File size: 1,307 Bytes
a3ecf80 b84e7cd a05ef74 5b4f964 a23ddde 5b4f964 d20461d 5b4f964 76b6115 1175889 c41b2d9 a23ddde a585746 a23ddde a05ef74 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 |
---
license: mit
datasets:
- Wojood
tags:
- Named Entity Recognition
- Arabic NER
- Nested NER
language:
- ar
metrics:
- f1
- precision
- recall
pipeline_tag: token-classification
---
## Wojood - Nested/Flat Arabic NER Models
Wojood is a corpus for Arabic nested Named Entity Recognition (NER). Nested entities occur when one entity mention is embedded inside another entity mention. 550K tokens (MSA and dialect) This repo contains the source-code to train Wojood nested NER.
Online Demo
You can try our model using the demo link below
https://sina.birzeit.edu/wojood/
https://arxiv.org/abs/2205.09651
https://huggingface.co/aubmindlab/bert-base-arabertv2/tree/main
### Models
* Nested NER (main branch), with micro-F1 score of 0.909551
* Flat NER (flat branch), with micro-F1 score 0.883847
### Google Colab Notebooks
You can test our model using our Google Colab notebooks
* Train flat NER: https://gist.github.com/mohammedkhalilia/72c3261734d7715094089bdf4de74b4a
* Evaluate your model using flat NER model: https://gist.github.com/mohammedkhalilia/c807eb1ccb15416b187c32a362001665
* Train nested NER: https://gist.github.com/mohammedkhalilia/a4d83d4e43682d1efcdf299d41beb3da
* Evaluate your data using nested NER model: https://gist.github.com/mohammedkhalilia/9134510aa2684464f57de7934c97138b |