000000000..1c47d576da0ed311e97bada57b1221b654b58a71 --- /dev/null +++ b/pytorch_model-00052-of-00053.bin @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:90b5ad5bd86b73cf455eb6d55659136d45d94e87df5dd7aff22b338cbc91d440 +size 509629511 diff --git a/pytorch_model-00053-of-00053.bin b/pytorch_model-00053-of-00053.bin new file mode 100644 index 0000000000000000000000000000000000000000..183973cde33ac82acebef718aec1330dea02fdbb --- /dev/null +++ b/pytorch_model-00053-of-00053.bin @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:ed65f60067e0738d1e50f4b409bbdb4b5d810e9716e8940da5cdb2d2ba0af4f7 +size 1207656611 diff --git a/pytorch_model.bin.index.json b/pytorch_model.bin.index.json new file mode 100644 index 0000000000000000000000000000000000000000..163c37a78b34efe7cc858ea3fdca93e4c7c25699 --- /dev/null +++ b/pytorch_model.bin.index.json @@ -0,0 +1 @@ +{"metadata": {"total_size": 27708239872}, "weight_map": {"model.layers.0.input_layernorm.weight": "pytorch_model-00001-of-00053.bin", "model.layers.0.post_attention_layernorm.weight": "pytorch_model-00001-of-00053.bin", "model.layers.0.self_attn.q_proj.weight": "pytorch_model-00001-of-00053.bin", "model.layers.0.self_attn.k_proj.weight": "pytorch_model-00001-of-00053.bin", "model.layers.0.self_attn.v_proj.weight": "pytorch_model-00001-of-00053.bin", "model.layers.0.self_attn.o_proj.weight": "pytorch_model-00001-of-00053.bin", "model.layers.0.self_attn.rotary_emb.inv_freq": "pytorch_model-00001-of-00053.bin", "model.layers.0.mlp.gate_proj.weight": "pytorch_model-00001-of-00053.bin", "model.layers.0.mlp.up_proj.weight": "pytorch_model-00001-of-00053.bin", "model.layers.0.mlp.down_proj.weight": "pytorch_model-00001-of-00053.bin", "model.layers.1.input_layernorm.weight": "pytorch_model-00002-of-00053.bin", "model.layers.1.post_attention_layernorm.weight": "pytorch_model-00002-of-00053.bin", "model.layers.1.self_attn.q_proj.weight": "pytorch_model-00002-of-00053.bin", "model.layers.1.self_attn.k_proj.weight": "pytorch_model-00002-of-00053.bin", "model.layers.1.self_attn.v_proj.weight": "pytorch_model-00002-of-00053.bin", "model.layers.1.self_attn.o_proj.weight": "pytorch_model-00002-of-00053.bin", "model.layers.1.self_attn.rotary_emb.inv_freq": "pytorch_model-00002-of-00053.bin", "model.layers.1.mlp.gate_proj.weight": "pytorch_model-00002-of-00053.bin", "model.layers.1.mlp.up_proj.weight": "pytorch_model-00002-of-00053.bin", "model.layers.1.mlp.down_proj.weight": "pytorch_model-00002-of-00053.bin", "model.layers.2.input_layernorm.weight": "pytorch_model-00003-of-00053.bin", "model.layers.2.post_attention_layernorm.weight": "pytorch_model-00003-of-00053.bin", "model.layers.2.self_attn.q_proj.weight": "pytorch_model-00003-of-00053.bin", "model.layers.2.self_attn.k_proj.weight": "pytorch_model-00003-of-00053.bin", "model.layers.2.self_attn.v_proj.weight": "pytorch_model-00003-of-00053.bin", "model.layers.2.self_attn.o_proj.weight": "pytorch_model-00003-of-00053.bin", "model.layers.2.self_attn.rotary_emb.inv_freq": "pytorch_model-00003-of-00053.bin", "model.layers.2.mlp.gate_proj.weight": "pytorch_model-00003-of-00053.bin", "model.layers.2.mlp.up_proj.weight": "pytorch_model-00003-of-00053.bin", "model.layers.2.mlp.down_proj.weight": "pytorch_model-00003-of-00053.bin", "model.layers.3.input_layernorm.weight": "pytorch_model-00004-of-00053.bin", "model.layers.3.post_attention_layernorm.weight": "pytorch_model-00004-of-00053.bin", "model.layers.3.self_attn.q_proj.weight": "pytorch_model-00004-of-00053.bin", "model.layers.3.self_attn.k_proj.weight": "pytorch_model-00004-of-00053.bin", "model.layers.3.self_attn.v_proj.weight": "pytorch_model-00004-of-00053.bin", "model.layers.3.self_attn.o_proj.weight": "pytorch_model-00004-of-00053.bin", "model.layers.3.self_attn.rotary_emb.inv_freq": "pytorch_model-00004-of-00053.bin", "model.layers.3.mlp.gate_proj.weight": "pytorch_model-00004-of-00053.bin", "model.layers.3.mlp.up_proj.weight": "pytorch_model-00004-of-00053.bin", "model.layers.3.mlp.down_proj.weight": "pytorch_model-00004-of-00053.bin", "model.layers.4.input_layernorm.weight": "pytorch_model-00005-of-00053.bin", "model.layers.4.post_attention_layernorm.weight": "pytorch_model-00005-of-00053.bin", "model.layers.4.self_attn.q_proj.weight": "pytorch_model-00005-of-00053.bin", "model.layers.4.self_attn.k_proj.weight": "pytorch_model-00005-of-00053.bin", "model.layers.4.self_attn.v_proj.weight": "pytorch_model-00005-of-00053.bin", "model.layers.4.self_attn.o_proj.weight": "pytorch_model-00005-of-00053.bin", "model.layers.4.self_attn.rotary_emb.inv_freq": "pytorch_model-00005-of-00053.bin", "model.layers.4.mlp.gate_proj.weight": "pytorch_model-00005-of-00053.bin", "model.layers.4.mlp.up_proj.weight": "pytorch_model-00005-of-00053.bin", "model.layers.4.mlp.down_proj.weight": "pytorch_model-00005-of-00053.bin", "model.layers.5.input_layernorm.weight": "pytorch_model-00006-of-00053.bin", "model.layers.5.post_attention_layernorm.weight": "pytorch_model-00006-of-00053.bin", "model.layers.5.self_attn.q_proj.weight": "pytorch_model-00006-of-00053.bin", "model.layers.5.self_attn.k_proj.weight": "pytorch_model-00006-of-00053.bin", "model.layers.5.self_attn.v_proj.weight": "pytorch_model-00006-of-00053.bin", "model.layers.5.self_attn.o_proj.weight": "pytorch_model-00006-of-00053.bin", "model.layers.5.self_attn.rotary_emb.inv_freq": "pytorch_model-00006-of-00053.bin", "model.layers.5.mlp.gate_proj.weight": "pytorch_model-00006-of-00053.bin", "model.layers.5.mlp.up_proj.weight": "pytorch_model-00006-of-00053.bin", "model.layers.5.mlp.down_proj.weight": "pytorch_model-00006-of-00053.bin", "model.layers.6.input_layernorm.weight": "pytorch_model-00007-of-00053.bin", "model.layers.6.post_attention_layernorm.weight": "pytorch_model-00007-of-00053.bin", "model.layers.6.self_attn.q_proj.weight": "pytorch_model-00007-of-00053.bin", "model.layers.6.self_attn.k_proj.weight": "pytorch_model-00007-of-00053.bin", "model.layers.6.self_attn.v_proj.weight": "pytorch_model-00007-of-00053.bin", "model.layers.6.self_attn.o_proj.weight": "pytorch_model-00007-of-00053.bin", "model.layers.6.self_attn.rotary_emb.inv_freq": "pytorch_model-00007-of-00053.bin", "model.layers.6.mlp.gate_proj.weight": "pytorch_model-00007-of-00053.bin", "model.layers.6.mlp.up_proj.weight": "pytorch_model-00007-of-00053.bin", "model.layers.6.mlp.down_proj.weight": "pytorch_model-00007-of-00053.bin", "model.layers.7.input_layernorm.weight": "pytorch_model-00008-of-00053.bin", "model.layers.7.post_attention_layernorm.weight": "pytorch_model-00008-of-00053.bin", "model.layers.7.self_attn.q_proj.weight": "pytorch_model-00008-of-00053.bin", "model.layers.7.self_attn.k_proj.weight": "pytorch_model-00008-of-00