diff --git "a/trainer_log.jsonl" "b/trainer_log.jsonl" --- "a/trainer_log.jsonl" +++ "b/trainer_log.jsonl" @@ -1,1288 +1,1288 @@ -{"current_steps": 10, "total_steps": 12869, "loss": 2.2634, "learning_rate": 7.770007770007771e-08, "epoch": 0.0007770611547128759, "percentage": 0.08, "elapsed_time": "0:00:35", "remaining_time": "12:44:30"} -{"current_steps": 20, "total_steps": 12869, "loss": 2.1435, "learning_rate": 1.5540015540015542e-07, "epoch": 0.0015541223094257517, "percentage": 0.16, "elapsed_time": "0:01:03", "remaining_time": "11:25:04"} -{"current_steps": 30, "total_steps": 12869, "loss": 2.3791, "learning_rate": 2.3310023310023313e-07, "epoch": 0.002331183464138628, "percentage": 0.23, "elapsed_time": "0:01:25", "remaining_time": "10:12:26"} -{"current_steps": 40, "total_steps": 12869, "loss": 2.103, "learning_rate": 3.1080031080031084e-07, "epoch": 0.0031082446188515035, "percentage": 0.31, "elapsed_time": "0:01:50", "remaining_time": "9:50:39"} -{"current_steps": 50, "total_steps": 12869, "loss": 2.1581, "learning_rate": 3.885003885003885e-07, "epoch": 0.0038853057735643796, "percentage": 0.39, "elapsed_time": "0:02:12", "remaining_time": "9:24:39"} -{"current_steps": 60, "total_steps": 12869, "loss": 1.831, "learning_rate": 4.6620046620046626e-07, "epoch": 0.004662366928277256, "percentage": 0.47, "elapsed_time": "0:02:41", "remaining_time": "9:32:58"} -{"current_steps": 70, "total_steps": 12869, "loss": 1.5604, "learning_rate": 5.43900543900544e-07, "epoch": 0.005439428082990132, "percentage": 0.54, "elapsed_time": "0:03:15", "remaining_time": "9:55:50"} -{"current_steps": 80, "total_steps": 12869, "loss": 1.4227, "learning_rate": 6.216006216006217e-07, "epoch": 0.006216489237703007, "percentage": 0.62, "elapsed_time": "0:03:43", "remaining_time": "9:56:13"} -{"current_steps": 90, "total_steps": 12869, "loss": 1.3765, "learning_rate": 6.993006993006994e-07, "epoch": 0.006993550392415883, "percentage": 0.7, "elapsed_time": "0:04:19", "remaining_time": "10:14:08"} -{"current_steps": 100, "total_steps": 12869, "loss": 1.4888, "learning_rate": 7.77000777000777e-07, "epoch": 0.007770611547128759, "percentage": 0.78, "elapsed_time": "0:04:47", "remaining_time": "10:10:58"} -{"current_steps": 110, "total_steps": 12869, "loss": 1.3625, "learning_rate": 8.547008547008548e-07, "epoch": 0.008547672701841634, "percentage": 0.85, "elapsed_time": "0:05:13", "remaining_time": "10:05:26"} -{"current_steps": 120, "total_steps": 12869, "loss": 1.5279, "learning_rate": 9.324009324009325e-07, "epoch": 0.009324733856554511, "percentage": 0.93, "elapsed_time": "0:05:42", "remaining_time": "10:06:10"} -{"current_steps": 130, "total_steps": 12869, "loss": 1.3845, "learning_rate": 1.01010101010101e-06, "epoch": 0.010101795011267387, "percentage": 1.01, "elapsed_time": "0:06:11", "remaining_time": "10:07:31"} -{"current_steps": 140, "total_steps": 12869, "loss": 1.3549, "learning_rate": 1.087801087801088e-06, "epoch": 0.010878856165980264, "percentage": 1.09, "elapsed_time": "0:06:41", "remaining_time": "10:07:52"} -{"current_steps": 150, "total_steps": 12869, "loss": 1.2892, "learning_rate": 1.1655011655011655e-06, "epoch": 0.011655917320693139, "percentage": 1.17, "elapsed_time": "0:07:10", "remaining_time": "10:07:50"} -{"current_steps": 160, "total_steps": 12869, "loss": 1.4202, "learning_rate": 1.2432012432012434e-06, "epoch": 0.012432978475406014, "percentage": 1.24, "elapsed_time": "0:07:40", "remaining_time": "10:09:25"} -{"current_steps": 170, "total_steps": 12869, "loss": 1.3915, "learning_rate": 1.320901320901321e-06, "epoch": 0.013210039630118891, "percentage": 1.32, "elapsed_time": "0:08:08", "remaining_time": "10:08:41"} -{"current_steps": 180, "total_steps": 12869, "loss": 1.3201, "learning_rate": 1.3986013986013987e-06, "epoch": 0.013987100784831766, "percentage": 1.4, "elapsed_time": "0:08:40", "remaining_time": "10:11:15"} -{"current_steps": 190, "total_steps": 12869, "loss": 1.3651, "learning_rate": 1.4763014763014764e-06, "epoch": 0.014764161939544641, "percentage": 1.48, "elapsed_time": "0:09:05", "remaining_time": "10:06:26"} -{"current_steps": 200, "total_steps": 12869, "loss": 1.3228, "learning_rate": 1.554001554001554e-06, "epoch": 0.015541223094257518, "percentage": 1.55, "elapsed_time": "0:09:30", "remaining_time": "10:02:25"} -{"current_steps": 210, "total_steps": 12869, "loss": 1.3526, "learning_rate": 1.6317016317016318e-06, "epoch": 0.016318284248970395, "percentage": 1.63, "elapsed_time": "0:10:00", "remaining_time": "10:03:20"} -{"current_steps": 220, "total_steps": 12869, "loss": 1.3602, "learning_rate": 1.7094017094017097e-06, "epoch": 0.01709534540368327, "percentage": 1.71, "elapsed_time": "0:10:28", "remaining_time": "10:02:29"} -{"current_steps": 230, "total_steps": 12869, "loss": 1.4385, "learning_rate": 1.7871017871017873e-06, "epoch": 0.017872406558396146, "percentage": 1.79, "elapsed_time": "0:10:55", "remaining_time": "10:00:25"} -{"current_steps": 240, "total_steps": 12869, "loss": 1.328, "learning_rate": 1.864801864801865e-06, "epoch": 0.018649467713109023, "percentage": 1.86, "elapsed_time": "0:11:23", "remaining_time": "9:59:12"} -{"current_steps": 250, "total_steps": 12869, "loss": 1.2971, "learning_rate": 1.9425019425019425e-06, "epoch": 0.019426528867821896, "percentage": 1.94, "elapsed_time": "0:11:48", "remaining_time": "9:55:59"} -{"current_steps": 260, "total_steps": 12869, "loss": 1.2453, "learning_rate": 2.02020202020202e-06, "epoch": 0.020203590022534773, "percentage": 2.02, "elapsed_time": "0:12:19", "remaining_time": "9:57:26"} -{"current_steps": 270, "total_steps": 12869, "loss": 1.2886, "learning_rate": 2.0979020979020983e-06, "epoch": 0.02098065117724765, "percentage": 2.1, "elapsed_time": "0:12:42", "remaining_time": "9:52:41"} -{"current_steps": 280, "total_steps": 12869, "loss": 1.3139, "learning_rate": 2.175602175602176e-06, "epoch": 0.021757712331960527, "percentage": 2.18, "elapsed_time": "0:13:07", "remaining_time": "9:50:20"} -{"current_steps": 290, "total_steps": 12869, "loss": 1.3053, "learning_rate": 2.2533022533022537e-06, "epoch": 0.0225347734866734, "percentage": 2.25, "elapsed_time": "0:13:36", "remaining_time": "9:50:00"} -{"current_steps": 300, "total_steps": 12869, "loss": 1.3623, "learning_rate": 2.331002331002331e-06, "epoch": 0.023311834641386277, "percentage": 2.33, "elapsed_time": "0:14:04", "remaining_time": "9:49:31"} -{"current_steps": 310, "total_steps": 12869, "loss": 1.2438, "learning_rate": 2.408702408702409e-06, "epoch": 0.024088895796099154, "percentage": 2.41, "elapsed_time": "0:14:31", "remaining_time": "9:48:12"} -{"current_steps": 320, "total_steps": 12869, "loss": 1.289, "learning_rate": 2.4864024864024867e-06, "epoch": 0.024865956950812028, "percentage": 2.49, "elapsed_time": "0:14:56", "remaining_time": "9:46:12"} -{"current_steps": 330, "total_steps": 12869, "loss": 1.2323, "learning_rate": 2.564102564102564e-06, "epoch": 0.025643018105524905, "percentage": 2.56, "elapsed_time": "0:15:30", "remaining_time": "9:49:21"} -{"current_steps": 340, "total_steps": 12869, "loss": 1.2721, "learning_rate": 2.641802641802642e-06, "epoch": 0.026420079260237782, "percentage": 2.64, "elapsed_time": "0:16:02", "remaining_time": "9:51:05"} -{"current_steps": 350, "total_steps": 12869, "loss": 1.2666, "learning_rate": 2.7195027195027198e-06, "epoch": 