

Abstract

This write-up explores a solution to wireframe

construction problem.

1. Introduction

This is a write-up for the S23DR competition. The

model is an improved version of the handcrafted solution.

The main components are 2D vertex and edge detection

and depth estimation. Edge detection consists of basic

connected components analysis with additional checks for

connection validity. In this solution the point cloud is used

to estimate depth using the mean depth of N closest

projected points.

2. The method

2.1. Vertex Detection

My solution extracts the vertex mask for each vertex

type from the “gestalt” segmentation. Series of dilations

and erosions clean the mask and connected components

analysis helps find the centroids and radii of the vertices.

2.2. Line Detection

The algorithm preprocesses the line mask almost in the

same way as in vertex detection. Some classes (such as

“ridge”) require additional dilations or bigger kernel sizes

to be noticed by the next algorithm.

The next step involves Hough line detection, which

returns the line ends. There is a special parameter that

expands the lines along the direction on both ends. This is

due to the requirement in the line agglomeration stage for

the line ends to be in range of the corresponding vertices.

This way there is a bigger chance that any given line

intersects the corresponding vertex, but it also marginally

increases the number of false positives.

The best solution expands the lines only once. See why

in the metric discussion.

2.3. Missing Vertex Detection

The “gestalt” images have missing vertices, which are

extremely easy to detect. Usually they occur where a

ridge and a rake form an apex. So the solution does

exactly that. It checks if the ridge and rake ends are close,

and then returns the inferred vertices. In order to avoid

detection of existing vertices the algorithm checks if any

other points are in range. Albeit, it does not do so with the

points it inferred, which now I realize is a mistake, which

led to more false positives due to multiple lines per the

same edge.

The issue of missing vertices exists between hips and

ridges too, but is ignored by the solution. See why in the

metric discussion.

2.4. Line Agglomeration

Line agglomeration begins when all possible lines are

detected. It assigns a corresponding vertex in range of a

radius for each line end point. Basically, it fits arbitrary

lines onto a predefined wireframe. Edges that do not

fulfill the vertex requirements are filtered out. The next

step looks into the found lines and checks if the found line

aligns with the fixed line within some threshold of

degrees.

Both radius and degree solutions derive from the nature

of 2D projections.

The vertex size correlates with the distance to the

camera and thus is a valid option when trying to restrict

the line connections. The use of equal radius would

mangle the two lines that ended far in the distance and

had vertices near each other. KDTree is an extremely

useful data structure here. It has a convenient interface for

querying points in a radius and smaller computational

intensity compared to finding distance between each

element of two sets.

The degree solution arises from the ambiguity of vertex

radius on 2D projection and noise in the line detection

which occurs because of the thickness of the mask (there

S23DR write-up

Serhii Ivanov

Ukrainian Catholic University

Lviv, Ukraine
serhii.ivanov@ucu.edu.ua

mailto:serhii.ivanov@ucu.edu.ua

is a substantial amount of lines detected) and line

extension. For example, a line that only partly touches the

vertex circle on its edge is the wrong one. It should pass

through the vertex and not be partly in orbit. The benefits

of this solution are clearly visible when the vertex radii

are big.

2.5. The Depth Estimation

The estimated monocular depth proved to be

completely inaccurate. Each depth image was either

warped, required some sort of coefficient, had inaccurate

camera parameters or was filled with noise on important

key points.

Thus I had to reject this data and move on with a

different approach.

The solution uses projection of the point cloud for

depth estimation.

Initially it performs denoising and unwanted object

removal on the point cloud using the DBSCAN algorithm.

With the preprocessing done point projection takes place

which takes note of the projected point depth. In order to

combat its sparsity, a variation of nearest neighbor

interpolation, that rejects neighbors beyond a certain

range and outputs a value that is a mean of N neighbors,

estimates the found vertex depth. With that information

the algorithm proceeds to transform the vertex

coordinates into world coordinates. Lastly, it merges the

vertices, removes vertices and edges with nans and

returns the output to the client.

Since not every image has key point information, the

monocular depth map acts as a backup and is used as in

the handcrafted solution.

The trouble with this approach is that point clouds are

almost completely missing an important component –

roofs. I failed to fix this issue.

The first approach was to use the depth maps in

combination with the interpolator. If queried vertices are

close to the projected point then its value is selected, else

value from the depth map is used.

The second approach was to find how to shift and scale

the depth map so it fits the point cloud with the least

amount of error, but swiftly discarded due to bad visual

results which included inability to unwarp the depth map.

The third approach was to train an FCNN that would

learn how to add the depth maps generated by projecting

the points and monocular ones. The projection of 3D

ground truth mesh was used as the target. This approach

yielded a highly unstable model with dubious accuracy.

3. Discussion

3.1. The results

I finished fifth with the final score of 2.0144 on the

private dataset. Despite the handcrafted solution’s

simplicity, my solution managed to prove that there is a

lot of room for improvement for this approach.

3.2. Area of improvement

Since the great weakness of the algorithm is the correct

depth estimation, a more robust algorithm should be used

instead, coming up with which would require additional

research and expertise.

3.3. Validation Pipeline

It was a great pleasure and a great curse that the

solution’s performance was the same on validation data as

on the test data. On one hand I could quickly validate the

solution and be confident about the results. On the other

hand, it led me down the spiral of constant fine-tuning

that prevented me from exploring actual solutions.

3.4. My mistakes

My major error was that I had done no research on

wireframe construction and tried to do it all on my own.

3.5. Thoughts on the metric

I have no prejudice against the metric, but it is

unfortunate that the improvement of vertex detection

worsened the solution's accuracy (by about 0.2). The

explanation to the line detection and missing vertex

detection is that additional vertices and edges helped

accumulate the error that was generated by inaccurate

depth detection.

References

[1] Langerman, Jack and Korkmaz, Caner and Chen, Hanzhi

and Gao, Daoyi and Demir, Ilke and Mishkin, Dmytro and

Birdal, Tolga, S23DR Competition at 1st Workshop on

Urban Scene Modeling @ CVPR 2024, usm3d.github.io,

2024

