# Convert Hugging Face falcon models to ggml format # # Usage: # # python3 falcon-convert.py 2 ~/huggingface/models/falcon-7b-instruct ./models/falcon-7b-ggmlv3-f16.bin # # This script is similar to "convert-pt-to-ggml.py" # import io import os import sys import struct import json import code import torch import numpy as np from transformers import AutoTokenizer, AutoModelForCausalLM, AutoConfig GGML_MEM_ALIGN = 32 # ref: https://github.com/openai/gpt-2/blob/master/src/encoder.py def bytes_to_unicode(): """ Returns list of utf-8 byte and a corresponding list of unicode strings. The reversible bpe codes work on unicode strings. This means you need a large # of unicode characters in your vocab if you want to avoid UNKs. When you're at something like a 10B token dataset you end up needing around 5K for decent coverage. This is a significant percentage of your normal, say, 32K bpe vocab. To avoid that, we want lookup tables between utf-8 bytes and unicode strings. And avoids mapping to whitespace/control characters the bpe code barfs on. """ bs = list(range(ord("!"), ord("~")+1))+list(range(ord("¡"), ord("¬")+1))+list(range(ord("®"), ord("ÿ")+1)) cs = bs[:] n = 0 for b in range(2**8): if b not in bs: bs.append(b) cs.append(2**8+n) n += 1 cs = [chr(n) for n in cs] return dict(zip(bs, cs)) if len(sys.argv) < 4: print("Usage: python3 falcon.py num_parts model_name output [use-f32]") print(" num_parts: number of pytorch parts, use 0 if not a multipart model. example: 2") print(" model_name: name of the model to convert.") print(" output: the output file path will be written") print(" use-f32: if present, use float32 instead of float16") sys.exit(1) num_parts = int(sys.argv[1]) model_name = sys.argv[2] output = sys.argv[3] # possible data types # ftype == 0 -> float32 # ftype == 1 -> float16 # # map from ftype to string ftype_str = ["f32", "f16"] ftype = 1 if len(sys.argv) > 4: ftype = 0 tokenizer = AutoTokenizer.from_pretrained(model_name) config = AutoConfig.from_pretrained(model_name, trust_remote_code=True) hparams = config.to_dict() print("* Loading model from: ", model_name) fout = open(output, "wb") # magic fout.write(b"ggjt"[::-1]) # config n_vocab = hparams["vocab_size"] n_embd = hparams["hidden_size"] n_head = hparams["n_head"] n_head_kv = hparams["n_head_kv"] if "n_head_kv" in hparams else 1 n_layer = hparams["n_layer"] head_dim = n_embd // n_head config_values = [ 3, n_vocab, n_embd, n_head, n_head_kv, n_layer, ftype ] fout.write(struct.pack("i" * len(config_values), *config_values)) # vocab reverse_vocab = {id: encoded_tok for encoded_tok, id in tokenizer.vocab.items()} byte_encoder = bytes_to_unicode() byte_decoder = {v:k for k, v in byte_encoder.items()} for i in range(hparams["vocab_size"]): text = bytearray([byte_decoder[c] for c in reverse_vocab[i]]) fout.write(struct.pack("i", len(text))) fout.write(text) # score fout.write(struct.pack('f', 0.0)) # tensor if num_parts == 0: partnames= ('pytorch_model.bin',) else: partnames = (f'pytorch_model-{n:05}-of-{num_parts:05}.bin' for n in range(1, num_parts + 1)) for partname in partnames: filename = f'{model_name}/{partname}' print(f'\n* Loading part: {partname}') model = torch.load(filename, map_location = 'cpu') for name in model.keys(): # The original query_key_value tensor contains n_head_kv "kv groups", # each consisting of n_head/n_head_kv query weights followed by one key # and one value weight (shared by all query heads in the kv group). # This layout makes it a big pain to work with in GGML. # So we rearrange them here,, so that we have n_head query weights # followed by n_head_kv key weights followed by n_head_kv value weights, # in contiguous fashion. if "query_key_value" in name: qkv = model[name].view( n_head_kv, n_head // n_head_kv + 2, head_dim, head_dim * n_head) q = qkv[:, :-2 ].reshape(n_head * head_dim, head_dim * n_head) k = qkv[:, [-2]].reshape(n_head_kv * head_dim, head_dim * n_head) v = qkv[:, [-1]].reshape(n_head_kv * head_dim, head_dim * n_head) model[name] = torch.cat((q,k,v)).reshape_as(model[name]) tensor = model[name] # default type is fp32 ftype_cur = 1 if ftype == 1 and tensor.ndim > 1 else 0 print(f' |', name, tensor.shape, '->', tensor.dtype) # header sname = name.encode('utf-8') fout.write(struct.pack("i" * 3, tensor.ndim, len(sname), ftype_cur)) fout.write(struct.pack("i" * tensor.ndim, *tensor.shape[::-1])) fout.write(sname) # save to file aligned_pos = (fout.tell() + (GGML_MEM_ALIGN - 1)) & -GGML_MEM_ALIGN fout.seek(aligned_pos) tensor.to(dtype = torch.float16 if ftype_cur == 1 else torch.float32).numpy().tofile(fout) fout.close() print("GGML model file saved to " + output) print("")