053.bin", "model.layers.7.self_attn.v_proj.weight": "pytorch_model-00008-of-00053.bin", "model.layers.7.self_attn.o_proj.weight": "pytorch_model-00008-of-00053.bin", "model.layers.7.self_attn.rotary_emb.inv_freq": "pytorch_model-00008-of-00053.bin", "model.layers.7.mlp.gate_proj.weight": "pytorch_model-00008-of-00053.bin", "model.layers.7.mlp.up_proj.weight": "pytorch_model-00008-of-00053.bin", "model.layers.7.mlp.down_proj.weight": "pytorch_model-00008-of-00053.bin", "model.layers.8.input_layernorm.weight": "pytorch_model-00009-of-00053.bin", "model.layers.8.post_attention_layernorm.weight": "pytorch_model-00009-of-00053.bin", "model.layers.8.self_attn.q_proj.weight": "pytorch_model-00009-of-00053.bin", "model.layers.8.self_attn.k_proj.weight": "pytorch_model-00009-of-00053.bin", "model.layers.8.self_attn.v_proj.weight": "pytorch_model-00009-of-00053.bin", "model.layers.8.self_attn.o_proj.weight": "pytorch_model-00009-of-00053.bin", "model.layers.8.self_attn.rotary_emb.inv_freq": "pytorch_model-00009-of-00053.bin", "model.layers.8.mlp.gate_proj.weight": "pytorch_model-00009-of-00053.bin", "model.layers.8.mlp.up_proj.weight": "pytorch_model-00009-of-00053.bin", "model.layers.8.mlp.down_proj.weight": "pytorch_model-00009-of-00053.bin", "model.layers.9.input_layernorm.weight": "pytorch_model-00010-of-00053.bin", "model.layers.9.post_attention_layernorm.weight": "pytorch_model-00010-of-00053.bin", "model.layers.9.self_attn.q_proj.weight": "pytorch_model-00010-of-00053.bin", "model.layers.9.self_attn.k_proj.weight": "pytorch_model-00010-of-00053.bin", "model.layers.9.self_attn.v_proj.weight": "pytorch_model-00010-of-00053.bin", "model.layers.9.self_attn.o_proj.weight": "pytorch_model-00010-of-00053.bin", "model.layers.9.self_attn.rotary_emb.inv_freq": "pytorch_model-00010-of-00053.bin", "model.layers.9.mlp.gate_proj.weight": "pytorch_model-00010-of-00053.bin", "model.layers.9.mlp.up_proj.weight": "pytorch_model-00010-of-00053.bin", "model.layers.9.mlp.down_proj.weight": "pytorch_model-00010-of-00053.bin", "model.layers.10.input_layernorm.weight": "pytorch_model-00011-of-00053.bin", "model.layers.10.post_attention_layernorm.weight": "pytorch_model-00011-of-00053.bin", "model.layers.10.self_attn.q_proj.weight": "pytorch_model-00011-of-00053.bin", "model.layers.10.self_attn.k_proj.weight": "pytorch_model-00011-of-00053.bin", "model.layers.10.self_attn.v_proj.weight": "pytorch_model-00011-of-00053.bin", "model.layers.10.self_attn.o_proj.weight": "pytorch_model-00011-of-00053.bin", "model.layers.10.self_attn.rotary_emb.inv_freq": "pytorch_model-00011-of-00053.bin", "model.layers.10.mlp.gate_proj.weight": "pytorch_model-00011-of-00053.bin", "model.layers.10.mlp.up_proj.weight": "pytorch_model-00011-of-00053.bin", "model.layers.10.mlp.down_proj.weight": "pytorch_model-00011-of-00053.bin", "model.layers.11.input_layernorm.weight": "pytorch_model-00012-of-00053.bin", "model.layers.11.post_attention_layernorm.weight": "pytorch_model-00012-of-00053.bin", "model.layers.11.self_attn.q_proj.weight": "pytorch_model-00012-of-00053.bin", "model.layers.11.self_attn.k_proj.weight": "pytorch_model-00012-of-00053.bin", "model.layers.11.self_attn.v_proj.weight": "pytorch_model-00012-of-00053.bin", "model.layers.11.self_attn.o_proj.weight": "pytorch_model-00012-of-00053.bin", "model.layers.11.self_attn.rotary_emb.inv_freq": "pytorch_model-00012-of-00053.bin", "model.layers.11.mlp.gate_proj.weight": "pytorch_model-00012-of-00053.bin", "model.layers.11.mlp.up_proj.weight": "pytorch_model-00012-of-00053.bin", "model.layers.11.mlp.down_proj.weight": "pytorch_model-00012-of-00053.bin", "model.layers.12.input_layernorm.weight": "pytorch_model-00013-of-00053.bin", "model.layers.12.post_attention_layernorm.weight": "pytorch_model-00013-of-00053.bin", "model.layers.12.self_attn.q_proj.weight": "pytorch_model-00013-of-00053.bin", "model.layers.12.self_attn.k_proj.weight": "pytorch_model-00013-of-00053.bin", "model.layers.12.self_attn.v_proj.weight": "pytorch_model-00013-of-00053.bin", "model.layers.12.self_attn.o_proj.weight": "pytorch_model-00013-of-00053.bin", "model.layers.12.self_attn.rotary_emb.inv_freq": "pytorch_model-00013-of-00053.bin", "model.layers.12.mlp.gate_proj.weight": "pytorch_model-00013-of-00053.bin", "model.layers.12.mlp.up_proj.weight": "pytorch_model-00013-of-00053.bin", "model.layers.12.mlp.down_proj.weight": "pytorch_model-00013-of-00053.bin", "model.layers.13.input_layernorm.weight": "pytorch_model-00014-of-00053.bin", "model.layers.13.post_attention_layernorm.weight": "pytorch_model-00014-of-00053.bin", "model.layers.13.self_attn.q_proj.weight": "pytorch_model-00014-of-00053.bin", "model.layers.13.self_attn.k_proj.weight": "pytorch_model-00014-of-00053.bin", "model.layers.13.self_attn.v_proj.weight": "pytorch_model-00014-of-00053.bin", "model.layers.13.self_attn.o_proj.weight": "pytorch_model-00014-of-00053.bin", "model.layers.13.self_attn.rotary_emb.inv_freq": "pytorch_model-00014-of-00053.bin", "model.layers.13.mlp.gate_proj.weight": "pytorch_model-00014-of-00053.bin", "model.layers.13.mlp.up_proj.weight": "pytorch_model-00014-of-00053.bin", "model.layers.13.mlp.down_proj.weight": "pytorch_model-00014-of-00053.bin", "model.layers.14.input_layernorm.weight": "pytorch_model-00015-of-00053.bin", "model.layers.14.post_attention_layernorm.weight": "pytorch_model-00015-of-00053.bin", "model.layers.14.self_attn.q_proj.weight": "pytorch_model-00015-of-00053.bin", "model.layers.14.self_attn.k_proj.weight": "pytorch_model-00015-of-00053.bin", "model.layers.14.self_attn.v_proj.weight": "pytorch_model-00015-of-00053.bin", "model.layers.14.self_attn.o_proj.weight": "pytorch_model-00015-of-00053.bin", "model.layers.14.self_attn.rotary_emb.inv_freq": "pytorch_model-00015-of-00053.bin", "model.layers.14.mlp.gate_proj.weight": "pytorch_model-00015-of-00053.bin", "model.layers.14.mlp.up_proj.weight": "pytorch_model-00015-of-00053.bin", "model.layers.14.mlp.down_proj.weight": "pytorch_model-00015-of-00053.bin", "model.layers.15.input_layernorm.weight": "pytorch_model-00016-of-00053.bin", "model.layers.15.post_attention_layernorm.weight": "pytorch_model-00016-of-00053.bin", "model.layers.15.self_attn.q_proj.weight": "pytorch_model-00016-of-00053.bin", "model.layers.15.self_attn.k_proj.weight": "pytorch_model-00016-of-00053.bin", "model.layers.15.self_attn.v_proj.weight": "pytorch_model-00016-of-00053.bin", "model.layers.15.self_attn.o_proj.weight": "pytorch_model-00016-of-00053.bin", "model.layers.15.self_attn.rotary_emb.inv_freq": "pytorch_model-00016-of-00053.bin", "model.layers.15.mlp.gate_proj.weight": "pytorch_model-00016-of-00053.bin", "model.layers.15.mlp.up_proj.weight": "pytorch_model-00016-of-00053.bin", "model.layers.15.mlp.down_proj.weight": "pytorch_model-00016-of-00053.bin", "model.layers.16.input_layernorm.weight": "pytorch_model-00017-of-00053.bin", "model.layers.16.post_attention_layernorm.weight": "pytorch_model-00017-of-00053.bin", "model.layers.16.self_attn.q_proj.weight": "pytorch_model-00017-of-00053.bin", "model.layers.16.self_attn.k_proj.weight": "pytorch_model-00017-of-00053.bin", "model.layers.16.self_attn.v_proj.weight": "pytorch_model-00017-of-00053.bin", "model.layers.16.self_attn.o_proj.weight": "pytorch_model-00017-of-00053.bin", "model.layers.16.self_attn.rotary_emb.inv_freq": "pytorch_model-00017-of-00053.bin", "model.layers.16.mlp.gate_proj.weight": "pytorch_model-00017-of-00053.bin", "model.layers.16.mlp.up_proj.weight": "pytorch_model-00017-of-00053.bin", "model.layers.16.mlp.down_proj.weight": "pytorch_model-00017-of-00053.bin", "model.layers.17.input_layernorm.weight": "pytorch_model-00018-of-00053.bin", "model.layers.17.post_attention_layernorm.weight": "pytorch_model-00018-of-00053.bin", "model.layers.17.self_attn.q_proj.weight": "pytorch_model-00018-of-00053.bin", "model.layers.17.self_attn.k_proj.weight": "pytorch_model-00018-of-00053.bin", "model.layers.17.self_attn.v_proj.weight": "pytorch_model-00018-of-00053.bin", "model.layers.17.self_attn.o_proj.weight": "pytorch_model-00018-of-00053.bin", "model.layers.17.self_attn.rotary_emb.inv_freq": "pytorch_model-00018-of-00053.bin", "model.layers.17.mlp.gate_proj.weight": "pytorch_model-00018-of-00053.bin", "model.layers.17.mlp.up_proj.weight": "pytorch_model-00018-of-00053.bin", "model.layers.17.mlp.down_proj.weight": "pytorch_model-00018-of-00053.bin", "model.layers.18.input_layernorm.weight": "pytorch_model-00019-of-00053.bin", "model.layers.18.post_attention_layernorm.weight": "pytorch_model-00019-of-00053.bin", "model.layers.18.self_attn.q_proj.weight": "pytorch_model-00019-of-00053.bin", "model.layers.18.self_attn.k_proj.weight": "pytorch_model-00019-of-00053.bin", "model.layers.18.self_attn.v_proj.weight": "pytorch_model-00019-of-00053.bin", "model.layers.18.self_attn.o_proj.weight": "pytorch_model-00019-of-00053.bin", "model.layers.18.self_attn.rotary_emb.inv_freq": "pytorch_model-00019-of-00053.bin", "model.layers.18.mlp.gate_proj.weight": "pytorch_model-00019-of-00053.bin", "model.layers.18.mlp.up_proj.weight": "pytorch_model-00019-of-00053.bin", "model.layers.18.mlp.down_proj.weight": "pytorch_model-00019-of-00053.bin", "model.layers.19.input_layernorm.weight": "pytorch_model-00020-of-00053.bin", "model.layers.19.post_attention_layernorm.weight": "pytorch_model-00020-of-00053.bin", "model.layers.19.self_attn.q_proj.weight": "pytorch_model-00020-of-00053.bin", "model.layers.19.self_attn.k_proj.weight": "pytorch_model-00020-of-00053.bin", "model.layers.19.self_attn.v_proj.weight": "pytorch_model-00020-of-00053.bin", "model.layers.19.self_attn.o_proj.weight": "pytorch_model-00020-of-00053.bin", "model.layers.19.self_attn.rotary_emb.inv_freq": "pytorch_model-00020-of-00053.bin", "model.layers.19.mlp.gate_proj.weight": "pytorch_model-00020-of-00053.bin", "model.layers.19.mlp.up_proj.weight": "pytorch_model-00020-of-00053.bin", "model.layers.19.mlp.down_proj.weight": "pytorch_model-00020-of-00053.bin", "model.layers.20.input_layernorm.weight": "pytorch_model-00021-of-00053.bin", "model.layers.20.post_attention_layernorm.weight": "pytorch_model-00021-of-00053.bin", "model.layers.20.self_attn.q_proj.weight": "pytorch_model-00021-of-00053.bin", "model.layers.20.self_attn.k_proj.weight": "pytorch_model-00021-of-00053.bin", "model.layers.20.self_attn.v_proj.weight": "pytorch_model-00021-of-00053.bin", "model.layers.20.self_attn.o_proj.weight": "pytorch_model-00021-of-00053.bin", "model.layers.20.self_attn.rotary_emb.inv_freq": "pytorch_model-00021-of-00053.bin", "model.layers.20.mlp.gate_proj.weight": "pytorch_model-00021-of-00053.bin", "model.layers.20.mlp.up_proj.weight": "pytorch_model-00021-of-00053.bin", "model.layers.20.mlp.down_proj.weight": "pytorch_model-00021-of-00053.bin", "model.layers.21.input_layernorm.weight": "pytorch_model-00022-of-00053.bin", "model.layers.21.post_attention_layernorm.weight": "pytorch_model-00022-of-00053.bin", "model.layers.21.self_attn.q_proj.weight": "pytorch_model-00022-of-00053.bin", "model.layers.21.self_attn.k_proj.weight": "pytorch_model-00022-of-00053.bin", "model.layers.21.self_attn.v_proj.weight": "pytorch_model-00022-of-00053.bin", "model.layers.21.self_attn.o_proj.weight": "pytorch_model-00022-of-00053.bin", "model.layers.21.self_attn.rotary_emb.inv_freq": "pytorch_model-00022-of-00053.bin", "model.layers.21.mlp.gate_proj.weight": "pytorch_model-00022-of-00053.bin", "model.layers.21.mlp.up_proj.weight": "pytorch_model-00022-of-00053.bin", "model.layers.21.mlp.down_proj.weight": "pytorch_model-00022-of-00053.bin", "model.layers.22.input_layernorm.weight": "pytorch_model-00023-of-00053.bin", "model.layers.22.post_attention_layernorm.weight": "pytorch_model-00023-of-00053.bin", "model.layers.22.self_attn.q_proj.weight": "pytorch_model-00023-of-00053.bin", "model.layers.22.self_attn.k_proj.weight": "pytorch_model-00023-of-00053.bin", "model.layers.22.self_attn.v_proj.weight": "pytorch_model-00023-of-00053.bin", "model.layers.22.self_attn.o_proj.weight": "pytorch_model-00023-of-00053.bin", "model.layers.22.self_attn.rotary_emb.inv_freq": "pytorch_model-00023-of-00053.bin", "model.layers.22.mlp.gate_proj.weight": "pytorch_model-00023-of-00053.bin", "model.layers.22.mlp.up_proj.weight": "pytorch_model-00023-of-00053.bin", "model.layers.22.mlp.down_proj.weight": "pytorch_model-00023-of-00053.bin", "model.layers.23.input_layernorm.weight": "pytorch_model-00024-of-00053.bin", "model.layers.23.post_attention_layernorm.weight": "pytorch_model-00024-of-00053.bin", "model.layers.23.self_attn.q_proj.weight": "pytorch_model-00024-of-00053.bin", "model.layers.23.self_attn.k_proj.weight": "pytorch_model-00024-of-00053.bin", "model.layers.23.self_attn.v_proj.weight": "pytorch_model-00024-of-00053.bin", "model.layers.23.self_attn.o_proj.weight": "pytorch_model-00024-of-00053.bin", "model.layers.23.self_attn.rotary_emb.inv_freq": "pytorch_model-00024-of-00053.bin", "model.layers.23.mlp.gate_proj.weight": "pytorch_model-00024-of-00053.bin", "model.layers.23.mlp.up_proj.weight": "pytorch_model-00024-of-00053.bin", "model.layers.23.mlp.down_proj.weight": "pytorch_model-00024-of-00053.bin", "model.layers.24.input_layernorm.weight": "pytorch_model-00025-of-00053.bin", "model.layers.24.post_attention_layernorm.weight": "pytorch_model-00025-of-00053.bin", "model.layers.24.self_attn.q_proj.weight": "pytorch_model-00025-of-00053.bin", "model.layers.24.self_attn.k_proj.weight": "pytorch_model-00025-of-00053.bin", "model.layers.24.self_attn.v_proj.weight": "pytorch_model-00025-of-00053.bin", "model.layers.24.self_attn.o_proj.weight": "pytorch_model-00025-of-00053.bin", "model.layers.24.self_attn.rotary_emb.inv_freq": "pytorch_model-00025-of-00053.bin", "model.layers.24.mlp.gate_proj.weight": "pytorch_model-00025-of-00053.bin", "model.layers.24.mlp.up_proj.weight": "pytorch_model-00025-of-00053.bin", "model.layers.24.mlp.down_proj.weight": "pytorch_model-00025-of-00053.bin", "model.layers.25.input_layernorm.weight": "pytorch_model-00026-of-00053.bin", "model.layers.25.post_attention_layernorm.weight": "pytorch_model-00026-of-00053.bin", "model.layers.25.self_attn.q_proj.weight": "pytorch_model-00026-of-00053.bin", "model.layers.25.self_attn.k_proj.weight": "pytorch_model-00026-of-00053.bin", "model.layers.25.self_attn.v_proj.weight": "pytorch_model-00026-of-00053.bin", "model.layers.25.self_attn.o_proj.weight": "pytorch_model-00026-of-00053.bin", "model.layers.25.self_attn.rotary_emb.inv_freq": "pytorch_model-00026-of-00053.bin", "model.layers.25.mlp.gate_proj.weight": "pytorch_model-00026-of-00053.bin", "model.layers.25.mlp.up_proj.weight": "pytorch_model-00026-of-00053.bin", "model.layers.25.mlp.down_proj.weight": "pytorch_model-00026-of-00053.bin", "model.layers.26.input_layernorm.weight": "pytorch_model-00027-of-00053.bin", "model.layers.26.post_attention_layernorm.weight": "pytorch_model-00027-of-00053.bin", "model.layers.26.self_attn.q_proj.weight": "pytorch_model-00027-of-00053.bin", "model.layers.26.self_attn.k_proj.weight": "pytorch_model-00027-of-00053.bin", "model.layers.26.self_attn.v_proj.weight": "pytorch_model-00027-of-00053.bin", "model.layers.26.self_attn.o_proj.weight": "pytorch_model-00027-of-00053.bin", "model.layers.26.self_attn.rotary_emb.inv_freq": "pytorch_model-00027-of-00053.bin", "model.layers.26.mlp.gate_proj.weight": "pytorch_model-00027-of-00053.bin", "model.layers.26.mlp.up_proj.weight": "pytorch_model-00027-of-00053.bin", "model.layers.26.mlp.down_proj.weight": "pytorch_model-00027-of-00053.bin", "model.layers.27.input_layernorm.weight": "pytorch_model-00028-of-00053.bin", "model.layers.27.post_attention_layernorm.weight": "pytorch_model-00028-of-00053.bin", "model.layers.27.self_attn.q_proj.weight": "pytorch_model-00028-of-00053.bin", "model.layers.27.self_attn.k_proj.weight": "pytorch_model-00028-of-00053.bin", "model.layers.27.self_attn.v_proj.weight": "pytorch_model-00028-of-00053.bin", "model.layers.27.self_attn.o_proj.weight": "pytorch_model-00028-of-00053.bin", "model.layers.27.self_attn.rotary_emb.inv_freq": "pytorch_model-00028-of-00053.bin", "model.layers.27.mlp.gate_proj.weight": "pytorch_model-00028-of-00053.bin", "model.layers.27.mlp.up_proj.weight": "pytorch_model-00028-of-00053.bin", "model.layers.27.mlp.down_proj.weight": "pytorch_model-00028-of-00053.bin", "model.layers.28.input_layernorm.weight": "pytorch_model-00029-of-00053.bin", "model.layers.28.post_attention_layernorm.weight": "pytorch_model-00029-of-00053.bin", "model.layers.28.self_attn.q_proj.weight": "pytorch_model-00029-of-00053.bin", "model.layers.28.self_attn.k_proj.weight": "pytorch_model-00029-of-00053.bin", "model.layers.28.self_attn.v_proj.weight": "pytorch_model-00029-of-00053.bin", "model.layers.28.self_attn.o_proj.weight": "pytorch_model-00029-of-00053.bin", "model.layers.28.self_attn.rotary_emb.inv_freq": "pytorch_model-00029-of-00053.bin", "model.layers.28.mlp.gate_proj.weight": "pytorch_model-00029-of-00053.bin", "model.layers.28.mlp.up_proj.weight": "pytorch_model-00029-of-00053.bin", "model.layers.28.mlp.down_proj.weight": "pytorch_model-00029-of-00053.bin", "model.layers.29.input_layernorm.weight": "pytorch_model-00030-of-00053.bin", "model.layers.29.post_attention_layernorm.weight": "pytorch_model-00030-of-00053.bin", "model.layers.29.self_attn.q_proj.weight": "pytorch_model-00030-of-00053.bin", "model.layers.29.self_attn.k_proj.weight": "pytorch_model-00030-of-00053.bin", "model.layers.29.self_attn.v_proj.weight": "pytorch_model-00030-of-00053.bin", "model.layers.29.self_attn.o_proj.weight": "pytorch_model-00030-of-00053.bin", "model.layers.29.self_attn.rotary_emb.inv_freq": "pytorch_model-00030-of-00053.bin", "model.layers.29.mlp.gate_proj.weight": "pytorch_model-00030-of-00053.bin", "model.layers.29.mlp.up_proj.weight": "pytorch_model-00030-of-00053.bin", "model.layers.29.mlp.down_proj.weight": "pytorch_model-00030-of-00053.bin", "model.layers.30.input_layernorm.weight": "pytorch_model-00031-of-00053.bin", "model.layers.30.post_attention_layernorm.weight": "pytorch_model-00031-of-00053.bin", "model.layers.30.self_attn.q_proj.weight": "pytorch_model-00031-of-00053.bin", "model.layers.30.self_attn.k_proj.weight": "pytorch_model-00031-of-00053.bin", "model.layers.30.self_attn.v_proj.weight": "pytorch_model-00031-of-00053.bin", "model.layers.30.self_attn.o_proj.weight": "pytorch_model-00031-of-00053.bin", "model.layers.30.self_attn.rotary_emb.inv_freq": "pytorch_model-00031-of-00053.bin", "model.layers.30.mlp.gate_proj.weight": "pytorch_model-00031-of-00053.bin", "model.layers.30.mlp.up_proj.weight": "pytorch_model-00031-of-00053.bin", "model.layers.30.mlp.down_proj.weight": "pytorch_model-00031-of-00053.bin", "model.layers.31.input_layernorm.weight": "pytorch_model-00032-of-00053.bin", "model.layers.31.post_attention_layernorm.weight": "pytorch_model-00032-of-00053.bin", "model.layers.31.self_attn.q_proj.weight": "pytorch_model-00032-of-00053.bin", "model.layers.31.self_attn.k_proj.weight": "pytorch_model-00032-of-00053.bin", "model.layers.31.self_attn.v_proj.weight": "pytorch_model-00032-of-00053.bin", "model.layers.31.self_attn.o_proj.weight": "pytorch_model-00032-of-00053.bin", "model.layers.31.self_attn.rotary_emb.inv_freq": "pytorch_model-00032-of-00053.bin", "model.layers.31.mlp.gate_proj.weight": "pytorch_model-00032-of-00053.bin", "model.layers.31.mlp.up_proj.weight": "pytorch_model-00032-of-00053.bin", "model.layers.31.mlp.down_proj.weight": "pytorch_model-00032-of-00053.bin", "model.layers.32.input_layernorm.weight": "pytorch_model-00033-of-00053.bin", "model.layers.32.post_attention_layernorm.weight": "pytorch_model-00033-of-00053.bin", "model.layers.32.self_attn.q_proj.weight": "pytorch_model-00033-of-00053.bin", "model.layers.32.self_attn.k_proj.weight": "pytorch_model-00033-of-00053.bin", "model.layers.32.self_attn.v_proj.weight": "pytorch_model-00033-of-00053.bin", "model.layers.32.self_attn.o_proj.weight": "pytorch_model-00033-of-00053.bin", "model.layers.32.self_attn.rotary_emb.inv_freq": "pytorch_model-00033-of-00053.bin", "model.layers.32.mlp.gate_proj.weight": "pytorch_model-00033-of-00053.bin", "model.layers.32.mlp.up