import html import logging import re from typing import List import pyarabic.araby as araby ACCEPTED_MODELS = [ "bert-base-arabertv01", "bert-base-arabert", "bert-base-arabertv02", "bert-base-arabertv2", "bert-large-arabertv02", "bert-large-arabertv2", "araelectra-base", "araelectra-base-discriminator", "araelectra-base-generator", "araelectra-base-artydiqa", "aragpt2-base", "aragpt2-medium", "aragpt2-large", "aragpt2-mega", ] SEGMENTED_MODELS = [ "bert-base-arabert", "bert-base-arabertv2", "bert-large-arabertv2", ] SECOND_GEN_MODELS = [ "bert-base-arabertv02", "bert-base-arabertv2", "bert-large-arabertv02", "bert-large-arabertv2", "araelectra-base", "araelectra-base-discriminator", "araelectra-base-generator", "araelectra-base-artydiqa", "aragpt2-base", "aragpt2-medium", "aragpt2-large", "aragpt2-mega", ] class ArabertPreprocessor: """ A Preprocessor class that cleans and preprocesses text for all models in the AraBERT repo. It also can unprocess the text ouput of the generated text Args: model_name (:obj:`str`): model name from the HuggingFace Models page without the aubmindlab tag. Will default to a base Arabic preprocessor if model name was not found. Current accepted models are: - "bert-base-arabertv01": No farasa segmentation. - "bert-base-arabert": with farasa segmentation. - "bert-base-arabertv02": No farasas egmentation. - "bert-base-arabertv2": with farasa segmentation. - "bert-large-arabertv02": No farasas egmentation. - "bert-large-arabertv2": with farasa segmentation. - "araelectra-base": No farasa segmentation. - "araelectra-base-discriminator": No farasa segmentation. - "araelectra-base-generator": No farasa segmentation. - "aragpt2-base": No farasa segmentation. - "aragpt2-medium": No farasa segmentation. - "aragpt2-large": No farasa segmentation. - "aragpt2-mega": No farasa segmentation. keep_emojis(:obj:`bool`, `optional`, defaults to :obj:`False`): don't remove emojis while preprocessing. remove_html_markup(:obj: `bool`, `optional`, defaults to :obj:`True`): Whether to remove html artfacts, should be set to False when preprocessing TyDi QA. replace_urls_emails_mentions(:obj:`bool`, `optional`, defaults to :obj:`True`): Whether to replace email urls and mentions by special tokens. strip_tashkeel(:obj:`bool`, `optional`, defaults to :obj:`True`): remove diacritics (FATHATAN, DAMMATAN, KASRATAN, FATHA, DAMMA, KASRA, SUKUN, SHADDA). strip_tatweel(:obj:`bool`, `optional`, defaults to :obj:`True`): remove tatweel '\\u0640'. insert_white_spaces(:obj:`bool`, `optional`, defaults to :obj:`True`): insert whitespace before and after all non Arabic digits or English digits or Arabic and English Alphabet or the 2 brackets, then inserts whitespace between words and numbers or numbers and words. remove_non_digit_repetition(:obj:`bool`, `optional`, defaults to :obj:`True`): replace repetition of more than 2 non-digit character with 2 of this character. replace_slash_with_dash(:obj:`bool`, `optional`, defaults to :obj:`None`): Will be automatically set to True in AraBERTv02, AraELECTRA and AraGPT2. Set to False to force disable, and True to force enable. Replaces the "/" with "-", since "/" is missing from AraBERTv2, AraELECTRA and ARAGPT2 vocabulary. map_hindi_numbers_to_arabic(:obj:`bool`, `optional`, defaults to :obj:`None`): Will be automatically set to True in AraBERTv02, AraELECTRA and AraGPT2.Set to False to force disable, and True to force enable. Replaces hindi numbers with the corresponding Arabic one. ex: "١٩٩٥" --> "1995". This is behavior is present by default in AraBERTv1 and v2 (with