0.027197140414950655, "percentage": 2.72, "elapsed_time": "0:16:33", "remaining_time": "9:52:17"} -{"current_steps": 360, "total_steps": 12869, "loss": 1.3556, "learning_rate": 2.7972027972027974e-06, "epoch": 0.027974201569663532, "percentage": 2.8, "elapsed_time": "0:16:58", "remaining_time": "9:49:48"} -{"current_steps": 370, "total_steps": 12869, "loss": 1.3571, "learning_rate": 2.874902874902875e-06, "epoch": 0.02875126272437641, "percentage": 2.88, "elapsed_time": "0:17:21", "remaining_time": "9:46:22"} -{"current_steps": 380, "total_steps": 12869, "loss": 1.3141, "learning_rate": 2.952602952602953e-06, "epoch": 0.029528323879089283, "percentage": 2.95, "elapsed_time": "0:17:48", "remaining_time": "9:45:22"} -{"current_steps": 390, "total_steps": 12869, "loss": 1.3126, "learning_rate": 3.0303030303030305e-06, "epoch": 0.03030538503380216, "percentage": 3.03, "elapsed_time": "0:18:18", "remaining_time": "9:45:51"} -{"current_steps": 400, "total_steps": 12869, "loss": 1.2194, "learning_rate": 3.108003108003108e-06, "epoch": 0.031082446188515037, "percentage": 3.11, "elapsed_time": "0:18:47", "remaining_time": "9:45:40"} -{"current_steps": 410, "total_steps": 12869, "loss": 1.2786, "learning_rate": 3.1857031857031863e-06, "epoch": 0.031859507343227914, "percentage": 3.19, "elapsed_time": "0:19:18", "remaining_time": "9:46:29"} -{"current_steps": 420, "total_steps": 12869, "loss": 1.0912, "learning_rate": 3.2634032634032635e-06, "epoch": 0.03263656849794079, "percentage": 3.26, "elapsed_time": "0:19:46", "remaining_time": "9:46:01"} -{"current_steps": 430, "total_steps": 12869, "loss": 1.2263, "learning_rate": 3.3411033411033412e-06, "epoch": 0.03341362965265366, "percentage": 3.34, "elapsed_time": "0:20:13", "remaining_time": "9:45:13"} -{"current_steps": 440, "total_steps": 12869, "loss": 1.2468, "learning_rate": 3.4188034188034193e-06, "epoch": 0.03419069080736654, "percentage": 3.42, "elapsed_time": "0:20:44", "remaining_time": "9:45:47"} -{"current_steps": 450, "total_steps": 12869, "loss": 1.34, "learning_rate": 3.4965034965034966e-06, "epoch": 0.034967751962079414, "percentage": 3.5, "elapsed_time": "0:21:10", "remaining_time": "9:44:24"} -{"current_steps": 460, "total_steps": 12869, "loss": 1.2316, "learning_rate": 3.5742035742035747e-06, "epoch": 0.03574481311679229, "percentage": 3.57, "elapsed_time": "0:21:37", "remaining_time": "9:43:17"} -{"current_steps": 470, "total_steps": 12869, "loss": 1.2875, "learning_rate": 3.651903651903652e-06, "epoch": 0.03652187427150517, "percentage": 3.65, "elapsed_time": "0:22:06", "remaining_time": "9:43:13"} -{"current_steps": 480, "total_steps": 12869, "loss": 1.3156, "learning_rate": 3.72960372960373e-06, "epoch": 0.037298935426218045, "percentage": 3.73, "elapsed_time": "0:22:33", "remaining_time": "9:42:12"} -{"current_steps": 490, "total_steps": 12869, "loss": 1.3333, "learning_rate": 3.8073038073038077e-06, "epoch": 0.03807599658093092, "percentage": 3.81, "elapsed_time": "0:22:59", "remaining_time": "9:40:42"} -{"current_steps": 500, "total_steps": 12869, "loss": 1.4182, "learning_rate": 3.885003885003885e-06, "epoch": 0.03885305773564379, "percentage": 3.89, "elapsed_time": "0:23:26", "remaining_time": "9:39:46"} -{"current_steps": 510, "total_steps": 12869, "loss": 1.2107, "learning_rate": 3.962703962703963e-06, "epoch": 0.03963011889035667, "percentage": 3.96, "elapsed_time": "0:23:57", "remaining_time": "9:40:28"} -{"current_steps": 520, "total_steps": 12869, "loss": 1.3128, "learning_rate": 4.04040404040404e-06, "epoch": 0.040407180045069546, "percentage": 4.04, "elapsed_time": "0:24:23", "remaining_time": "9:39:19"} -{"current_steps": 530, "total_steps": 12869, "loss": 1.2443, "learning_rate": 4.1181041181041185e-06, "epoch": 0.04118424119978242, "percentage": 4.12, "elapsed_time": "0:24:50", "remaining_time": "9:38:26"} -{"current_steps": 540, "total_steps": 12869, "loss": 1.2617, "learning_rate": 4.195804195804197e-06, "epoch": 0.0419613023544953, "percentage": 4.2, "elapsed_time": "0:25:22", "remaining_time": "9:39:27"} -{"current_steps": 550, "total_steps": 12869, "loss": 1.2075, "learning_rate": 4.273504273504274e-06, "epoch": 0.04273836350920818, "percentage": 4.27, "elapsed_time": "0:25:58", "remaining_time": "9:41:54"} -{"current_steps": 560, "total_steps": 12869, "loss": 1.2414, "learning_rate": 4.351204351204352e-06, "epoch": 0.043515424663921054, "percentage": 4.35, "elapsed_time": "0:26:37", "remaining_time": "9:45:21"} -{"current_steps": 570, "total_steps": 12869, "loss": 1.1756, "learning_rate": 4.428904428904429e-06, "epoch": 0.044292485818633924, "percentage": 4.43, "elapsed_time": "0:27:04", "remaining_time": "9:44:13"} -{"current_steps": 580, "total_steps": 12869, "loss": 1.2332, "learning_rate": 4.506604506604507e-06, "epoch": 0.0450695469733468, "percentage": 4.51, "elapsed_time": "0:27:28", "remaining_time": "9:42:06"} -{"current_steps": 590, "total_steps": 12869, "loss": 1.2275, "learning_rate": 4.5843045843045846e-06, "epoch": 0.04584660812805968, "percentage": 4.58, "elapsed_time": "0:27:52", "remaining_time": "9:40:12"} -{"current_steps": 600, "total_steps": 12869, "loss": 1.2485, "learning_rate": 4.662004662004662e-06, "epoch": 0.046623669282772555, "percentage": 4.66, "elapsed_time": "0:28:24", "remaining_time": "9:40:45"} -{"current_steps": 610, "total_steps": 12869, "loss": 1.2136, "learning_rate": 4.73970473970474e-06, "epoch": 0.04740073043748543, "percentage": 4.74, "elapsed_time": "0:28:50", "remaining_time": "9:39:33"} -{"current_steps": 620, "total_steps": 12869, "loss": 1.221, "learning_rate": 4.817404817404818e-06, "epoch": 0.04817779159219831, "percentage": 4.82, "elapsed_time": "0:29:15", "remaining_time": "9:38:06"} -{"current_steps": 630, "total_steps": 12869, "loss": 1.3234, "learning_rate": 4.895104895104895e-06, "epoch": 0.04895485274691118, "percentage": 4.9, "elapsed_time": "0:29:39", "remaining_time": "9:36:02"} -{"current_steps": 640, "total_steps": 12869, "loss": 1.3623, "learning_rate": 4.972804972804973e-06, "epoch": 0.049731913901624056, "percentage": 4.97, "elapsed_time": "0:30:08", "remaining_time": "9:35:52"} -{"current_steps": 650, "total_steps": 12869, "loss": 1.2109, "learning_rate": 5.0505050505050515e-06, "epoch": 0.05050897505633693, "percentage": 5.05, "elapsed_time": "0:30:33", "remaining_time": "9:34:26"} -{"current_steps": 660, "total_steps": 12869, "loss": 1.2888, "learning_rate": 5.128205128205128e-06, "epoch": 0.05128603621104981, "percentage": 5.13, "elapsed_time": "0:31:09", "remaining_time": "9:36:17"} -{"current_steps": 670, "total_steps": 12869, "loss": 1.2331, "learning_rate": 5.205905205905206e-06, "epoch": 0.05206309736576269, "percentage": 5.21, "elapsed_time": "0:31:37", "remaining_time": "9:35:43"} -{"current_steps": 680, "total_steps": 12869, "loss": 1.3239, "learning_rate": 5.283605283605284e-06, "epoch": 0.052840158520475564, "percentage": 5.28, "elapsed_time": "0:32:00", "remaining_time": "9:33:44"} -{"current_steps": 690, "total_steps": 12869, "loss": 1.2164, "learning_rate": 5.361305361305362e-06, "epoch": 0.05361721967518844, "percentage": 5.36, "elapsed_time": "0:32:26", "remaining_time": "9:32:33"} -{"current_steps": 700, "total_steps": 12869, "loss": 1.3054, "learning_rate": 5.4390054390054395e-06, "epoch": 0.05439428082990131, "percentage": 