--- library_name: transformers license: apache-2.0 base_model: google-bert/bert-large-uncased tags: - generated_from_trainer metrics: - accuracy model-index: - name: finrobberta results: [] --- # finrobberta This model is a fine-tuned version of [google-bert/bert-large-uncased](https://huggingface.co/google-bert/bert-large-uncased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.4613 - Accuracy: 0.84 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 8 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.8156 | 1.0 | 52 | 0.8772 | 0.5 | | 0.5711 | 2.0 | 104 | 0.7082 | 0.67 | | 0.4828 | 3.0 | 156 | 0.5083 | 0.79 | | 0.3927 | 4.0 | 208 | 0.4988 | 0.83 | | 0.3866 | 5.0 | 260 | 0.4750 | 0.82 | | 0.2902 | 6.0 | 312 | 0.4613 | 0.84 | | 0.2616 | 7.0 | 364 | 0.4632 | 0.82 | | 0.2209 | 8.0 | 416 | 0.4728 | 0.82 | ### Framework versions - Transformers 4.44.2 - Pytorch 2.3.1+cu121 - Datasets 2.21.0 - Tokenizers 0.19.1