from utils.inference_utils import find_images_from_path import torch import argparse from utils.train_utils import initialize_model def main(): parser = argparse.ArgumentParser(description="Image Inference") parser.add_argument( "--model_name", type=str, help="Model name (resnet, alexnet, vgg, squeezenet, densenet)", default="resnet", ) parser.add_argument( "--model_weights", type=str, help="Path to the model weights", default="./trained_models/pokemon_resnet.pth", ) parser.add_argument( "--image_path", type=str, help="Path to the image", default="./pokemonclassification/PokemonData/", ) parser.add_argument( "--num_classes", type=int, help="Number of classes", default=150 ) parser.add_argument( "--label", type=str, help="Label to filter the images", default='Dragonair' # Krabby, Clefairy ) parser.add_argument( "--num_correct", type=int, help="Number of correctly classified images", default=5 ) parser.add_argument( "--num_incorrect", type=int, help="Number of incorrectly classified images", default=5 ) args = parser.parse_args() assert (args.model_name == "resnet"), "Only the ResNet is supported model for now" device = torch.device("cuda" if torch.cuda.is_available() else "cpu") # Initialize the model model = initialize_model(args.model_name, args.num_classes) model = model.to(device) # Load the model weights model.load_state_dict(torch.load(args.model_weights, map_location=device)) find_images_from_path(args.image_path, model, device, args.num_correct, args.num_incorrect, args.label) if __name__ == "__main__": main()