_proj.weight": "pytorch_model-00033-of-00053.bin", "model.layers.32.mlp.down_proj.weight": "pytorch_model-00033-of-00053.bin", "model.layers.33.input_layernorm.weight": "pytorch_model-00034-of-00053.bin", "model.layers.33.post_attention_layernorm.weight": "pytorch_model-00034-of-00053.bin", "model.layers.33.self_attn.q_proj.weight": "pytorch_model-00034-of-00053.bin", "model.layers.33.self_attn.k_proj.weight": "pytorch_model-00034-of-00053.bin", "model.layers.33.self_attn.v_proj.weight": "pytorch_model-00034-of-00053.bin", "model.layers.33.self_attn.o_proj.weight": "pytorch_model-00034-of-00053.bin", "model.layers.33.self_attn.rotary_emb.inv_freq": "pytorch_model-00034-of-00053.bin", "model.layers.33.mlp.gate_proj.weight": "pytorch_model-00034-of-00053.bin", "model.layers.33.mlp.up_proj.weight": "pytorch_model-00034-of-00053.bin", "model.layers.33.mlp.down_proj.weight": "pytorch_model-00034-of-00053.bin", "model.layers.34.input_layernorm.weight": "pytorch_model-00035-of-00053.bin", "model.layers.34.post_attention_layernorm.weight": "pytorch_model-00035-of-00053.bin", "model.layers.34.self_attn.q_proj.weight": "pytorch_model-00035-of-00053.bin", "model.layers.34.self_attn.k_proj.weight": "pytorch_model-00035-of-00053.bin", "model.layers.34.self_attn.v_proj.weight": "pytorch_model-00035-of-00053.bin", "model.layers.34.self_attn.o_proj.weight": "pytorch_model-00035-of-00053.bin", "model.layers.34.self_attn.rotary_emb.inv_freq": "pytorch_model-00035-of-00053.bin", "model.layers.34.mlp.gate_proj.weight": "pytorch_model-00035-of-00053.bin", "model.layers.34.mlp.up_proj.weight": "pytorch_model-00035-of-00053.bin", "model.layers.34.mlp.down_proj.weight": "pytorch_model-00035-of-00053.bin", "model.layers.35.input_layernorm.weight": "pytorch_model-00036-of-00053.bin", "model.layers.35.post_attention_layernorm.weight": "pytorch_model-00036-of-00053.bin", "model.layers.35.self_attn.q_proj.weight": "pytorch_model-00036-of-00053.bin", "model.layers.35.self_attn.k_proj.weight": "pytorch_model-00036-of-00053.bin", "model.layers.35.self_attn.v_proj.weight": "pytorch_model-00036-of-00053.bin", "model.layers.35.self_attn.o_proj.weight": "pytorch_model-00036-of-00053.bin", "model.layers.35.self_attn.rotary_emb.inv_freq": "pytorch_model-00036-of-00053.bin", "model.layers.35.mlp.gate_proj.weight": "pytorch_model-00036-of-00053.bin", "model.layers.35.mlp.up_proj.weight": "pytorch_model-00036-of-00053.bin", "model.layers.35.mlp.down_proj.weight": "pytorch_model-00036-of-00053.bin", "model.layers.36.input_layernorm.weight": "pytorch_model-00037-of-00053.bin", "model.layers.36.post_attention_layernorm.weight": "pytorch_model-00037-of-00053.bin", "model.layers.36.self_attn.q_proj.weight": "pytorch_model-00037-of-00053.bin", "model.layers.36.self_attn.k_proj.weight": "pytorch_model-00037-of-00053.bin", "model.layers.36.self_attn.v_proj.weight": "pytorch_model-00037-of-00053.bin", "model.layers.36.self_attn.o_proj.weight": "pytorch_model-00037-of-00053.bin", "model.layers.36.self_attn.rotary_emb.inv_freq": "pytorch_model-00037-of-00053.bin", "model.layers.36.mlp.gate_proj.weight": "pytorch_model-00037-of-00053.bin", "model.layers.36.mlp.up_proj.weight": "pytorch_model-00037-of-00053.bin", "model.layers.36.mlp.down_proj.weight": "pytorch_model-00037-of-00053.bin", "model.layers.37.input_layernorm.weight": "pytorch_model-00038-of-00053.bin", "model.layers.37.post_attention_layernorm.weight": "pytorch_model-00038-of-00053.bin", "model.layers.37.self_attn.q_proj.weight": "pytorch_model-00038-of-00053.bin", "model.layers.37.self_attn.k_proj.weight": "pytorch_model-00038-of-00053.bin", "model.layers.37.self_attn.v_proj.weight": "pytorch_model-00038-of-00053.bin", "model.layers.37.self_attn.o_proj.weight": "pytorch_model-00038-of-00053.bin", "model.layers.37.self_attn.rotary_emb.inv_freq": "pytorch_model-00038-of-00053.bin", "model.layers.37.mlp.gate_proj.weight": "pytorch_model-00038-of-00053.bin", "model.layers.37.mlp.up_proj.weight": "pytorch_model-00038-of-00053.bin", "model.layers.37.mlp.down_proj.weight": "pytorch_model-00038-of-00053.bin", "model.layers.38.input_layernorm.weight": "pytorch_model-00039-of-00053.bin", "model.layers.38.post_attention_layernorm.weight": "pytorch_model-00039-of-00053.bin", "model.layers.38.self_attn.q_proj.weight": "pytorch_model-00039-of-00053.bin", "model.layers.38.self_attn.k_proj.weight": "pytorch_model-00039-of-00053.bin", "model.layers.38.self_attn.v_proj.weight": "pytorch_model-00039-of-00053.bin", "model.layers.38.self_attn.o_proj.weight": "pytorch_model-00039-of-00053.bin", "model.layers.38.self_attn.rotary_emb.inv_freq": "pytorch_model-00039-of-00053.bin", "model.layers.38.mlp.gate_proj.weight": "pytorch_model-00039-of-00053.bin", "model.layers.38.mlp.up_proj.weight": "pytorch_model-00039-of-00053.bin", "model.layers.38.mlp.down_proj.weight": "pytorch_model-00039-of-00053.bin", "model.layers.39.input_layernorm.weight": "pytorch_model-00040-of-00053.bin", "model.layers.39.post_attention_layernorm.weight": "pytorch_model-00040-of-00053.bin", "model.layers.39.self_attn.q_proj.weight": "pytorch_model-00040-of-00053.bin", "model.layers.39.self_attn.k_proj.weight": "pytorch_model-00040-of-00053.bin", "model.layers.39.self_attn.v_proj.weight": "pytorch_model-00040-of-00053.bin", "model.layers.39.self_attn.o_proj.weight": "pytorch_model-00040-of-00053.bin", "model.layers.39.self_attn.rotary_emb.inv_freq": "pytorch_model-00040-of-00053.bin", "model.layers.39.mlp.gate_proj.weight": "pytorch_model-00040-of-00053.bin", "model.layers.39.mlp.up_proj.weight": "pytorch_model-00040-of-00053.bin", "model.layers.39.mlp.down_proj.weight": "pytorch_model-00040-of-00053.bin", "model.layers.40.input_layernorm.weight": "pytorch_model-00041-of-00053.bin", "model.layers.40.post_attention_layernorm.weight": "pytorch_model-00041-of-00053.bin", "model.layers.40.self_attn.q_proj.weight": "pytorch_model-00041-of-00053.bin", "model.layers.40.self_attn.k_proj.weight": "pytorch_model-00041-of-00053.bin", "model.layers.40.self_attn.v_proj.weight": "pytorch_model-00041-of-00053.bin", "model.layers.40.self_attn.o_proj.weight": "pytorch_model-00041-of-00053.bin", "model.layers.40.self_attn.rotary_emb.inv_freq": "pytorch_model-00041-of-00053.bin", "model.layers.40.mlp.gate_proj.weight": "pytorch_model-00041-of-00053.bin", "model.layers.40.mlp.up_proj.weight": "pytorch_model-00041-of-00053.bin", "model.layers.40.mlp.down_proj.weight": "pytorch_model-00041-of-00053.bin", "model.layers.41.input_layernorm.weight": "pytorch_model-00042-of-00053.bin", "model.layers.41.post_attention_layernorm.weight": "pytorch_model-00042-of-00053.bin", "model.layers.41.self_attn.q_proj.weight": "pytorch_model-00042-of-00053.bin", "