5.44, "elapsed_time": "0:32:49", "remaining_time": "9:30:45"} -{"current_steps": 710, "total_steps": 12869, "loss": 1.2235, "learning_rate": 5.516705516705518e-06, "epoch": 0.05517134198461419, "percentage": 5.52, "elapsed_time": "0:33:18", "remaining_time": "9:30:22"} -{"current_steps": 720, "total_steps": 12869, "loss": 1.2379, "learning_rate": 5.594405594405595e-06, "epoch": 0.055948403139327064, "percentage": 5.59, "elapsed_time": "0:33:44", "remaining_time": "9:29:20"} -{"current_steps": 730, "total_steps": 12869, "loss": 1.2273, "learning_rate": 5.672105672105672e-06, "epoch": 0.05672546429403994, "percentage": 5.67, "elapsed_time": "0:34:13", "remaining_time": "9:28:59"} -{"current_steps": 740, "total_steps": 12869, "loss": 1.2154, "learning_rate": 5.74980574980575e-06, "epoch": 0.05750252544875282, "percentage": 5.75, "elapsed_time": "0:34:43", "remaining_time": "9:29:03"} -{"current_steps": 750, "total_steps": 12869, "loss": 1.2312, "learning_rate": 5.827505827505828e-06, "epoch": 0.058279586603465695, "percentage": 5.83, "elapsed_time": "0:35:10", "remaining_time": "9:28:22"} -{"current_steps": 760, "total_steps": 12869, "loss": 1.2198, "learning_rate": 5.905205905205906e-06, "epoch": 0.059056647758178565, "percentage": 5.91, "elapsed_time": "0:35:34", "remaining_time": "9:26:44"} -{"current_steps": 770, "total_steps": 12869, "loss": 1.2128, "learning_rate": 5.982905982905983e-06, "epoch": 0.05983370891289144, "percentage": 5.98, "elapsed_time": "0:35:59", "remaining_time": "9:25:37"} -{"current_steps": 780, "total_steps": 12869, "loss": 1.1299, "learning_rate": 6.060606060606061e-06, "epoch": 0.06061077006760432, "percentage": 6.06, "elapsed_time": "0:36:25", "remaining_time": "9:24:25"} -{"current_steps": 790, "total_steps": 12869, "loss": 1.2801, "learning_rate": 6.138306138306139e-06, "epoch": 0.061387831222317196, "percentage": 6.14, "elapsed_time": "0:36:47", "remaining_time": "9:22:29"} -{"current_steps": 800, "total_steps": 12869, "loss": 1.2234, "learning_rate": 6.216006216006216e-06, "epoch": 0.06216489237703007, "percentage": 6.22, "elapsed_time": "0:37:14", "remaining_time": "9:21:55"} -{"current_steps": 810, "total_steps": 12869, "loss": 1.2257, "learning_rate": 6.2937062937062944e-06, "epoch": 0.06294195353174295, "percentage": 6.29, "elapsed_time": "0:37:41", "remaining_time": "9:21:14"} -{"current_steps": 820, "total_steps": 12869, "loss": 1.2179, "learning_rate": 6.3714063714063726e-06, "epoch": 0.06371901468645583, "percentage": 6.37, "elapsed_time": "0:38:13", "remaining_time": "9:21:33"} -{"current_steps": 830, "total_steps": 12869, "loss": 1.1566, "learning_rate": 6.449106449106449e-06, "epoch": 0.0644960758411687, "percentage": 6.45, "elapsed_time": "0:38:43", "remaining_time": "9:21:45"} -{"current_steps": 840, "total_steps": 12869, "loss": 1.1352, "learning_rate": 6.526806526806527e-06, "epoch": 0.06527313699588158, "percentage": 6.53, "elapsed_time": "0:39:07", "remaining_time": "9:20:15"} -{"current_steps": 850, "total_steps": 12869, "loss": 1.2078, "learning_rate": 6.604506604506605e-06, "epoch": 0.06605019815059446, "percentage": 6.61, "elapsed_time": "0:39:32", "remaining_time": "9:19:06"} -{"current_steps": 860, "total_steps": 12869, "loss": 1.2326, "learning_rate": 6.6822066822066824e-06, "epoch": 0.06682725930530732, "percentage": 6.68, "elapsed_time": "0:39:57", "remaining_time": "9:18:04"} -{"current_steps": 870, "total_steps": 12869, "loss": 1.2631, "learning_rate": 6.7599067599067605e-06, "epoch": 0.0676043204600202, "percentage": 6.76, "elapsed_time": "0:40:29", "remaining_time": "9:18:33"} -{"current_steps": 880, "total_steps": 12869, "loss": 1.2025, "learning_rate": 6.837606837606839e-06, "epoch": 0.06838138161473307, "percentage": 6.84, "elapsed_time": "0:41:03", "remaining_time": "9:19:20"} -{"current_steps": 890, "total_steps": 12869, "loss": 1.2681, "learning_rate": 6.915306915306917e-06, "epoch": 0.06915844276944595, "percentage": 6.92, "elapsed_time": "0:41:29", "remaining_time": "9:18:27"} -{"current_steps": 900, "total_steps": 12869, "loss": 1.2147, "learning_rate": 6.993006993006993e-06, "epoch": 0.06993550392415883, "percentage": 6.99, "elapsed_time": "0:42:01", "remaining_time": "9:18:56"} -{"current_steps": 910, "total_steps": 12869, "loss": 1.2213, "learning_rate": 7.070707070707071e-06, "epoch": 0.0707125650788717, "percentage": 7.07, "elapsed_time": "0:42:31", "remaining_time": "9:18:51"} -{"current_steps": 920, "total_steps": 12869, "loss": 1.2721, "learning_rate": 7.148407148407149e-06, "epoch": 0.07148962623358458, "percentage": 7.15, "elapsed_time": "0:42:58", "remaining_time": "9:18:10"} -{"current_steps": 930, "total_steps": 12869, "loss": 1.275, "learning_rate": 7.226107226107227e-06, "epoch": 0.07226668738829746, "percentage": 7.23, "elapsed_time": "0:43:31", "remaining_time": "9:18:47"} -{"current_steps": 940, "total_steps": 12869, "loss": 1.2878, "learning_rate": 7.303807303807304e-06, "epoch": 0.07304374854301034, "percentage": 7.3, "elapsed_time": "0:43:56", "remaining_time": "9:17:44"} -{"current_steps": 950, "total_steps": 12869, "loss": 1.1682, "learning_rate": 7.381507381507382e-06, "epoch": 0.07382080969772321, "percentage": 7.38, "elapsed_time": "0:44:24", "remaining_time": "9:17:14"} -{"current_steps": 960, "total_steps": 12869, "loss": 1.1824, "learning_rate": 7.45920745920746e-06, "epoch": 0.07459787085243609, "percentage": 7.46, "elapsed_time": "0:44:55", "remaining_time": "9:17:16"} -{"current_steps": 970, "total_steps": 12869, "loss": 1.2424, "learning_rate": 7.536907536907537e-06, "epoch": 0.07537493200714897, "percentage": 7.54, "elapsed_time": "0:45:20", "remaining_time": "9:16:14"} -{"current_steps": 980, "total_steps": 12869, "loss": 1.2628, "learning_rate": 7.6146076146076155e-06, "epoch": 0.07615199316186184, "percentage": 7.62, "elapsed_time": "0:45:46", "remaining_time": "9:15:13"} -{"current_steps": 990, "total_steps": 12869, "loss": 1.2457, "learning_rate": 7.692307692307694e-06, "epoch": 0.07692905431657471, "percentage": 7.69, "elapsed_time": "0:46:09", "remaining_time": "9:13:56"} -{"current_steps": 1000, "total_steps": 12869, "loss": 1.2634, "learning_rate": 7.77000777000777e-06, "epoch": 0.07770611547128758, "percentage": 7.77, "elapsed_time": "0:46:31", "remaining_time": "9:12:17"} -{"current_steps": 1010, "total_steps": 12869, "loss": 1.1522, "learning_rate": 7.847707847707848e-06, "epoch": 0.07848317662600046, "percentage": 7.85, "elapsed_time": "0:46:59", "remaining_time": "9:11:46"} -{"current_steps": 1020, "total_steps": 12869, "loss": 1.2066, "learning_rate": 7.925407925407926e-06, "epoch": 0.07926023778071334, "percentage": 7.93, "elapsed_time": "0:47:18", "remaining_time": "9:09:38"} -{"current_steps": 1030, "total_steps": 12869, "loss": 1.2252, "learning_rate": 8.003108003108003e-06, "epoch": 0.08003729893542622, "percentage": 8.0, "elapsed_time": "0:47:48", "remaining_time": "9:09:36"} -{"current_steps": 1040, "total_steps": 12869, "loss": 1.167, "learning_rate": 8.08080808080808e-06, "epoch": 0.08081436009013909, "percentage": 8.08, "elapsed_time": "0:48:15", "remaining_time": "9:08:55"} -{"current_steps": 1050, "total_steps": 12869, "loss": 1.2245, "learning_rate": 8.158508158508159e-06, "epoch": 0.08159142124485197, "percentage": 8.16, "elapsed_time": "0:48:39", "remaining_time": "9:07:44"} -{"current_steps": 1060, "total_steps": 12869, "loss": 