pre-segmentation), and fixes the issue of caused by a bug when inserting white spaces. apply_farasa_segmentation(:obj:`bool`, `optional`, defaults to :obj:`None`): Will be automatically set to True in AraBERTv2, and AraBERTv1. Set to False to force disable, and True to force enable. Returns: ArabertPreprocessor: A preprocessor instance Example: from preprocess import ArabertPreprocessor arabert_prep = ArabertPreprocessor("aubmindlab/bert-base-arabertv2") arabert_prep.preprocess("SOME ARABIC TEXT") """ def __init__( self, model_name: str, keep_emojis: bool = False, remove_html_markup: bool = True, replace_urls_emails_mentions: bool = True, strip_tashkeel: bool = True, strip_tatweel: bool = True, insert_white_spaces: bool = True, remove_non_digit_repetition: bool = True, replace_slash_with_dash: bool = None, map_hindi_numbers_to_arabic: bool = None, apply_farasa_segmentation: bool = None, ): """ A Preprocessor class that cleans and preprocesses text for all models in the AraBERT repo. It also can unprocess the text ouput of the generated text Args: model_name (:obj:`str`): model name from the HuggingFace Models page without the aubmindlab tag. Will default to a base Arabic preprocessor if model name was not found. Current accepted models are: - :obj:`"bert-base-arabertv01"`: No farasa segmentation. - :obj:`"bert-base-arabert"`: with farasa segmentation. - :obj:`"bert-base-arabertv02"`: No farasas egmentation. - :obj:`"bert-base-arabertv2"`: with farasa segmentation. - :obj:`"bert-large-arabertv02"`: No farasas egmentation. - :obj:`"bert-large-arabertv2"`: with farasa segmentation. - :obj:`"araelectra-base"`: No farasa segmentation. - :obj:`"araelectra-base-discriminator"`: No farasa segmentation. - :obj:`"araelectra-base-generator"`: No farasa segmentation. - :obj:`"aragpt2-base"`: No farasa segmentation. - :obj:`"aragpt2-medium"`: No farasa segmentation. - :obj:`"aragpt2-large"`: No farasa segmentation. - :obj:`"aragpt2-mega"`: No farasa segmentation. keep_emojis(:obj:`bool`, `optional`, defaults to :obj:`False`): don't remove emojis while preprocessing. remove_html_markup(:obj: `bool`, `optional`, defaults to :obj:`True`): Whether to remove html artfacts, should be set to False when preprocessing TyDi QA. replace_urls_emails_mentions(:obj:`bool`, `optional`, defaults to :obj:`True`): Whether to replace email urls and mentions by special tokens. strip_tashkeel(:obj:`bool`, `optional`, defaults to :obj:`True`): remove diacritics (FATHATAN, DAMMATAN, KASRATAN, FATHA, DAMMA, KASRA, SUKUN, SHADDA). strip_tatweel(:obj:`bool`, `optional`, defaults to :obj:`True`): remove tatweel '\\u0640'. insert_white_spaces(:obj:`bool`, `optional`, defaults to :obj:`True`): insert whitespace before and after all non Arabic digits or English digits or Arabic and English Alphabet or the 2 brackets, then inserts whitespace between words and numbers or numbers and words. remove_non_digit_repetition(:obj:`bool`, `optional`, defaults to :obj:`True`): replace repetition of more than 2 non-digit character with 2 of this character. replace_slash_with_dash(:obj:`bool`, `optional`, defaults to :obj:`None`): Will be automatically set to True in AraBERTv02, AraELECTRA and AraGPT2. Set to False to force disable, and True to force enable. Replaces the "/" with "-", since "/" is missing from AraBERTv2, AraELECTRA and ARAGPT2 vocabulary. map_hindi_numbers_to_arabic(:obj:`bool`, `optional`, defaults to :obj:`None`): Will be automatically set to True in AraBERTv02, AraELECTRA and AraGPT2.Set to False to force disable, and True to force