model.layers.41.self_attn.k_proj.weight": "pytorch_model-00042-of-00053.bin", "model.layers.41.self_attn.v_proj.weight": "pytorch_model-00042-of-00053.bin", "model.layers.41.self_attn.o_proj.weight": "pytorch_model-00042-of-00053.bin", "model.layers.41.self_attn.rotary_emb.inv_freq": "pytorch_model-00042-of-00053.bin", "model.layers.41.mlp.gate_proj.weight": "pytorch_model-00042-of-00053.bin", "model.layers.41.mlp.up_proj.weight": "pytorch_model-00042-of-00053.bin", "model.layers.41.mlp.down_proj.weight": "pytorch_model-00042-of-00053.bin", "model.layers.42.input_layernorm.weight": "pytorch_model-00043-of-00053.bin", "model.layers.42.post_attention_layernorm.weight": "pytorch_model-00043-of-00053.bin", "model.layers.42.self_attn.q_proj.weight": "pytorch_model-00043-of-00053.bin", "model.layers.42.self_attn.k_proj.weight": "pytorch_model-00043-of-00053.bin", "model.layers.42.self_attn.v_proj.weight": "pytorch_model-00043-of-00053.bin", "model.layers.42.self_attn.o_proj.weight": "pytorch_model-00043-of-00053.bin", "model.layers.42.self_attn.rotary_emb.inv_freq": "pytorch_model-00043-of-00053.bin", "model.layers.42.mlp.gate_proj.weight": "pytorch_model-00043-of-00053.bin", "model.layers.42.mlp.up_proj.weight": "pytorch_model-00043-of-00053.bin", "model.layers.42.mlp.down_proj.weight": "pytorch_model-00043-of-00053.bin", "model.layers.43.input_layernorm.weight": "pytorch_model-00044-of-00053.bin", "model.layers.43.post_attention_layernorm.weight": "pytorch_model-00044-of-00053.bin", "model.layers.43.self_attn.q_proj.weight": "pytorch_model-00044-of-00053.bin", "model.layers.43.self_attn.k_proj.weight": "pytorch_model-00044-of-00053.bin", "model.layers.43.self_attn.v_proj.weight": "pytorch_model-00044-of-00053.bin", "model.layers.43.self_attn.o_proj.weight": "pytorch_model-00044-of-00053.bin", "model.layers.43.self_attn.rotary_emb.inv_freq": "pytorch_model-00044-of-00053.bin", "model.layers.43.mlp.gate_proj.weight": "pytorch_model-00044-of-00053.bin", "model.layers.43.mlp.up_proj.weight": "pytorch_model-00044-of-00053.bin", "model.layers.43.mlp.down_proj.weight": "pytorch_model-00044-of-00053.bin", "model.layers.44.input_layernorm.weight": "pytorch_model-00045-of-00053.bin", "model.layers.44.post_attention_layernorm.weight": "pytorch_model-00045-of-00053.bin", "model.layers.44.self_attn.q_proj.weight": "pytorch_model-00045-of-00053.bin", "model.layers.44.self_attn.k_proj.weight": "pytorch_model-00045-of-00053.bin", "model.layers.44.self_attn.v_proj.weight": "pytorch_model-00045-of-00053.bin", "model.layers.44.self_attn.o_proj.weight": "pytorch_model-00045-of-00053.bin", "model.layers.44.self_attn.rotary_emb.inv_freq": "pytorch_model-00045-of-00053.bin", "model.layers.44.mlp.gate_proj.weight": "pytorch_model-00045-of-00053.bin", "model.layers.44.mlp.up_proj.weight": "pytorch_model-00045-of-00053.bin", "model.layers.44.mlp.down_proj.weight": "pytorch_model-00045-of-00053.bin", "model.layers.45.input_layernorm.weight": "pytorch_model-00046-of-00053.bin", "model.layers.45.post_attention_layernorm.weight": "pytorch_model-00046-of-00053.bin", "model.layers.45.self_attn.q_proj.weight": "pytorch_model-00046-of-00053.bin", "model.layers.45.self_attn.k_proj.weight": "pytorch_model-00046-of-00053.bin", "model.layers.45.self_attn.v_proj.weight": "pytorch_model-00046-of-00053.bin", "model.layers.45.self_attn.o_proj.weight": "pytorch_model-00046-of-00053.bin", "model.layers.45.self_attn.rotary_emb.inv_freq": "pytorch_model-00046-of-00053.bin", "model.layers.45.mlp.gate_proj.weight": "pytorch_model-00046-of-00053.bin", "model.layers.45.mlp.up_proj.weight": "pytorch_model-00046-of-00053.bin", "model.layers.45.mlp.down_proj.weight": "pytorch_model-00046-of-00053.bin", "model.layers.46.input_layernorm.weight": "pytorch_model-00047-of-00053.bin", "model.layers.46.post_attention_layernorm.weight": "pytorch_model-00047-of-00053.bin", "model.layers.46.self_attn.q_proj.weight": "pytorch_model-00047-of-00053.bin", "model.layers.46.self_attn.k_proj.weight": "pytorch_model-00047-of-00053.bin", "model.layers.46.self_attn.v_proj.weight": "pytorch_model-00047-of-00053.bin", "model.layers.46.self_attn.o_proj.weight": "pytorch_model-00047-of-00053.bin", "model.layers.46.self_attn.rotary_emb.inv_freq": "pytorch_model-00047-of-00053.bin", "model.layers.46.mlp.gate_proj.weight": "pytorch_model-00047-of-00053.bin", "model.layers.46.mlp.up_proj.weight": "pytorch_model-00047-of-00053.bin", "model.layers.46.mlp.down_proj.weight": "pytorch_model-00047-of-00053.bin", "model.layers.47.input_layernorm.weight": "pytorch_model-00048-of-00053.bin", "model.layers.47.post_attention_layernorm.weight": "pytorch_model-00048-of-00053.bin", "model.layers.47.self_attn.q_proj.weight": "pytorch_model-00048-of-00053.bin", "model.layers.47.self_attn.k_proj.weight": "pytorch_model-00048-of-00053.bin", "model.layers.47.self_attn.v_proj.weight": "pytorch_model-00048-of-00053.bin", "model.layers.47.self_attn.o_proj.weight": "pytorch_model-00048-of-00053.bin", "model.layers.47.self_attn.rotary_emb.inv_freq": "pytorch_model-00048-of-00053.bin", "model.layers.47.mlp.gate_proj.weight": "pytorch_model-00048-of-00053.bin", "model.layers.47.mlp.up_proj.weight": "pytorch_model-00048-of-00053.bin", "model.layers.47.mlp.down_proj.weight": "pytorch_model-00048-of-00053.bin", "model.layers.48.input_layernorm.weight": "pytorch_model-00049-of-00053.bin", "model.layers.48.post_attention_layernorm.weight": "pytorch_model-00049-of-00053.bin", "model.layers.48.self_attn.q_proj.weight": "pytorch_model-00049-of-00053.bin", "model.layers.48.self_attn.k_proj.weight": "pytorch_model-00049-of-00053.bin", "model.layers.48.self_attn.v_proj.weight": "pytorch_model-00049-of-00053.bin", "model.layers.48.self_attn.o_proj.weight": "pytorch_model-00049-of-00053.bin", "model.layers.48.self_attn.rotary_emb.inv_freq": "pytorch_model-00049-of-00053.bin", "model.layers.48.mlp.gate_proj.weight": "pytorch_model-00049-of-00053.bin", "model.layers.48.mlp.up_proj.weight": "pytorch_model-00049-of-00053.bin", "model.layers.48.mlp.down_proj.weight": "pytorch_model-00049-of-00053.bin", "model.layers.49.input_layernorm.weight": "pytorch_model-00050-of-00053.bin", "model.layers.49.post_attention_layernorm.weight": "pytorch_model-00050-of-00053.bin", "model.layers.49.self_attn.q_proj.weight": "pytorch_model-00050-of-00053.bin", "model.layers.49.self_attn.k_proj.weight": "pytorch_model-00050-of-00053.bin", "model.layers.49.self_attn.v_proj.weight": "pytorch_model-00050-of-00053.bin", "model.layers.49.self_attn.o_proj.weight": "pytorch_model-00050-of-00053.bin", "model.layers.49.self_attn.rotary_emb.inv_freq": "pytorch_model-00050-of-00053.bin", "model.layers.49.mlp.gate_proj.weight": "pytorch_model