1.2385, "learning_rate": 8.236208236208237e-06, "epoch": 0.08236848239956485, "percentage": 8.24, "elapsed_time": "0:49:07", "remaining_time": "9:07:21"} -{"current_steps": 1070, "total_steps": 12869, "loss": 1.233, "learning_rate": 8.313908313908315e-06, "epoch": 0.08314554355427772, "percentage": 8.31, "elapsed_time": "0:49:40", "remaining_time": "9:07:49"} -{"current_steps": 1080, "total_steps": 12869, "loss": 1.1871, "learning_rate": 8.391608391608393e-06, "epoch": 0.0839226047089906, "percentage": 8.39, "elapsed_time": "0:50:09", "remaining_time": "9:07:26"} -{"current_steps": 1090, "total_steps": 12869, "loss": 1.2981, "learning_rate": 8.46930846930847e-06, "epoch": 0.08469966586370348, "percentage": 8.47, "elapsed_time": "0:50:38", "remaining_time": "9:07:10"} -{"current_steps": 1100, "total_steps": 12869, "loss": 1.2135, "learning_rate": 8.547008547008548e-06, "epoch": 0.08547672701841635, "percentage": 8.55, "elapsed_time": "0:51:03", "remaining_time": "9:06:17"} -{"current_steps": 1110, "total_steps": 12869, "loss": 1.222, "learning_rate": 8.624708624708626e-06, "epoch": 0.08625378817312923, "percentage": 8.63, "elapsed_time": "0:51:31", "remaining_time": "9:05:49"} -{"current_steps": 1120, "total_steps": 12869, "loss": 1.1166, "learning_rate": 8.702408702408704e-06, "epoch": 0.08703084932784211, "percentage": 8.7, "elapsed_time": "0:51:59", "remaining_time": "9:05:29"} -{"current_steps": 1130, "total_steps": 12869, "loss": 1.177, "learning_rate": 8.78010878010878e-06, "epoch": 0.08780791048255497, "percentage": 8.78, "elapsed_time": "0:52:32", "remaining_time": "9:05:51"} -{"current_steps": 1140, "total_steps": 12869, "loss": 1.2124, "learning_rate": 8.857808857808858e-06, "epoch": 0.08858497163726785, "percentage": 8.86, "elapsed_time": "0:53:06", "remaining_time": "9:06:21"} -{"current_steps": 1150, "total_steps": 12869, "loss": 1.2515, "learning_rate": 8.935508935508937e-06, "epoch": 0.08936203279198073, "percentage": 8.94, "elapsed_time": "0:53:33", "remaining_time": "9:05:41"} -{"current_steps": 1160, "total_steps": 12869, "loss": 1.2447, "learning_rate": 9.013209013209015e-06, "epoch": 0.0901390939466936, "percentage": 9.01, "elapsed_time": "0:54:01", "remaining_time": "9:05:22"} -{"current_steps": 1170, "total_steps": 12869, "loss": 1.2675, "learning_rate": 9.090909090909091e-06, "epoch": 0.09091615510140648, "percentage": 9.09, "elapsed_time": "0:54:31", "remaining_time": "9:05:09"} -{"current_steps": 1180, "total_steps": 12869, "loss": 1.2535, "learning_rate": 9.168609168609169e-06, "epoch": 0.09169321625611936, "percentage": 9.17, "elapsed_time": "0:54:58", "remaining_time": "9:04:33"} -{"current_steps": 1190, "total_steps": 12869, "loss": 1.1518, "learning_rate": 9.246309246309247e-06, "epoch": 0.09247027741083223, "percentage": 9.25, "elapsed_time": "0:55:21", "remaining_time": "9:03:20"} -{"current_steps": 1200, "total_steps": 12869, "loss": 1.0839, "learning_rate": 9.324009324009324e-06, "epoch": 0.09324733856554511, "percentage": 9.32, "elapsed_time": "0:55:50", "remaining_time": "9:02:56"} -{"current_steps": 1210, "total_steps": 12869, "loss": 1.1762, "learning_rate": 9.401709401709402e-06, "epoch": 0.09402439972025799, "percentage": 9.4, "elapsed_time": "0:56:22", "remaining_time": "9:03:17"} -{"current_steps": 1220, "total_steps": 12869, "loss": 1.2314, "learning_rate": 9.47940947940948e-06, "epoch": 0.09480146087497086, "percentage": 9.48, "elapsed_time": "0:56:51", "remaining_time": "9:02:58"} -{"current_steps": 1230, "total_steps": 12869, "loss": 1.2395, "learning_rate": 9.557109557109558e-06, "epoch": 0.09557852202968374, "percentage": 9.56, "elapsed_time": "0:57:19", "remaining_time": "9:02:29"} -{"current_steps": 1240, "total_steps": 12869, "loss": 1.2266, "learning_rate": 9.634809634809636e-06, "epoch": 0.09635558318439662, "percentage": 9.64, "elapsed_time": "0:57:48", "remaining_time": "9:02:07"} -{"current_steps": 1250, "total_steps": 12869, "loss": 1.2389, "learning_rate": 9.712509712509714e-06, "epoch": 0.0971326443391095, "percentage": 9.71, "elapsed_time": "0:58:12", "remaining_time": "9:00:59"} -{"current_steps": 1260, "total_steps": 12869, "loss": 1.2261, "learning_rate": 9.79020979020979e-06, "epoch": 0.09790970549382236, "percentage": 9.79, "elapsed_time": "0:58:37", "remaining_time": "9:00:11"} -{"current_steps": 1270, "total_steps": 12869, "loss": 1.1869, "learning_rate": 9.867909867909869e-06, "epoch": 0.09868676664853523, "percentage": 9.87, "elapsed_time": "0:59:05", "remaining_time": "8:59:43"} -{"current_steps": 1280, "total_steps": 12869, "loss": 1.2232, "learning_rate": 9.945609945609947e-06, "epoch": 0.09946382780324811, "percentage": 9.95, "elapsed_time": "0:59:33", "remaining_time": "8:59:13"} -{"current_steps": 1290, "total_steps": 12869, "loss": 1.1177, "learning_rate": 9.999998344553621e-06, "epoch": 0.10024088895796099, "percentage": 10.02, "elapsed_time": "1:00:00", "remaining_time": "8:58:41"} -{"current_steps": 1300, "total_steps": 12869, "loss": 1.2616, "learning_rate": 9.99996891442626e-06, "epoch": 0.10101795011267387, "percentage": 10.1, "elapsed_time": "1:00:27", "remaining_time": "8:58:04"} -{"current_steps": 1310, "total_steps": 12869, "loss": 1.2442, "learning_rate": 9.999902696850819e-06, "epoch": 0.10179501126738674, "percentage": 10.18, "elapsed_time": "1:00:59", "remaining_time": "8:58:09"} -{"current_steps": 1320, "total_steps": 12869, "loss": 1.181, "learning_rate": 9.999799692314491e-06, "epoch": 0.10257207242209962, "percentage": 10.26, "elapsed_time": "1:01:23", "remaining_time": "8:57:05"} -{"current_steps": 1330, "total_steps": 12869, "loss": 1.1579, "learning_rate": 9.999659901575142e-06, "epoch": 0.1033491335768125, "percentage": 10.33, "elapsed_time": "1:01:54", "remaining_time": "8:57:09"} -{"current_steps": 1340, "total_steps": 12869, "loss": 1.1861, "learning_rate": 9.999483325661283e-06, "epoch": 0.10412619473152537, "percentage": 10.41, "elapsed_time": "1:02:18", "remaining_time": "8:56:05"} -{"current_steps": 1350, "total_steps": 12869, "loss": 1.2509, "learning_rate": 9.999269965872081e-06, "epoch": 0.10490325588623825, "percentage": 10.49, "elapsed_time": "1:02:45", "remaining_time": "8:55:29"} -{"current_steps": 1360, "total_steps": 12869, "loss": 1.1991, "learning_rate": 9.999019823777335e-06, "epoch": 0.10568031704095113, "percentage": 10.57, "elapsed_time": "1:03:12", "remaining_time": "8:54:52"} -{"current_steps": 1370, "total_steps": 12869, "loss": 1.1926, "learning_rate": 9.998732901217474e-06, "epoch": 0.106457378195664, "percentage": 10.65, "elapsed_time": "1:03:39", "remaining_time": "8:54:19"} -{"current_steps": 1380, "total_steps": 12869, "loss": 1.2197, "learning_rate": 9.998409200303543e-06, "epoch": 0.10723443935037688, "percentage": 10.72, "elapsed_time": "1:04:09", "remaining_time": "8:54:04"} -{"current_steps": 1390, "total_steps": 12869, "loss": 1.2051, "learning_rate": 9.998048723417184e-06, "epoch": 0.10801150050508974, "percentage": 10.8, "elapsed_time": "1:04:34", "remaining_time": "8:53:17"} -{"current_steps": 1400, "total_steps": 12869, "loss": 1.2175, "learning_rate": 9.997651473210614e-06, "epoch": 0.10878856165980262, "percentage": 10.88, "elapsed_time": "1:05:06", "remaining_time": "8:53:25"} -{"current_steps": 1410, "total_steps": 12869, "loss": 1.1088, "learning_rate": 9.99721745260662e-06, "epoch": 