--- library_name: transformers language: - ta license: apache-2.0 base_model: Singhamarjeet8130/whisper-medium-hi tags: - generated_from_trainer datasets: - mozilla-foundation/common_voice_13_0 metrics: - wer model-index: - name: Whisper Medium Hi ta - Amarjeet results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Common Voice 13.0 type: mozilla-foundation/common_voice_13_0 config: ta split: test args: 'config: ta, split: test' metrics: - name: Wer type: wer value: 37.38483391323612 --- # Whisper Medium Hi ta - Amarjeet This model is a fine-tuned version of [Singhamarjeet8130/whisper-medium-hi](https://huggingface.co/Singhamarjeet8130/whisper-medium-hi) on the Common Voice 13.0 dataset. It achieves the following results on the evaluation set: - Loss: 0.1794 - Wer: 37.3848 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - training_steps: 4000 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:------:|:----:|:---------------:|:-------:| | 0.133 | 0.2894 | 1000 | 0.2347 | 45.2937 | | 0.1146 | 0.5787 | 2000 | 0.2040 | 41.4025 | | 0.099 | 0.8681 | 3000 | 0.1835 | 38.8261 | | 0.0652 | 1.1574 | 4000 | 0.1794 | 37.3848 | ### Framework versions - Transformers 4.47.0 - Pytorch 2.5.1+cu124 - Datasets 3.1.0 - Tokenizers 0.21.0