-00050-of-00053.bin", "model.layers.49.mlp.up_proj.weight": "pytorch_model-00050-of-00053.bin", "model.layers.49.mlp.down_proj.weight": "pytorch_model-00050-of-00053.bin", "model.layers.50.input_layernorm.weight": "pytorch_model-00051-of-00053.bin", "model.layers.50.post_attention_layernorm.weight": "pytorch_model-00051-of-00053.bin", "model.layers.50.self_attn.q_proj.weight": "pytorch_model-00051-of-00053.bin", "model.layers.50.self_attn.k_proj.weight": "pytorch_model-00051-of-00053.bin", "model.layers.50.self_attn.v_proj.weight": "pytorch_model-00051-of-00053.bin", "model.layers.50.self_attn.o_proj.weight": "pytorch_model-00051-of-00053.bin", "model.layers.50.self_attn.rotary_emb.inv_freq": "pytorch_model-00051-of-00053.bin", "model.layers.50.mlp.gate_proj.weight": "pytorch_model-00051-of-00053.bin", "model.layers.50.mlp.up_proj.weight": "pytorch_model-00051-of-00053.bin", "model.layers.50.mlp.down_proj.weight": "pytorch_model-00051-of-00053.bin", "model.layers.51.input_layernorm.weight": "pytorch_model-00052-of-00053.bin", "model.layers.51.post_attention_layernorm.weight": "pytorch_model-00052-of-00053.bin", "model.layers.51.self_attn.q_proj.weight": "pytorch_model-00052-of-00053.bin", "model.layers.51.self_attn.k_proj.weight": "pytorch_model-00052-of-00053.bin", "model.layers.51.self_attn.v_proj.weight": "pytorch_model-00052-of-00053.bin", "model.layers.51.self_attn.o_proj.weight": "pytorch_model-00052-of-00053.bin", "model.layers.51.self_attn.rotary_emb.inv_freq": "pytorch_model-00052-of-00053.bin", "model.layers.51.mlp.gate_proj.weight": "pytorch_model-00052-of-00053.bin", "model.layers.51.mlp.up_proj.weight": "pytorch_model-00052-of-00053.bin", "model.layers.51.mlp.down_proj.weight": "pytorch_model-00052-of-00053.bin", "model.norm.weight": "pytorch_model-00053-of-00053.bin", "model.embed_tokens.weight": "pytorch_model-00053-of-00053.bin", "lm_head.weight": "pytorch_model-00053-of-00053.bin"}} \ No newline at end of file diff --git a/special_tokens_map.json b/special_tokens_map.json new file mode 100644 index 0000000000000000000000000000000000000000..d85ba6cb6820b01226ef8bd40b46bb489041c6a8 --- /dev/null +++ b/special_tokens_map.json @@ -0,0 +1,23 @@ +{ + "bos_token": { + "content": "", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false + }, + "eos_token": { + "content": "", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false + }, + "unk_token": { + "content": "", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false + } +} diff --git a/tokenization_skywork.py b/tokenization_skywork.py new file mode 100644 index 0000000000000000000000000000000000000000..b0b40bff32793305bee9efb40ef27c15372aef34 --- /dev/null +++ b/tokenization_skywork.py @@ -0,0 +1,267 @@ +# coding=utf-8 +# Copyright 2022 EleutherAI and the HuggingFace Inc. team. All rights reserved. +# +# This code is based on EleutherAI's GPT-NeoX library and the GPT-NeoX +# and OPT implementations in this library. It has been modified from its +# original forms to accommodate minor architectural differences compared +# to GPT-NeoX and OPT used by the Meta AI team that trained the model. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. + +"""Tokenization classes for Skywork.""" +import os +from shutil import copyfile +from typing import TYPE_CHECKING, Any, Dict, List, Optional, Tuple + +import sentencepiece as spm + +from transformers.tokenization_utils import AddedToken, PreTrainedTokenizer +from transformers.utils import logging + +if TYPE_CHECKING: + from transformers.pipelines.conversational import Conversation + +logger = logging.get_logger(__name__) + +VOCAB_FILES_NAMES = {"vocab_file": "tokenizer.model"} + + +SPIECE_UNDERLINE = "▁" + +B_INST, E_INST = "[INST]", "[/INST]" +B_SYS, E_SYS = "<>\n", "\n<>\n\n" + +DEFAULT_SYSTEM_PROMPT = """You are a helpful, respectful and honest assistant. Always answer as helpfully as possible, while being safe. Your answers should not include any harmful, unethical, racist, sexist, toxic, dangerous, or illegal content. Please ensure\ +that your responses are socially unbiased and positive in nature. + +If a question does not make any sense, or is not factually coherent, explain why instead of answering something not correct. If you don't know the answer to a question, please don't share false information.""" + +class SkyworkTokenizer(PreTrainedTokenizer): + + vocab_files_names = VOCAB_FILES_NAMES + # pretrained_vocab_files_map = PRETRAINED_VOCAB_FILES_MAP + # max_model_input_sizes = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES + model_input_names = ["input_ids", "attention_mask"] + + def __init__( + self, + vocab_file, + unk_token="", + bos_token="", + eos_token="", + pad_token=None, + sp_model_kwargs: Optional[Dict[str, Any]] = None, + add_bos_token=True, + add_eos_token=False, + clean_up_tokenization_spaces=False, + legacy=True, + **kwargs, + ): + self.sp_model_kwargs = {} if sp_model_kwargs is None else sp_model_kwargs + bos_token = AddedToken(bos_token, lstrip=False, rstrip=False) if isinstance(bos_token, str) else bos_token + eos_token = AddedToken(eos_token, lstrip=False, rstrip=False) if isinstance(eos_token, str) else eos_token + unk_token = AddedToken(unk_token, lstrip=False, rstrip=False) if isinstance(unk_token, str) else unk_token + pad_token = AddedToken(pad_token, lstrip=False, rstrip=False) if isinstance(pad_token, str) else pad_token + self.legacy = legacy + self.vocab_file = vocab_file + self.add_bos_token = add_bos_token + self.add_eos_token = add_eos_token + self.sp_model = spm.SentencePieceProcessor(**self.sp_model_kwargs) + self.sp_model.Load(vocab_file) + super().__init__( + bos_token=bos_token, + eos_token=eos_token, + unk_token=unk_token, + pad_token=pad_token, + add_bos_token=add_bos_token, + add_eos_token=add_eos_token, + sp_model_kwargs=self.sp_model_kwargs, + clean_up_tokenization_spaces=clean_up_tokenization_spaces, + legacy=legacy, + **kwargs, + ) + if legacy: + logger.warning_once( + f"You are using the legacy behaviour of the {self.__class__}. This means that tokens that come after special tokens will not be properly handled. " + ) + + + def __getstate__(self): + state = self.__dict__.copy() + state["sp_model"] = None + state["sp_model_proto"] = self.sp_model.serialized_model_proto() + return state + + def __setstate__(self, d): + self.