0.1095656228145155, "percentage": 10.96, "elapsed_time": "1:05:38", "remaining_time": "8:53:26"} -{"current_steps": 1420, "total_steps": 12869, "loss": 1.1535, "learning_rate": 9.996746664798523e-06, "epoch": 0.11034268396922838, "percentage": 11.03, "elapsed_time": "1:06:10", "remaining_time": "8:53:32"} -{"current_steps": 1430, "total_steps": 12869, "loss": 1.265, "learning_rate": 9.996239113250158e-06, "epoch": 0.11111974512394125, "percentage": 11.11, "elapsed_time": "1:06:42", "remaining_time": "8:53:33"} -{"current_steps": 1440, "total_steps": 12869, "loss": 1.2412, "learning_rate": 9.995694801695856e-06, "epoch": 0.11189680627865413, "percentage": 11.19, "elapsed_time": "1:07:10", "remaining_time": "8:53:10"} -{"current_steps": 1450, "total_steps": 12869, "loss": 1.1448, "learning_rate": 9.995113734140409e-06, "epoch": 0.112673867433367, "percentage": 11.27, "elapsed_time": "1:07:37", "remaining_time": "8:52:35"} -{"current_steps": 1460, "total_steps": 12869, "loss": 1.2554, "learning_rate": 9.99449591485904e-06, "epoch": 0.11345092858807988, "percentage": 11.35, "elapsed_time": "1:08:07", "remaining_time": "8:52:20"} -{"current_steps": 1470, "total_steps": 12869, "loss": 1.2047, "learning_rate": 9.993841348397377e-06, "epoch": 0.11422798974279276, "percentage": 11.42, "elapsed_time": "1:08:33", "remaining_time": "8:51:37"} -{"current_steps": 1480, "total_steps": 12869, "loss": 1.2118, "learning_rate": 9.993150039571417e-06, "epoch": 0.11500505089750564, "percentage": 11.5, "elapsed_time": "1:09:02", "remaining_time": "8:51:21"} -{"current_steps": 1490, "total_steps": 12869, "loss": 1.2064, "learning_rate": 9.992421993467488e-06, "epoch": 0.11578211205221851, "percentage": 11.58, "elapsed_time": "1:09:29", "remaining_time": "8:50:40"} -{"current_steps": 1500, "total_steps": 12869, "loss": 1.2241, "learning_rate": 9.991657215442215e-06, "epoch": 0.11655917320693139, "percentage": 11.66, "elapsed_time": "1:09:56", "remaining_time": "8:50:09"} -{"current_steps": 1510, "total_steps": 12869, "loss": 1.21, "learning_rate": 9.99085571112248e-06, "epoch": 0.11733623436164427, "percentage": 11.73, "elapsed_time": "1:10:23", "remaining_time": "8:49:32"} -{"current_steps": 1520, "total_steps": 12869, "loss": 1.1654, "learning_rate": 9.990017486405379e-06, "epoch": 0.11811329551635713, "percentage": 11.81, "elapsed_time": "1:10:49", "remaining_time": "8:48:46"} -{"current_steps": 1530, "total_steps": 12869, "loss": 1.1564, "learning_rate": 9.989142547458182e-06, "epoch": 0.11889035667107001, "percentage": 11.89, "elapsed_time": "1:11:21", "remaining_time": "8:48:48"} -{"current_steps": 1540, "total_steps": 12869, "loss": 1.1926, "learning_rate": 9.988230900718279e-06, "epoch": 0.11966741782578288, "percentage": 11.97, "elapsed_time": "1:11:52", "remaining_time": "8:48:46"} -{"current_steps": 1550, "total_steps": 12869, "loss": 1.1851, "learning_rate": 9.987282552893146e-06, "epoch": 0.12044447898049576, "percentage": 12.04, "elapsed_time": "1:12:19", "remaining_time": "8:48:10"} -{"current_steps": 1560, "total_steps": 12869, "loss": 1.155, "learning_rate": 9.986297510960284e-06, "epoch": 0.12122154013520864, "percentage": 12.12, "elapsed_time": "1:12:48", "remaining_time": "8:47:47"} -{"current_steps": 1570, "total_steps": 12869, "loss": 1.1054, "learning_rate": 9.985275782167175e-06, "epoch": 0.12199860128992152, "percentage": 12.2, "elapsed_time": "1:13:13", "remaining_time": "8:46:57"} -{"current_steps": 1580, "total_steps": 12869, "loss": 1.1658, "learning_rate": 9.984217374031225e-06, "epoch": 0.12277566244463439, "percentage": 12.28, "elapsed_time": "1:13:41", "remaining_time": "8:46:33"} -{"current_steps": 1590, "total_steps": 12869, "loss": 1.1772, "learning_rate": 9.983122294339708e-06, "epoch": 0.12355272359934727, "percentage": 12.36, "elapsed_time": "1:14:10", "remaining_time": "8:46:11"} -{"current_steps": 1600, "total_steps": 12869, "loss": 1.1848, "learning_rate": 9.981990551149714e-06, "epoch": 0.12432978475406015, "percentage": 12.43, "elapsed_time": "1:14:42", "remaining_time": "8:46:09"} -{"current_steps": 1610, "total_steps": 12869, "loss": 1.1992, "learning_rate": 9.980822152788082e-06, "epoch": 0.12510684590877302, "percentage": 12.51, "elapsed_time": "1:15:10", "remaining_time": "8:45:42"} -{"current_steps": 1620, "total_steps": 12869, "loss": 1.2317, "learning_rate": 9.979617107851343e-06, "epoch": 0.1258839070634859, "percentage": 12.59, "elapsed_time": "1:15:40", "remaining_time": "8:45:25"} -{"current_steps": 1630, "total_steps": 12869, "loss": 1.1992, "learning_rate": 9.97837542520566e-06, "epoch": 0.12666096821819878, "percentage": 12.67, "elapsed_time": "1:16:04", "remaining_time": "8:44:29"} -{"current_steps": 1640, "total_steps": 12869, "loss": 1.2255, "learning_rate": 9.977097113986755e-06, "epoch": 0.12743802937291165, "percentage": 12.74, "elapsed_time": "1:16:32", "remaining_time": "8:44:02"} -{"current_steps": 1650, "total_steps": 12869, "loss": 1.1801, "learning_rate": 9.97578218359985e-06, "epoch": 0.12821509052762453, "percentage": 12.82, "elapsed_time": "1:17:01", "remaining_time": "8:43:46"} -{"current_steps": 1660, "total_steps": 12869, "loss": 1.172, "learning_rate": 9.974430643719591e-06, "epoch": 0.1289921516823374, "percentage": 12.9, "elapsed_time": "1:17:26", "remaining_time": "8:42:55"} -{"current_steps": 1670, "total_steps": 12869, "loss": 1.0926, "learning_rate": 9.973042504289978e-06, "epoch": 0.12976921283705029, "percentage": 12.98, "elapsed_time": "1:17:58", "remaining_time": "8:42:56"} -{"current_steps": 1680, "total_steps": 12869, "loss": 1.1636, "learning_rate": 9.971617775524301e-06, "epoch": 0.13054627399176316, "percentage": 13.05, "elapsed_time": "1:18:30", "remaining_time": "8:42:51"} -{"current_steps": 1690, "total_steps": 12869, "loss": 1.1915, "learning_rate": 9.970156467905048e-06, "epoch": 0.13132333514647604, "percentage": 13.13, "elapsed_time": "1:19:00", "remaining_time": "8:42:38"} -{"current_steps": 1700, "total_steps": 12869, "loss": 1.2817, "learning_rate": 9.968658592183842e-06, "epoch": 0.13210039630118892, "percentage": 13.21, "elapsed_time": "1:19:27", "remaining_time": "8:42:00"} -{"current_steps": 1710, "total_steps": 12869, "loss": 1.2015, "learning_rate": 9.967124159381359e-06, "epoch": 0.1328774574559018, "percentage": 13.29, "elapsed_time": "1:20:00", "remaining_time": "8:42:06"} -{"current_steps": 1720, "total_steps": 12869, "loss": 1.1087, "learning_rate": 9.965553180787239e-06, "epoch": 0.13365451861061464, "percentage": 13.37, "elapsed_time": "1:20:34", "remaining_time": "8:42:17"} -{"current_steps": 1730, "total_steps": 12869, "loss": 1.0321, "learning_rate": 9.963945667960017e-06, "epoch": 0.13443157976532752, "percentage": 13.44, "elapsed_time": "1:21:04", "remaining_time": "8:42:00"} -{"current_steps": 1740, "total_steps": 12869, "loss": 1.1819, "learning_rate": 9.962301632727022e-06, "epoch": 0.1352086409200404, "percentage": 13.52, "elapsed_time": "1:21:33", "remaining_time": "8:41:36"} -{"current_steps": 1750, "total_steps": 12869, "loss": 1.1828, "learning_rate": 9.960621087184303e-06, "epoch": 0.13598570207475327, "percentage": 13.6, "elapsed_time": "1:21:58", "remaining_time": "8:40:52"} -{"current_steps": 1760, "total_steps": 12869, "loss": 1.2074, "learning_rate": 9.95890404369653e-06, "epoch": 0.13676276322946615, "percentage": 