enable. Replaces hindi numbers with the corresponding Arabic one. ex: "١٩٩٥" --> "1995". This is behavior is present by default in AraBERTv1 and v2 (with pre-segmentation), and fixes the issue of caused by a bug when inserting white spaces. apply_farasa_segmentation(:obj:`bool`, `optional`, defaults to :obj:`None`): Will be automatically set to True in AraBERTv2, and AraBERTv1. Set to False to force disable, and True to force enable. Returns: ArabertPreprocessor: A preprocessor instance Example: from preprocess import ArabertPreprocessor arabert_prep = ArabertPreprocessor("aubmindlab/bert-base-arabertv2") arabert_prep.preprocess("SOME ARABIC TEXT") """ model_name = model_name.replace("aubmindlab/", "").replace("wissamantoun/", "") if model_name not in ACCEPTED_MODELS: logging.warning( """Model provided is not in the accepted model list. Preprocessor will default to a base Arabic preprocessor""" ) self.model_name = "bert-base-arabertv02" else: self.model_name = model_name if apply_farasa_segmentation is None: if self.model_name in SEGMENTED_MODELS: self.apply_farasa_segmentation = True else: self.apply_farasa_segmentation = False else: if apply_farasa_segmentation == False and self.apply_farasa_segmentation: logging.warning( "The selected model_name requires Farasa pre-segmentation, but apply_farasa_segmentation was set to False!" ) self.apply_farasa_segmentation = apply_farasa_segmentation if self.apply_farasa_segmentation: try: from farasa.segmenter import FarasaSegmenter self.farasa_segmenter = FarasaSegmenter(interactive=True) except ModuleNotFoundError: logging.error( "farasapy is not installed, you want be able to process text for AraBERTv1 and v2. Install it using: pip install farasapy" ) self.keep_emojis = keep_emojis if self.keep_emojis: import emoji self.emoji = emoji if self.apply_farasa_segmentation: logging.warning( "Keeping tweets with Farasa Segmentation is 10 times slower" ) self.remove_html_markup = remove_html_markup self.replace_urls_emails_mentions = replace_urls_emails_mentions self.strip_tashkeel = strip_tashkeel self.strip_tatweel = strip_tatweel self.insert_white_spaces = insert_white_spaces self.remove_non_digit_repetition = remove_non_digit_repetition if replace_slash_with_dash is None: if self.model_name in SECOND_GEN_MODELS: self.replace_slash_with_dash = True else: self.replace_slash_with_dash = False else: self.replace_slash_with_dash = replace_slash_with_dash if map_hindi_numbers_to_arabic is None: if self.model_name in SECOND_GEN_MODELS: self.map_hindi_numbers_to_arabic = True else: self.map_hindi_numbers_to_arabic = False else: self.map_hindi_numbers_to_arabic = map_hindi_numbers_to_arabic def preprocess(self, text: str) -> str: """ Preprocess takes an input text line an applies the same preprocessing used in AraBERT pretraining, or according to settings Args: text (:obj:`str`): inout text string Returns: string: A preprocessed string depending on which model was selected """ if ( self.model_name == "bert-base-arabert" or self.model_name == "bert-base-arabertv01" ): return self._preprocess_v1( text, do_farasa_tokenization=self.apply_farasa_segmentation, ) if self.model_name in SECOND_GEN_MODELS: return self._preprocess_v2(text) return self._preprocess_v3(text) def unpreprocess(self, text: str, desegment: bool = True) -> str: """Re-formats the text to a classic format where punctuations, brackets, parenthesis are not seperated by whitespaces. The objective is to make the generated text of any model appear natural and not preprocessed. Args: text (:obj:`str`): input text