
 

 

 

Abstract 

 

This write-up explores a solution to wireframe 

construction problem. 

 

1. Introduction 

This is a write-up for the S23DR competition. The 

model is an improved version of the handcrafted solution. 

The main components are 2D vertex and edge detection 

and depth estimation. Edge detection consists of basic 

connected components analysis with additional checks for 

connection validity. In this solution the point cloud is used 

to estimate depth using the mean depth of N closest 

projected points. 

 

2. The method 

2.1. Vertex Detection 

My solution extracts the vertex mask for each vertex 

type from the “gestalt” segmentation. Series of dilations 

and erosions clean the mask and connected components 

analysis helps find the centroids and radii of the vertices. 

2.2. Line Detection 

The algorithm preprocesses the line mask almost in the 

same way as in vertex detection. Some classes (such as 

“ridge”) require additional dilations or bigger kernel sizes 

to be noticed by the next algorithm. 

The next step involves Hough line detection, which 

returns the line ends. There is a special parameter that 

expands the lines along the direction on both ends. This is 

due to the requirement in the line agglomeration stage for 

the line ends to be in range of the corresponding vertices. 

This way there is a bigger chance that any given line 

intersects the corresponding vertex, but it also marginally 

increases the number of false positives. 

The best solution expands the lines only once. See why 

in the metric discussion. 

2.3. Missing Vertex Detection 

The “gestalt” images have missing vertices, which are 

extremely easy to detect. Usually they occur where a 

ridge and a rake form an apex. So the solution does 

exactly that. It checks if the ridge and rake ends are close, 

and then returns the inferred vertices. In order to avoid 

detection of existing vertices the algorithm checks if any 

other points are in range. Albeit, it does not do so with the 

points it inferred, which now I realize is a mistake, which 

led to more false positives due to multiple lines per the 

same edge. 

The issue of missing vertices exists between hips and 

ridges too, but is ignored by the solution. See why in the 

metric discussion. 

2.4. Line Agglomeration 

Line agglomeration begins when all possible lines are 

detected. It assigns a corresponding vertex in range of a 

radius for each line end point. Basically, it fits arbitrary 

lines onto a predefined wireframe. Edges that do not 

fulfill the vertex requirements are filtered out. The next 

step looks into the found lines and checks if the found line 

aligns with the fixed line within some threshold of 

degrees. 

Both radius and degree solutions derive from the nature 

of 2D projections.  

The vertex size correlates with the distance to the 

camera and thus is a valid option when trying to restrict 

the line connections. The use of equal radius would 

mangle the two lines that ended far in the distance and 

had vertices near each other. KDTree is an extremely 

useful data structure here. It has a convenient interface for 

querying points in a radius and smaller computational 

intensity compared to finding distance between each 

element of two sets. 

The degree solution arises from the ambiguity of vertex 

radius on 2D projection and noise in the line detection 

which occurs because of the thickness of the mask (there 
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is a substantial amount of lines detected) and line 

extension. For example, a line that only partly touches the 

vertex circle on its edge is the wrong one. It should pass 

through the vertex and not be partly in orbit. The benefits 

of this solution are clearly visible when the vertex radii 

are big. 

2.5. The Depth Estimation 

The estimated monocular depth proved to be 

completely inaccurate. Each depth image was either 

warped, required some sort of coefficient, had inaccurate 

camera parameters or was filled with noise on important 

key points. 

Thus I had to reject this data and move on with a 

different approach. 

The solution uses projection of the point cloud for 

depth estimation. 

Initially it performs denoising and unwanted object 

removal on the point cloud using the DBSCAN algorithm. 

With the preprocessing done point projection takes place 

which takes note of the projected point depth. In order to 

combat its sparsity, a variation of nearest neighbor 

interpolation, that rejects neighbors beyond a certain 

range and outputs a value that is a mean of N neighbors, 

estimates the found vertex depth. With that information 

the algorithm proceeds to transform the vertex 

coordinates into world coordinates. Lastly, it merges the 

vertices, removes vertices and edges with nans and 

returns the output to the client. 

Since not every image has key point information, the 

monocular depth map acts as a backup and is used as in 

the handcrafted solution. 

The trouble with this approach is that point clouds are 

almost completely missing an important component – 

roofs. I failed to fix this issue. 

The first approach was to use the depth maps in 

combination with the interpolator. If queried vertices are 

close to the projected point then its value is selected, else 

value from the depth map is used. 

The second approach was to find how to shift and scale 

the depth map so it fits the point cloud with the least 

amount of error, but swiftly discarded due to bad visual 

results which included inability to unwarp the depth map. 

The third approach was to train an FCNN that would 

learn how to add the depth maps generated by projecting 

the points and monocular ones. The projection of 3D 

ground truth mesh was used as the target. This approach 

yielded a highly unstable model with dubious accuracy. 

 

3. Discussion 

 

3.1. The results 

I finished fifth with the final score of 2.0144 on the 

private dataset. Despite the handcrafted solution’s 

simplicity, my solution managed to prove that there is a 

lot of room for improvement for this approach.  

 

3.2. Area of improvement 

Since the great weakness of the algorithm is the correct 

depth estimation, a more robust algorithm should be used 

instead, coming up with which would require additional 

research and expertise.  

3.3. Validation Pipeline 

It was a great pleasure and a great curse that the 

solution’s performance was the same on validation data as 

on the test data. On one hand I could quickly validate the 

solution and be confident about the results. On the other 

hand, it led me down the spiral of constant fine-tuning 

that prevented me from exploring actual solutions. 

3.4. My mistakes 

My major error was that I had done no research on 

wireframe construction and tried to do it all on my own. 

3.5. Thoughts on the metric 

I have no prejudice against the metric, but it is 

unfortunate that the improvement of vertex detection 

worsened the solution's accuracy (by about 0.2). The 

explanation to the line detection and missing vertex 

detection is that additional vertices and edges helped 

accumulate the error that was generated by inaccurate 

depth detection. 
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