13.68, "elapsed_time": "1:22:25", "remaining_time": "8:40:12"} -{"current_steps": 1770, "total_steps": 12869, "loss": 1.2734, "learning_rate": 9.957150514896919e-06, "epoch": 0.13753982438417903, "percentage": 13.75, "elapsed_time": "1:22:50", "remaining_time": "8:39:30"} -{"current_steps": 1780, "total_steps": 12869, "loss": 1.1476, "learning_rate": 9.95536051368711e-06, "epoch": 0.1383168855388919, "percentage": 13.83, "elapsed_time": "1:23:14", "remaining_time": "8:38:37"} -{"current_steps": 1790, "total_steps": 12869, "loss": 1.163, "learning_rate": 9.953534053237108e-06, "epoch": 0.13909394669360478, "percentage": 13.91, "elapsed_time": "1:23:40", "remaining_time": "8:37:55"} -{"current_steps": 1800, "total_steps": 12869, "loss": 1.0693, "learning_rate": 9.951671146985159e-06, "epoch": 0.13987100784831766, "percentage": 13.99, "elapsed_time": "1:24:05", "remaining_time": "8:37:04"} -{"current_steps": 1810, "total_steps": 12869, "loss": 1.203, "learning_rate": 9.949771808637657e-06, "epoch": 0.14064806900303053, "percentage": 14.06, "elapsed_time": "1:24:34", "remaining_time": "8:36:42"} -{"current_steps": 1820, "total_steps": 12869, "loss": 1.1063, "learning_rate": 9.947836052169056e-06, "epoch": 0.1414251301577434, "percentage": 14.14, "elapsed_time": "1:25:04", "remaining_time": "8:36:28"} -{"current_steps": 1830, "total_steps": 12869, "loss": 1.1211, "learning_rate": 9.945863891821749e-06, "epoch": 0.1422021913124563, "percentage": 14.22, "elapsed_time": "1:25:28", "remaining_time": "8:35:33"} -{"current_steps": 1840, "total_steps": 12869, "loss": 1.14, "learning_rate": 9.943855342105979e-06, "epoch": 0.14297925246716917, "percentage": 14.3, "elapsed_time": "1:25:54", "remaining_time": "8:34:56"} -{"current_steps": 1850, "total_steps": 12869, "loss": 1.1293, "learning_rate": 9.941810417799719e-06, "epoch": 0.14375631362188204, "percentage": 14.38, "elapsed_time": "1:26:23", "remaining_time": "8:34:35"} -{"current_steps": 1860, "total_steps": 12869, "loss": 1.1225, "learning_rate": 9.939729133948572e-06, "epoch": 0.14453337477659492, "percentage": 14.45, "elapsed_time": "1:26:50", "remaining_time": "8:34:00"} -{"current_steps": 1870, "total_steps": 12869, "loss": 1.2909, "learning_rate": 9.93761150586566e-06, "epoch": 0.1453104359313078, "percentage": 14.53, "elapsed_time": "1:27:22", "remaining_time": "8:33:58"} -{"current_steps": 1880, "total_steps": 12869, "loss": 1.167, "learning_rate": 9.935457549131504e-06, "epoch": 0.14608749708602067, "percentage": 14.61, "elapsed_time": "1:27:50", "remaining_time": "8:33:25"} -{"current_steps": 1890, "total_steps": 12869, "loss": 1.1257, "learning_rate": 9.933267279593919e-06, "epoch": 0.14686455824073355, "percentage": 14.69, "elapsed_time": "1:28:17", "remaining_time": "8:32:54"} -{"current_steps": 1900, "total_steps": 12869, "loss": 1.1649, "learning_rate": 9.931040713367888e-06, "epoch": 0.14764161939544643, "percentage": 14.76, "elapsed_time": "1:28:47", "remaining_time": "8:32:33"} -{"current_steps": 1910, "total_steps": 12869, "loss": 1.1752, "learning_rate": 9.928777866835454e-06, "epoch": 0.1484186805501593, "percentage": 14.84, "elapsed_time": "1:29:16", "remaining_time": "8:32:14"} -{"current_steps": 1920, "total_steps": 12869, "loss": 1.1291, "learning_rate": 9.926478756645586e-06, "epoch": 0.14919574170487218, "percentage": 14.92, "elapsed_time": "1:29:47", "remaining_time": "8:32:04"} -{"current_steps": 1930, "total_steps": 12869, "loss": 1.154, "learning_rate": 9.924143399714072e-06, "epoch": 0.14997280285958506, "percentage": 15.0, "elapsed_time": "1:30:10", "remaining_time": "8:31:06"} -{"current_steps": 1940, "total_steps": 12869, "loss": 1.0998, "learning_rate": 9.92177181322338e-06, "epoch": 0.15074986401429794, "percentage": 15.07, "elapsed_time": "1:30:38", "remaining_time": "8:30:38"} -{"current_steps": 1950, "total_steps": 12869, "loss": 1.136, "learning_rate": 9.919364014622545e-06, "epoch": 0.1515269251690108, "percentage": 15.15, "elapsed_time": "1:31:05", "remaining_time": "8:30:01"} -{"current_steps": 1960, "total_steps": 12869, "loss": 1.1747, "learning_rate": 9.91692002162703e-06, "epoch": 0.1523039863237237, "percentage": 15.23, "elapsed_time": "1:31:36", "remaining_time": "8:29:50"} -{"current_steps": 1970, "total_steps": 12869, "loss": 1.151, "learning_rate": 9.914439852218598e-06, "epoch": 0.15308104747843657, "percentage": 15.31, "elapsed_time": "1:32:03", "remaining_time": "8:29:20"} -{"current_steps": 1980, "total_steps": 12869, "loss": 1.1664, "learning_rate": 9.911923524645184e-06, "epoch": 0.15385810863314942, "percentage": 15.39, "elapsed_time": "1:32:32", "remaining_time": "8:28:56"} -{"current_steps": 1990, "total_steps": 12869, "loss": 1.214, "learning_rate": 9.909371057420756e-06, "epoch": 0.1546351697878623, "percentage": 15.46, "elapsed_time": "1:32:59", "remaining_time": "8:28:23"} -{"current_steps": 2000, "total_steps": 12869, "loss": 1.1871, "learning_rate": 9.906782469325183e-06, "epoch": 0.15541223094257517, "percentage": 15.54, "elapsed_time": "1:33:34", "remaining_time": "8:28:34"} -{"current_steps": 2010, "total_steps": 12869, "loss": 1.1068, "learning_rate": 9.904157779404095e-06, "epoch": 0.15618929209728805, "percentage": 15.62, "elapsed_time": "1:34:01", "remaining_time": "8:27:55"} -{"current_steps": 2020, "total_steps": 12869, "loss": 1.1248, "learning_rate": 9.901497006968737e-06, "epoch": 0.15696635325200092, "percentage": 15.7, "elapsed_time": "1:34:30", "remaining_time": "8:27:35"} -{"current_steps": 2030, "total_steps": 12869, "loss": 1.1389, "learning_rate": 9.89880017159584e-06, "epoch": 0.1577434144067138, "percentage": 15.77, "elapsed_time": "1:34:52", "remaining_time": "8:26:34"} -{"current_steps": 2040, "total_steps": 12869, "loss": 1.165, "learning_rate": 9.896067293127462e-06, "epoch": 0.15852047556142668, "percentage": 15.85, "elapsed_time": "1:35:17", "remaining_time": "8:25:47"} -{"current_steps": 2050, "total_steps": 12869, "loss": 1.1351, "learning_rate": 9.893298391670857e-06, "epoch": 0.15929753671613955, "percentage": 15.93, "elapsed_time": "1:35:38", "remaining_time": "8:24:45"} -{"current_steps": 2060, "total_steps": 12869, "loss": 1.1728, "learning_rate": 9.890493487598315e-06, "epoch": 0.16007459787085243, "percentage": 16.01, "elapsed_time": "1:36:05", "remaining_time": "8:24:10"} -{"current_steps": 2070, "total_steps": 12869, "loss": 1.1371, "learning_rate": 9.887652601547011e-06, "epoch": 0.1608516590255653, "percentage": 16.09, "elapsed_time": "1:36:29", "remaining_time": "8:23:21"} -{"current_steps": 2080, "total_steps": 12869, "loss": 1.1805, "learning_rate": 9.884775754418872e-06, "epoch": 0.16162872018027818, "percentage": 16.16, "elapsed_time": "1:36:56", "remaining_time": "8:22:49"} -{"current_steps": 2090, "total_steps": 12869, "loss": 1.13, "learning_rate": 9.881862967380398e-06, "epoch": 0.16240578133499106, "percentage": 16.24, "elapsed_time": "1:37:22", "remaining_time": "8:22:11"} -{"current_steps": 2100, "total_steps": 12869, "loss": 1.1649, "learning_rate": 9.878914261862524e-06, "epoch": 0.16318284248970394, "percentage": 16.32, "elapsed_time": "1:37:52", "remaining_time": "8:21:53"} -{"current_steps": 2110, "total_steps": 12869, "loss": 1.1446, "learning_rate": 9.875929659560455e-06, "epoch": 0.16395990364441682, "percentage": 16.4, "elapsed_time": "1:38:20", "remaining_time": "8:21:25"} -{"current_steps": 