__dict__ = d + self.sp_model = spm.SentencePieceProcessor(**self.sp_model_kwargs) + self.sp_model.LoadFromSerializedProto(self.sp_model_proto) + + @property + def vocab_size(self): + """Returns vocab size""" + return self.sp_model.get_piece_size() + + def get_vocab(self): + """Returns vocab as a dict""" + vocab = {self.convert_ids_to_tokens(i): i for i in range(self.vocab_size)} + vocab.update(self.added_tokens_encoder) + return vocab + + # Copied from transformers.models.t5.tokenization_t5.T5Tokenizer.tokenize + def tokenize(self, text, **kwargs) -> List[str]: + # Replace the SPIECE_UNDERLINE with a space to make sure SPIECE_UNDERLINE is only used at + # the beginning of the text + if not self.legacy: + text = SPIECE_UNDERLINE + text.replace(SPIECE_UNDERLINE, " ") + return super().tokenize(text, **kwargs) + + # Copied from transformers.models.t5.tokenization_t5.T5Tokenizer._tokenize + def _tokenize(self, text): + if not self.legacy: + is_first = text.startswith(SPIECE_UNDERLINE) + if is_first: + text = text[1:] + + tokens = self.sp_model.encode(text, out_type=str) + + if not self.legacy and not is_first and not text.startswith(" ") and tokens[0].startswith(SPIECE_UNDERLINE): + tokens = ([tokens[0][1:]] if len(tokens[0]) > 1 else []) + tokens[1:] + return tokens + + def _convert_token_to_id(self, token): + """Converts a token (str) in an id using the vocab.""" + return self.sp_model.piece_to_id(token) + + def _convert_id_to_token(self, index): + """Converts an index (integer) in a token (str) using the vocab.""" + token = self.sp_model.IdToPiece(index) + return token + + def convert_tokens_to_string(self, tokens): + """Converts a sequence of tokens (string) in a single string.""" + current_sub_tokens = [] + out_string = "" + prev_is_special = False + for i, token in enumerate(tokens): + # make sure that special tokens are not decoded using sentencepiece model + if token in self.all_special_tokens: + if not prev_is_special and i != 0: + out_string += " " + out_string += self.sp_model.decode(current_sub_tokens) + token + prev_is_special = True + current_sub_tokens = [] + else: + current_sub_tokens.append(token) + prev_is_special = False + out_string += self.sp_model.decode(current_sub_tokens) + return out_string + + def save_vocabulary(self, save_directory, filename_prefix: Optional[str] = None) -> Tuple[str]: + if not os.path.isdir(save_directory): + logger.error(f"Vocabulary path ({save_directory}) should be a directory") + return + out_vocab_file = os.path.join( + save_directory, (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] + ) + + if os.path.abspath(self.vocab_file) != os.path.abspath(out_vocab_file) and os.path.isfile(self.vocab_file): + copyfile(self.vocab_file, out_vocab_file) + elif not os.path.isfile(self.vocab_file): + with open(out_vocab_file, "wb") as fi: + content_spiece_model = self.sp_model.serialized_model_proto() + fi.write(content_spiece_model) + + return (out_vocab_file,) + + def build_inputs_with_special_tokens(self, token_ids_0, token_ids_1=None): + bos_token_id = [self.bos_token_id] if self.add_bos_token else [] + eos_token_id = [self.eos_token_id] if self.add_eos_token else [] + + output = bos_token_id + token_ids_0 + eos_token_id + + if token_ids_1 is not None: + output = output + bos_token_id + token_ids_1 + eos_token_id + + return output + + def get_special_tokens_mask( + self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None, already_has_special_tokens: bool = False + ) -> List[int]: + if already_has_special_tokens: + return super().get_special_tokens_mask( + token_ids_0=token_ids_0, token_ids_1=token_ids_1, already_has_special_tokens=True + ) + + bos_token_id = [1] if self.add_bos_token else [] + eos_token_id = [1] if self.add_eos_token else [] + + if token_ids_1 is None: + return bos_token_id + ([0] * len(token_ids_0)) + eos_token_id + return ( + bos_token_id + + ([0] * len(token_ids_0)) + + eos_token_id + + bos_token_id + + ([0] * len(token_ids_1)) + + eos_token_id + ) + + def create_token_type_ids_from_sequences( + self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None + ) -> List[int]: + bos_token_id = [self.bos_token_id] if self.add_bos_token else [] + eos_token_id = [self.eos_token_id] if self.add_eos_token else [] + + output = [0] * len(bos_token_id + token_ids_0 + eos_token_id) + + if token_ids_1 is not None: + output += [1] * len(bos_token_id + token_ids_1 + eos_token_id) + + return output + + def _build_conversation_input_ids(self, conversation: "Conversation") -> List[int]: + dialogue = list(conversation.iter_texts()) + if not all([is_user for is_user, msg in dialogue[::2]]) or not all( + [not is_user for is_user, msg in dialogue[1::2]] + ): + raise ValueError( + "The model only supports 'user' and 'assistant' roles, starting with user and alternating (u/a/u/a/u...)" + ) + + dialog_tokens: List[int] = [] + if len(conversation.past_user_inputs) > 0: + if not conversation.past_user_inputs[0].startswith(B_SYS) or E_SYS not in conversation.past_user_inputs[0]: + conversation.past_user_inputs[0] = ( + B_SYS + DEFAULT_SYSTEM_PROMPT + E_SYS + conversation.past_user_inputs[0] + ) + elif not dialogue[0][1].startswith(B_SYS) or E_SYS not in dialogue[0][1]: + dialogue[0] = (dialogue[0][0], B_SYS + DEFAULT_SYSTEM_PROMPT + E_SYS + dialogue[0][1]) + + dialog_tokens += sum( + [ + [self.bos_token_id] + + self.encode( + f"{B_INST} {(prompt[1]).strip()} {E_INST} {(answer[1]).strip()} ", add_special_tokens=False + ) + + [self.eos_token_id] + for prompt, answer in zip(dialogue[::2], dialogue[1::2]) + ], + [], + ) + if not (dialogue[-1][0]): + raise ValueError(f"Last message must be from user, got {dialogue[-1]['role']}") + dialog_tokens += [self.bos_token_id] + self.encode( + f"{B_INST} {(dialogue[-1][1]).strip()} {E_INST}", add_special_tokens=False + ) + return dialog_tokens diff --git a/tokenizer.model b/tokenizer.model new file mode 100644 index 0000000000000000000000000000000000000000..decbfe220922d6a38ff52541ef3927b97fb7893e --- /dev/null +++ b/tokenizer.model @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:36ec9a4d6fd7cc78fbb9e4afd89fb04cba0381b08a842ca0b60826073821f594 +size 994250 diff --git a/tokenizer_config.json b/tokenizer_config.json new file mode 100644 index 0000000000000000000000000000000000000000..9c232b8b78a3ad2ce894b9a17628f3821627ccd7 --- /dev/null +++ b/tokenizer_config.json @@ -0,0 +1,40 @@ +{ + "add_bos_token": true, + "add_eos_token": false, + "bos_token": { + "__type": "AddedToken", + "content": "", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false + }, + "clean_up_tokenization_spaces": false, + "eos_token": { + "__type": "AddedToken", + "content": "", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false + }, + "legacy": true, + "model_max_length": 1000000000000000019884624838656, + "pad_token": null, + "sp_model_kwargs": {}, + "tokenizer_class": "SkyworkTokenizer", + "unk_token": { + "__type": "AddedToken", + "content": "", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false + }, + "auto_map": { + "AutoTokenizer": [ + "tokenization_skywork.SkyworkTokenizer", + null + ] + } +}