from torch import nn from transformers import BertModel import logging from transformers.modeling_outputs import TokenClassifierOutput class BertClassifier(nn.Module): def __init__(self, bert_model="Sifal/dzarabert", num_labels=2, dropout=0.1): super().__init__() self.bert = BertModel.from_pretrained(bert_model) self.num_labels = num_labels self.classifier = nn.Sequential( nn.Linear(self.bert.config.hidden_size, self.bert.config.hidden_size), nn.ReLU(), nn.Dropout(dropout), nn.Linear(self.bert.config.hidden_size, num_labels)) def forward(self, input_ids=None, attention_mask=None,labels=None): output = self.bert(input_ids, attention_mask=attention_mask) logits = self.classifier(output.pooler_output) loss = None if labels is not None: loss_fct = nn.CrossEntropyLoss() loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1)) return TokenClassifierOutput(loss=loss, logits=logits, hidden_states=output.hidden_states,attentions=output.attentions)