2120, "total_steps": 12869, "loss": 1.1974, "learning_rate": 9.872909182433509e-06, "epoch": 0.1647369647991297, "percentage": 16.47, "elapsed_time": "1:38:47", "remaining_time": "8:20:55"} -{"current_steps": 2130, "total_steps": 12869, "loss": 1.1557, "learning_rate": 9.869852852704951e-06, "epoch": 0.16551402595384257, "percentage": 16.55, "elapsed_time": "1:39:13", "remaining_time": "8:20:13"} -{"current_steps": 2140, "total_steps": 12869, "loss": 1.1433, "learning_rate": 9.866760692861837e-06, "epoch": 0.16629108710855545, "percentage": 16.63, "elapsed_time": "1:39:37", "remaining_time": "8:19:27"} -{"current_steps": 2150, "total_steps": 12869, "loss": 1.1947, "learning_rate": 9.863632725654841e-06, "epoch": 0.16706814826326832, "percentage": 16.71, "elapsed_time": "1:40:05", "remaining_time": "8:19:00"} -{"current_steps": 2160, "total_steps": 12869, "loss": 1.0755, "learning_rate": 9.860468974098093e-06, "epoch": 0.1678452094179812, "percentage": 16.78, "elapsed_time": "1:40:39", "remaining_time": "8:19:05"} -{"current_steps": 2170, "total_steps": 12869, "loss": 1.1899, "learning_rate": 9.85726946146901e-06, "epoch": 0.16862227057269408, "percentage": 16.86, "elapsed_time": "1:41:06", "remaining_time": "8:18:28"} -{"current_steps": 2180, "total_steps": 12869, "loss": 1.1078, "learning_rate": 9.854034211308114e-06, "epoch": 0.16939933172740695, "percentage": 16.94, "elapsed_time": "1:41:32", "remaining_time": "8:17:54"} -{"current_steps": 2190, "total_steps": 12869, "loss": 1.1, "learning_rate": 9.850763247418876e-06, "epoch": 0.17017639288211983, "percentage": 17.02, "elapsed_time": "1:42:02", "remaining_time": "8:17:34"} -{"current_steps": 2200, "total_steps": 12869, "loss": 1.0807, "learning_rate": 9.847456593867525e-06, "epoch": 0.1709534540368327, "percentage": 17.1, "elapsed_time": "1:42:30", "remaining_time": "8:17:06"} -{"current_steps": 2210, "total_steps": 12869, "loss": 1.1071, "learning_rate": 9.844114274982885e-06, "epoch": 0.17173051519154559, "percentage": 17.17, "elapsed_time": "1:43:01", "remaining_time": "8:16:52"} -{"current_steps": 2220, "total_steps": 12869, "loss": 1.1963, "learning_rate": 9.840736315356183e-06, "epoch": 0.17250757634625846, "percentage": 17.25, "elapsed_time": "1:43:23", "remaining_time": "8:15:59"} -{"current_steps": 2230, "total_steps": 12869, "loss": 1.0605, "learning_rate": 9.837322739840877e-06, "epoch": 0.17328463750097134, "percentage": 17.33, "elapsed_time": "1:43:55", "remaining_time": "8:15:46"} -{"current_steps": 2240, "total_steps": 12869, "loss": 1.1059, "learning_rate": 9.833873573552472e-06, "epoch": 0.17406169865568422, "percentage": 17.41, "elapsed_time": "1:44:24", "remaining_time": "8:15:24"} -{"current_steps": 2250, "total_steps": 12869, "loss": 1.1548, "learning_rate": 9.830388841868329e-06, "epoch": 0.17483875981039707, "percentage": 17.48, "elapsed_time": "1:44:56", "remaining_time": "8:15:15"} -{"current_steps": 2260, "total_steps": 12869, "loss": 1.182, "learning_rate": 9.826868570427484e-06, "epoch": 0.17561582096510994, "percentage": 17.56, "elapsed_time": "1:45:21", "remaining_time": "8:14:32"} -{"current_steps": 2270, "total_steps": 12869, "loss": 1.149, "learning_rate": 9.823312785130457e-06, "epoch": 0.17639288211982282, "percentage": 17.64, "elapsed_time": "1:45:57", "remaining_time": "8:14:44"} -{"current_steps": 2280, "total_steps": 12869, "loss": 1.0943, "learning_rate": 9.819721512139069e-06, "epoch": 0.1771699432745357, "percentage": 17.72, "elapsed_time": "1:46:29", "remaining_time": "8:14:36"} -{"current_steps": 2290, "total_steps": 12869, "loss": 1.1411, "learning_rate": 9.816094777876233e-06, "epoch": 0.17794700442924857, "percentage": 17.79, "elapsed_time": "1:47:02", "remaining_time": "8:14:29"} -{"current_steps": 2300, "total_steps": 12869, "loss": 1.1958, "learning_rate": 9.812432609025778e-06, "epoch": 0.17872406558396145, "percentage": 17.87, "elapsed_time": "1:47:31", "remaining_time": "8:14:06"} -{"current_steps": 2310, "total_steps": 12869, "loss": 1.1184, "learning_rate": 9.808735032532239e-06, "epoch": 0.17950112673867433, "percentage": 17.95, "elapsed_time": "1:48:00", "remaining_time": "8:13:40"} -{"current_steps": 2320, "total_steps": 12869, "loss": 1.0986, "learning_rate": 9.805002075600668e-06, "epoch": 0.1802781878933872, "percentage": 18.03, "elapsed_time": "1:48:26", "remaining_time": "8:13:05"} -{"current_steps": 2330, "total_steps": 12869, "loss": 1.0953, "learning_rate": 9.801233765696423e-06, "epoch": 0.18105524904810008, "percentage": 18.11, "elapsed_time": "1:48:53", "remaining_time": "8:12:33"} -{"current_steps": 2340, "total_steps": 12869, "loss": 1.1296, "learning_rate": 9.797430130544983e-06, "epoch": 0.18183231020281296, "percentage": 18.18, "elapsed_time": "1:49:30", "remaining_time": "8:12:42"} -{"current_steps": 2350, "total_steps": 12869, "loss": 1.054, "learning_rate": 9.793591198131724e-06, "epoch": 0.18260937135752583, "percentage": 18.26, "elapsed_time": "1:50:00", "remaining_time": "8:12:24"} -{"current_steps": 2360, "total_steps": 12869, "loss": 1.1595, "learning_rate": 9.789716996701729e-06, "epoch": 0.1833864325122387, "percentage": 18.34, "elapsed_time": "1:50:26", "remaining_time": "8:11:46"} -{"current_steps": 2370, "total_steps": 12869, "loss": 1.0957, "learning_rate": 9.78580755475957e-06, "epoch": 0.1841634936669516, "percentage": 18.42, "elapsed_time": "1:50:54", "remaining_time": "8:11:19"} -{"current_steps": 2380, "total_steps": 12869, "loss": 1.0643, "learning_rate": 9.781862901069105e-06, "epoch": 0.18494055482166447, "percentage": 18.49, "elapsed_time": "1:51:25", "remaining_time": "8:11:04"} -{"current_steps": 2390, "total_steps": 12869, "loss": 1.0935, "learning_rate": 9.777883064653266e-06, "epoch": 0.18571761597637734, "percentage": 18.57, "elapsed_time": "1:51:51", "remaining_time": "8:10:27"} -{"current_steps": 2400, "total_steps": 12869, "loss": 1.1305, "learning_rate": 9.773868074793838e-06, "epoch": 0.18649467713109022, "percentage": 18.65, "elapsed_time": "1:52:16", "remaining_time": "8:09:46"} -{"current_steps": 2410, "total_steps": 12869, "loss": 1.1337, "learning_rate": 9.76981796103125e-06, "epoch": 0.1872717382858031, "percentage": 18.73, "elapsed_time": "1:52:42", "remaining_time": "8:09:06"} -{"current_steps": 2420, "total_steps": 12869, "loss": 1.0913, "learning_rate": 9.76573275316436e-06, "epoch": 0.18804879944051597, "percentage": 18.8, "elapsed_time": "1:53:10", "remaining_time": "8:08:39"} -{"current_steps": 2430, "total_steps": 12869, "loss": 1.0833, "learning_rate": 9.761612481250225e-06, "epoch": 0.18882586059522885, "percentage": 18.88, "elapsed_time": "1:53:36", "remaining_time": "8:08:03"} -{"current_steps": 2440, "total_steps": 12869, "loss": 1.1541, "learning_rate": 9.757457175603893e-06, "epoch": 0.18960292174994173, "percentage": 18.96, "elapsed_time": "1:54:02", "remaining_time": "8:07:27"} -{"current_steps": 2450, "total_steps": 12869, "loss": 1.1175, "learning_rate": 9.753266866798174e-06, "epoch": 0.1903799829046546, "percentage": 19.04, "elapsed_time": "1:54:27", "remaining_time": "8:06:43"} -{"current_steps": 2460, "total_steps": 12869, "loss": 1.179, "learning_rate": 9.749041585663411e-06, "epoch": 0.19115704405936748, "percentage": 19.12, "elapsed_time": "1:54:55", "remaining_time": "8:06:15"} -{"current_steps": 