# coding=utf-8 # Copyright 2020 The HuggingFace Team All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ A subclass of `Trainer` specific to Question-Answering tasks """ from transformers import Trainer, is_datasets_available, is_torch_tpu_available from transformers.trainer_utils import PredictionOutput if is_datasets_available(): import datasets if is_torch_tpu_available(): import torch_xla.core.xla_model as xm import torch_xla.debug.metrics as met class QuestionAnsweringTrainer(Trainer): def __init__(self, *args, eval_examples=None, post_process_function=None, **kwargs): super().__init__(*args, **kwargs) self.eval_examples = eval_examples self.post_process_function = post_process_function def evaluate(self, eval_dataset=None, eval_examples=None, ignore_keys=None): eval_dataset = self.eval_dataset if eval_dataset is None else eval_dataset eval_dataloader = self.get_eval_dataloader(eval_dataset) eval_examples = self.eval_examples if eval_examples is None else eval_examples # Temporarily disable metric computation, we will do it in the loop here. compute_metrics = self.compute_metrics self.compute_metrics = None try: output = self.prediction_loop( eval_dataloader, description="Evaluation", # No point gathering the predictions if there are no metrics, otherwise we defer to # self.args.prediction_loss_only prediction_loss_only=True if compute_metrics is None else None, ignore_keys=ignore_keys, ) finally: self.compute_metrics = compute_metrics # We might have removed columns from the dataset so we put them back. if isinstance(eval_dataset, datasets.Dataset): eval_dataset.set_format(type=eval_dataset.format["type"], columns=list(eval_dataset.features.keys())) if self.post_process_function is not None and self.compute_metrics is not None: eval_preds = self.post_process_function(eval_examples, eval_dataset, output.predictions) metrics = self.compute_metrics(eval_preds) self.log(metrics) else: metrics = {} if self.args.tpu_metrics_debug or self.args.debug: # tpu-comment: Logging debug metrics for PyTorch/XLA (compile, execute times, ops, etc.) xm.master_print(met.metrics_report()) self.control = self.callback_handler.on_evaluate(self.args, self.state, self.control, metrics) return metrics def predict(self, test_dataset, test_examples, ignore_keys=None): test_dataloader = self.get_test_dataloader(test_dataset) # Temporarily disable metric computation, we will do it in the loop here. compute_metrics = self.compute_metrics self.compute_metrics = None try: output = self.prediction_loop( test_dataloader, description="Evaluation", # No point gathering the predictions if there are no metrics, otherwise we defer to # self.args.prediction_loss_only prediction_loss_only=True if compute_metrics is None else None, ignore_keys=ignore_keys, ) finally: self.compute_metrics = compute_metrics if self.post_process_function is None or self.compute_metrics is None: return output # We might have removed columns from the dataset so we put them back. if isinstance(test_dataset, datasets.Dataset): test_dataset.set_format(type=test_dataset.format["type"], columns=list(test_dataset.features.keys())) eval_preds = self.post_process_function(test_examples, test_dataset, output.predictions) metrics = self.compute_metrics(eval_preds) return PredictionOutput(predictions=eval_preds.predictions, label_ids=eval_preds.label_ids, metrics=metrics)