to be un-preprocessed desegment (:obj:`bool`, optional): [whether or not to remove farasa pre-segmentation before].. Returns: str: The unpreprocessed (and possibly Farasa-desegmented) text. """ if self.apply_farasa_segmentation and desegment: text = self.desegment(text) # removes the spaces around quotation marks ex: i " ate " an apple --> i "ate" an apple # https://stackoverflow.com/a/53436792/5381220 text = re.sub(white_spaced_double_quotation_regex, '"' + r"\1" + '"', text) text = re.sub(white_spaced_single_quotation_regex, "'" + r"\1" + "'", text) text = re.sub(white_spaced_back_quotation_regex, "\`" + r"\1" + "\`", text) text = re.sub(white_spaced_back_quotation_regex, "\—" + r"\1" + "\—", text) # during generation, sometimes the models don't put a space after the dot, this handles it text = text.replace(".", " . ") text = " ".join(text.split()) # handle decimals text = re.sub(r"(\d+) \. (\d+)", r"\1.\2", text) text = re.sub(r"(\d+) \, (\d+)", r"\1,\2", text) text = re.sub(left_and_right_spaced_chars, r"\1", text) text = re.sub(left_spaced_chars, r"\1", text) text = re.sub(right_spaced_chars, r"\1", text) return text def desegment(self, text: str) -> str: """ Use this function if sentence tokenization was done using `from arabert.preprocess_arabert import preprocess` with Farasa enabled AraBERT segmentation using Farasa adds a space after the '+' for prefixes, and after before the '+' for suffixes Example: >>> desegment('ال+ دراس +ات') الدراسات """ text = text.replace("+ ", "+") text = text.replace(" +", "+") text = " ".join([self._desegmentword(word) for word in text.split(" ")]) return text def _desegmentword(self, orig_word: str) -> str: """ Word segmentor that takes a Farasa Segmented Word and removes the '+' signs Example: >>> _desegmentword("ال+يومي+ة") اليومية """ word = orig_word.replace("ل+ال+", "لل") if "ال+ال" not in orig_word: word = word.replace("ل+ال", "لل") word = word.replace("+", "") word = word.replace("للل", "لل") return word def _preprocess_v3(self, text: str) -> str: text = str(text) text = html.unescape(text) if self.strip_tashkeel: text = araby.strip_tashkeel(text) if self.strip_tatweel: text = araby.strip_tatweel(text) if self.replace_urls_emails_mentions: # replace all possible URLs for reg in url_regexes: text = re.sub(reg, " [رابط] ", text) # REplace Emails with [بريد] for reg in email_regexes: text = re.sub(reg, " [بريد] ", text) # replace mentions with [مستخدم] text = re.sub(user_mention_regex, " [مستخدم] ", text) if self.remove_html_markup: # remove html line breaks text = re.sub("
", " ", text) # remove html markup text = re.sub("]+>", " ", text) if self.map_hindi_numbers_to_arabic: text = text.translate(hindi_to_arabic_map) # remove repeated characters >2 if self.remove_non_digit_repetition: text = self._remove_non_digit_repetition(text) # insert whitespace before and after all non Arabic digits or English Digits and Alphabet and the 2 brackets if self.insert_white_spaces: text = re.sub( "([^0-9\u0621-\u063A\u0641-\u064A\u0660-\u0669a-zA-Z ])", r" \1 ", text, ) # re-fix brackets text = text.replace("[ رابط ]", "[رابط]") text = text.replace("[ بريد ]", "[بريد]") text = text.replace("[ مستخدم ]", "[مستخدم]") # insert whitespace between words and numbers or numbers and words text = re.sub( "(\d+)([\u0621-\u063A\u0641-\u064A\u066A-\u066C\u0654-\u0655]+)", r" \1 \2 ", text, ) text = re.sub( "([\u0621-\u063A\u0641-\u064A\u066A-\u066C\u0654-\u0655]+)(\d+)", r" \1 \2 ", text, ) # remove unwanted characters if self.keep_emojis: emoji_regex = "".join(list(self.emoji.UNICODE_EMOJI["en"].keys())) rejected_chars_regex2 = "[^%s%s]" % (chars_regexv2, emoji_regex) text = re.sub(rejected_chars_regex2, " ", text) else: text = re.sub(rejected_chars_regexv2, " ", text) # remove extra spaces text = " ".join(text.replace("\uFE0F", "").split()) if self.apply_farasa_segmentation: if self.keep_emojis: new_text = [] for word in text.split(): if word in list(self.emoji.UNICODE_EMOJI["en"].keys()): new_text.append(word) else: new_text.append(self.farasa_segmenter.segment(word)) text = " ".join(new_text) else: text = self.farasa_segmenter.segment(text) return self._farasa_segment(text) # ALl the other models dont require Farasa Segmentation return text def _preprocess_v2(self, text: str) -> str: text = str(text) text = html.unescape(text) if self.strip_tashkeel: text = araby.strip_tashkeel(text) if self.strip_tatweel: text = araby.strip_tatweel(text) if self.replace_urls_emails_mentions: # replace all possible URLs for reg in url_regexes: text = re.sub(reg, " [رابط] ", text) # REplace Emails with [بريد] for reg in email_regexes: text = re.sub(reg, " [بريد] ", text) # replace mentions with [مستخدم] text = re.sub(user_mention_regex, " [مستخدم] ", text) if self.remove_html_markup: # remove html line breaks text = re.sub("
", " ", text) # remove html markup text = re.sub("]+>", " ", text) if self.map_hindi_numbers_to_arabic: text = text.translate(hindi_to_arabic_map) # remove repeated characters >2 if self.remove_non_digit_repetition: text = self._remove_non_digit_repetition(text) # insert whitespace before and after all non Arabic digits or English Digits and Alphabet and the 2 brackets if self.insert_white_spaces: text = re.sub( "([^0-9\u0621-\u063A\u0641-\u064A\u0660-\u0669a-zA-Z\[\]])", r" \1 ", text, ) # insert whitespace between words and numbers or numbers and words text = re.sub( "(\d+)([\u0621-\u063A\u0641-\u064A\u0660-\u066C]+)", r" \1 \2 ", text ) text = re.sub( "([\u0621-\u063A\u0641-\u064A\u0660-\u066C]+)(\d+)", r" \1 \2 ", text ) if self.replace_slash_with_dash: text = text.replace("/", "-") # remove unwanted characters if self.keep_emojis: emoji_regex = "".join(list(self.emoji.UNICODE_EMOJI["en"].keys())) rejected_chars_regex2 = "[^%s%s]" % (chars_regex, emoji_regex) text = re.sub(rejected_chars_regex2, " ", text) else: text = re.sub(rejected_chars_regex, " ", text) # remove extra spaces text = " ".join(text.replace("\uFE0F", "").split()) if ( self.model_name == "bert-base-arabertv2" or self.model_name == "bert-large-arabertv2" ): if self.keep_emojis: new_text = [] for word in text.split(): if word in list(self.emoji.UNICODE_EMOJI["en"].keys()): new_text.append(word) else: new_text.append(self.farasa_segmenter.segment(word)) text = " ".join(new_text) else: text = self.farasa_segmenter.segment(text) return self._farasa_segment(text) # ALl the other models dont require Farasa Segmentation return text def _preprocess_v1(self, text: str, do_farasa_tokenization: bool) -> str: """ AraBERTv1 preprocessing Function """ text = str(text) if self.strip_tashkeel: text = araby.strip_tashkeel(text) text = re.sub(r"\d+\/[ء-ي]+\/\d+\]", "", text) text = re.sub("ـ", "", text) text = re.sub("[«»]", ' " ', text) if self.replace_urls_emails_mentions: # replace the [رابط] token with space if you want to clean links text = re.sub(regex_url_step1, "[رابط]", text) text = re.sub(regex_url_step2, "[رابط]", text) text = re.sub(regex_url, "[رابط]", text) text = re.sub(regex_email, "[بريد]", text) text = re.sub(regex_mention, "[مستخدم]", text) text = re.sub("…", r"\.", text).strip() text = self._remove_redundant_punct(text) if self.replace_urls_emails_mentions: text = re.sub(r"\[ رابط \]|\[ رابط\]|\[رابط \]", " [رابط] ", text) text = re.sub(r"\[ بريد \]|\[ بريد\]|\[بريد \]", " [بريد] ", text) text = re.sub(r"\[ مستخدم \]|\[ مستخدم\]|\[مستخدم \]", " [مستخدم] ", text) if self.remove_non_digit_repetition: text = self._remove_non_digit_repetition(text) if self.insert_white_spaces: text = re.sub( "([^0-9\u0621-\u063A\u0641-\u0669\u0671-\u0673a-zA-Z\[\]])", r" \1 ", text, ) if do_farasa_tokenization: text = self._tokenize_arabic_words_farasa(text) text = " ".join(text.split()) return text def _farasa_segment(self, text: str) -> str: line_farasa = text.split() segmented_line = [] for index, word in enumerate(line_farasa): if word in ["[", "]"]: continue if word in ["رابط", "بريد", "مستخدم"] and line_farasa[index - 1] in [ "[", "]", ]: segmented_line.append("[" + word + "]") continue if "+" not in word: segmented_line.append(word) continue segmented_word = self._split_farasa_output(word) segmented_line.extend(segmented_word) return " ".join(segmented_line) def _split_farasa_output(self, word: str) -> str: segmented_word = [] temp_token = "" for i, c in enumerate(word): if c == "+": # if the token is KAF, it could be a suffix or prefix if temp_token == "ك": # if we are at the second token, then KAF is surely a prefix if i == 1: segmented_word.append(temp_token + "+") temp_token = "" # If the KAF token is between 2 tokens elif word[i - 2] == "+": # if the previous token is prefix, then this KAF must be a prefix if segmented_word[-1][-1] == "+": segmented_word.append(temp_token + "+") temp_token = "" # else it is a suffix, this KAF could not be a second suffix else: segmented_word.append("+" + temp_token) temp_token = "" # if Kaf is at the end, this is handled with the statement after the loop elif temp_token in prefix_list: segmented_word.append(temp_token + "+") temp_token = "" elif temp_token in suffix_list: segmented_word.append("+" + temp_token) temp_token = "" else: segmented_word.append(temp_token) temp_token = "" continue temp_token += c if temp_token != "": if temp_token in suffix_list: segmented_word.append("+" + temp_token) else: segmented_word.append(temp_token) return segmented_word def _tokenize_arabic_words_farasa(self, line_input: str) -> str: if self.keep_emojis: # insert whitespace before and after all non Arabic digits or English Digits and Alphabet and the 2 brackets line_farasa = [] for word in line_input.split(): if word in list(self.emoji.UNICODE_EMOJI["en"].keys()): line_farasa.append(word) else: line_farasa.append(self.farasa_segmenter.segment(word)) else: line_farasa = self.farasa_segmenter.segment(line_input).split() segmented_line = [] for index, word in enumerate(line_farasa): if word in ["[", "]"]: continue if word in ["رابط", "بريد", "مستخدم"] and line_farasa[index - 1] in [ "[", "]", ]: segmented_line.append("[" + word + "]") continue segmented_word = [] for token in word.split("+"): if token in prefix_list: segmented_word.append(token + "+") elif token in suffix_list: segmented_word.append("+" + token) else: segmented_word.append(token) segmented_line.extend(segmented_word) return " ".join(segmented_line) def _remove_non_digit_repetition(self, text: str) -> str: """ :param text: the input text to remove elongation :return: delongated text """ # loop over the number of times the regex matched the text # OLD # for index_ in range(len(re.findall(regex_tatweel, text))): # elongation = re.search(regex_tatweel, text) # if elongation: # elongation_pattern = elongation.group() # elongation_replacement = elongation_pattern[0] # elongation_pattern = re.escape(elongation_pattern) # text = re.sub( # elongation_pattern, elongation_replacement, text, flags=re.MULTILINE # ) # else: # break # New text = multiple_char_pattern.sub(r"\1\1", text) return text def _remove_redundant_punct(self, text: str) -> str: text_ = text result = re.search(redundant_punct_pattern, text) dif = 0 while result: sub = result.group() sub = sorted(set(sub), key=sub.index) sub = " " + "".join(list(sub)) + " " text = "".join( (text[: result.span()[0] + dif], sub, text[result.span()[1] + dif :]) ) text_ = "".join( (text_[: result.span()[0]], text_[result.span()[1] :]) ).strip() dif = abs(len(text) - len(text_)) result = re.search(redundant_punct_pattern, text_) text = re.sub(r"\s+", " ", text) return text.strip() prefix_list = [ "ال", "و", "ف", "ب", "ك", "ل", "لل", "\u0627\u0644", "\u0648", "\u0641", "\u0628", "\u0643", "\u0644", "\u0644\u0644", "س", ] suffix_list = [ "ه", "ها", "ك", "ي", "هما", "كما", "نا", "كم", "هم", "هن", "كن", "ا", "ان", "ين", "ون", "وا", "ات", "ت", "ن", "ة", "\u0647", "\u0647\u0627", "\u0643", "\u064a", "\u0647\u0645\u0627", "\u0643\u0645\u0627", "\u0646\u0627", "\u0643\u0645", "\u0647\u0645", "\u0647\u0646", "\u0643\u0646", "\u0627", "\u0627\u0646", "\u064a\u0646", "\u0648\u0646", "\u0648\u0627", "\u0627\u062a", "\u062a", "\u0646", "\u0629", ] other_tokens = ["[رابط]", "[مستخدم]", "[بريد]"] # the never_split list is ussed with the transformers library prefix_symbols = [x + "+" for x in prefix_list] suffix_symblos = ["+" + x for x in suffix_list] never_split_tokens = list(set(prefix_symbols + suffix_symblos + other_tokens)) url_regexes = [ r"(http(s)?:\/\/.)?(www\.)?[-a-zA-Z0-9@:%._\+~#=]{2,256}\.[a-z]{2,6}\b([-a-zA-Z0-9@:%_\+.~#?&//=]*)", r"@(https?|ftp)://(-\.)?([^\s/?\.#-]+\.?)+(/[^\s]*)?$@iS", r"http[s]?://[a-zA-Z0-9_\-./~\?=%&]+", r"www[a-zA-Z0-9_\-?=%&/.~]+", r"[a-zA-Z]+\.com", r"(?=http)[^\s]+", r"(?=www)[^\s]+", r"://", ] user_mention_regex = r"@[\w\d]+" email_regexes = [r"[\w-]+@([\w-]+\.)+[\w-]+", r"\S+@\S+"] redundant_punct_pattern = ( r"([!\"#\$%\'\(\)\*\+,\.:;\-<=·>?@\[\\\]\^_ـ`{\|}~—٪’،؟`୍“؛”ۚ【»؛\s+«–…‘]{2,})" ) regex_tatweel = r"(\D)\1{2,}" multiple_char_pattern = re.compile(r"(\D)\1{2,}", re.DOTALL) rejected_chars_regex = r"[^0-9\u0621-\u063A\u0640-\u066C\u0671-\u0674a-zA-Z\[\]!\"#\$%\'\(\)\*\+,\.:;\-<=·>?@\[\\\]\^_ـ`{\|}~—٪’،؟`୍“؛”ۚ»؛\s+«–…‘]" rejected_chars_regexv2 = r"[^0-9\u0621-\u063A\u0641-\u066C\u0671-\u0674a-zA-Z\[\]!\"#\$%\'\(\)\*\+,\.:;\-<=·>?@\[\\\]\^_ـ`{\|}~—٪’،؟`୍“؛”ۚ»؛\s+«–…‘/]" regex_url_step1 = r"(?=http)[^\s]+" regex_url_step2 = r"(?=www)[^\s]+" regex_url = r"(http(s)?:\/\/.)?(www\.)?[-a-zA-Z0-9@:%._\+~#=]{2,256}\.[a-z]{2,6}\b([-a-zA-Z0-9@:%_\+.~#?&//=]*)" regex_mention = r"@[\w\d]+" regex_email = r"\S+@\S+" chars_regex = r"0-9\u0621-\u063A\u0640-\u066C\u0671-\u0674a-zA-Z\[\]!\"#\$%\'\(\)\*\+,\.:;\-<=·>?@\[\\\]\^_ـ`{\|}~—٪’،؟`୍“؛”ۚ»؛\s+«–…‘" chars_regexv2 = r"0-9\u0621-\u063A\u0640-\u066C\u0671-\u0674a-zA-Z\[\]!\"#\$%\'\(\)\*\+,\.:;\-<=·>?@\[\\\]\^_ـ`{\|}~—٪’،؟`୍“؛”ۚ»؛\s+«–…‘/" white_spaced_double_quotation_regex = r'\"\s+([^"]+)\s+\"' white_spaced_single_quotation_regex = r"\'\s+([^']+)\s+\'" white_spaced_back_quotation_regex = r"\`\s+([^`]+)\s+\`" white_spaced_em_dash = r"\—\s+([^—]+)\s+\—" left_spaced_chars = r" ([\]!#\$%\),\.:;\?}٪’،؟”؛…»·])" right_spaced_chars = r"([\[\(\{“«‘*\~]) " left_and_right_spaced_chars = r" ([\+\-\<\=\>\@\\\^\_\|\–]) " hindi_nums = "٠١٢٣٤٥٦٧٨٩" arabic_nums = "0123456789" hindi_to_arabic_map = str.maketrans(hindi_nums, arabic_nums)