2470, "total_steps": 12869, "loss": 1.1866, "learning_rate": 9.74478136328726e-06, "epoch": 0.19193410521408036, "percentage": 19.19, "elapsed_time": "1:55:17", "remaining_time": "8:05:22"} -{"current_steps": 2480, "total_steps": 12869, "loss": 1.1236, "learning_rate": 9.740486231014461e-06, "epoch": 0.19271116636879324, "percentage": 19.27, "elapsed_time": "1:55:46", "remaining_time": "8:04:59"} -{"current_steps": 2490, "total_steps": 12869, "loss": 1.1187, "learning_rate": 9.736156220446597e-06, "epoch": 0.1934882275235061, "percentage": 19.35, "elapsed_time": "1:56:15", "remaining_time": "8:04:34"} -{"current_steps": 2500, "total_steps": 12869, "loss": 1.0617, "learning_rate": 9.731791363441876e-06, "epoch": 0.194265288678219, "percentage": 19.43, "elapsed_time": "1:56:46", "remaining_time": "8:04:21"} -{"current_steps": 2510, "total_steps": 12869, "loss": 1.125, "learning_rate": 9.727391692114887e-06, "epoch": 0.19504234983293184, "percentage": 19.5, "elapsed_time": "1:57:17", "remaining_time": "8:04:04"} -{"current_steps": 2520, "total_steps": 12869, "loss": 1.1164, "learning_rate": 9.722957238836366e-06, "epoch": 0.19581941098764472, "percentage": 19.58, "elapsed_time": "1:57:44", "remaining_time": "8:03:32"} -{"current_steps": 2530, "total_steps": 12869, "loss": 1.1462, "learning_rate": 9.718488036232963e-06, "epoch": 0.1965964721423576, "percentage": 19.66, "elapsed_time": "1:58:14", "remaining_time": "8:03:11"} -{"current_steps": 2540, "total_steps": 12869, "loss": 1.0805, "learning_rate": 9.713984117186993e-06, "epoch": 0.19737353329707047, "percentage": 19.74, "elapsed_time": "1:58:42", "remaining_time": "8:02:45"} -{"current_steps": 2550, "total_steps": 12869, "loss": 1.1254, "learning_rate": 9.7094455148362e-06, "epoch": 0.19815059445178335, "percentage": 19.82, "elapsed_time": "1:59:12", "remaining_time": "8:02:23"} -{"current_steps": 2560, "total_steps": 12869, "loss": 1.1071, "learning_rate": 9.704872262573508e-06, "epoch": 0.19892765560649622, "percentage": 19.89, "elapsed_time": "1:59:39", "remaining_time": "8:01:52"} -{"current_steps": 2570, "total_steps": 12869, "loss": 1.0152, "learning_rate": 9.700264394046787e-06, "epoch": 0.1997047167612091, "percentage": 19.97, "elapsed_time": "2:00:11", "remaining_time": "8:01:40"} -{"current_steps": 2580, "total_steps": 12869, "loss": 1.0999, "learning_rate": 9.69562194315859e-06, "epoch": 0.20048177791592198, "percentage": 20.05, "elapsed_time": "2:00:40", "remaining_time": "8:01:13"} -{"current_steps": 2590, "total_steps": 12869, "loss": 1.1747, "learning_rate": 9.690944944065914e-06, "epoch": 0.20125883907063485, "percentage": 20.13, "elapsed_time": "2:01:07", "remaining_time": "8:00:41"} -{"current_steps": 2600, "total_steps": 12869, "loss": 1.1082, "learning_rate": 9.686233431179944e-06, "epoch": 0.20203590022534773, "percentage": 20.2, "elapsed_time": "2:01:31", "remaining_time": "7:59:59"} -{"current_steps": 2610, "total_steps": 12869, "loss": 1.1845, "learning_rate": 9.681487439165804e-06, "epoch": 0.2028129613800606, "percentage": 20.28, "elapsed_time": "2:01:59", "remaining_time": "7:59:31"} -{"current_steps": 2620, "total_steps": 12869, "loss": 1.2019, "learning_rate": 9.676707002942299e-06, "epoch": 0.20359002253477348, "percentage": 20.36, "elapsed_time": "2:02:20", "remaining_time": "7:58:34"} -{"current_steps": 2630, "total_steps": 12869, "loss": 1.0596, "learning_rate": 9.671892157681656e-06, "epoch": 0.20436708368948636, "percentage": 20.44, "elapsed_time": "2:02:47", "remaining_time": "7:58:04"} -{"current_steps": 2640, "total_steps": 12869, "loss": 1.1944, "learning_rate": 9.66704293880927e-06, "epoch": 0.20514414484419924, "percentage": 20.51, "elapsed_time": "2:03:13", "remaining_time": "7:57:28"} -{"current_steps": 2650, "total_steps": 12869, "loss": 1.0622, "learning_rate": 9.662159382003438e-06, "epoch": 0.20592120599891212, "percentage": 20.59, "elapsed_time": "2:03:47", "remaining_time": "7:57:21"} -{"current_steps": 2660, "total_steps": 12869, "loss": 1.07, "learning_rate": 9.657241523195106e-06, "epoch": 0.206698267153625, "percentage": 20.67, "elapsed_time": "2:04:11", "remaining_time": "7:56:40"} -{"current_steps": 2670, "total_steps": 12869, "loss": 1.0925, "learning_rate": 9.652289398567591e-06, "epoch": 0.20747532830833787, "percentage": 20.75, "elapsed_time": "2:04:38", "remaining_time": "7:56:05"} -{"current_steps": 2680, "total_steps": 12869, "loss": 1.1529, "learning_rate": 9.647303044556327e-06, "epoch": 0.20825238946305075, "percentage": 20.83, "elapsed_time": "2:05:03", "remaining_time": "7:55:27"} -{"current_steps": 2690, "total_steps": 12869, "loss": 1.0665, "learning_rate": 9.642282497848587e-06, "epoch": 0.20902945061776362, "percentage": 20.9, "elapsed_time": "2:05:30", "remaining_time": "7:54:55"} -{"current_steps": 2700, "total_steps": 12869, "loss": 1.1141, "learning_rate": 9.637227795383223e-06, "epoch": 0.2098065117724765, "percentage": 20.98, "elapsed_time": "2:06:01", "remaining_time": "7:54:37"} -{"current_steps": 2710, "total_steps": 12869, "loss": 1.0931, "learning_rate": 9.63213897435039e-06, "epoch": 0.21058357292718938, "percentage": 21.06, "elapsed_time": "2:06:27", "remaining_time": "7:54:03"} -{"current_steps": 2720, "total_steps": 12869, "loss": 1.1675, "learning_rate": 9.627016072191263e-06, "epoch": 0.21136063408190225, "percentage": 21.14, "elapsed_time": "2:06:50", "remaining_time": "7:53:17"} -{"current_steps": 2730, "total_steps": 12869, "loss": 1.0947, "learning_rate": 9.62185912659778e-06, "epoch": 0.21213769523661513, "percentage": 21.21, "elapsed_time": "2:07:18", "remaining_time": "7:52:50"} -{"current_steps": 2740, "total_steps": 12869, "loss": 1.1707, "learning_rate": 9.616668175512347e-06, "epoch": 0.212914756391328, "percentage": 21.29, "elapsed_time": "2:07:44", "remaining_time": "7:52:13"} -{"current_steps": 2750, "total_steps": 12869, "loss": 1.068, "learning_rate": 9.611443257127573e-06, "epoch": 0.21369181754604089, "percentage": 21.37, "elapsed_time": "2:08:06", "remaining_time": "7:51:24"} -{"current_steps": 2760, "total_steps": 12869, "loss": 1.1428, "learning_rate": 9.60618440988598e-06, "epoch": 0.21446887870075376, "percentage": 21.45, "elapsed_time": "2:08:36", "remaining_time": "7:51:01"} -{"current_steps": 2770, "total_steps": 12869, "loss": 1.1563, "learning_rate": 9.60089167247972e-06, "epoch": 0.2152459398554666, "percentage": 21.52, "elapsed_time": "2:08:59", "remaining_time": "7:50:18"} -{"current_steps": 2780, "total_steps": 12869, "loss": 1.0642, "learning_rate": 9.595565083850298e-06, "epoch": 0.2160230010101795, "percentage": 21.6, "elapsed_time": "2:09:26", "remaining_time": "7:49:46"} -{"current_steps": 2790, "total_steps": 12869, "loss": 1.1366, "learning_rate": 9.590204683188275e-06, "epoch": 0.21680006216489237, "percentage": 21.68, "elapsed_time": "2:09:50", "remaining_time": "7:49:04"} -{"current_steps": 2800, "total_steps": 12869, "loss": 1.1649, "learning_rate": 9.584810509932993e-06, "epoch": 0.21757712331960524, "percentage": 21.76, "elapsed_time": "2:10:19", "remaining_time": "7:48:38"} -{"current_steps": 2810, "total_steps": 12869, "loss": 1.1121, "learning_rate": 9.579382603772269e-06, "epoch": 0.21835418447431812, "percentage": 21.84, "elapsed_time": "2:10:42", "remaining_time": "7:47:53"} -{"current_steps": 2820, "total_steps": 12869, "loss": 1.1022, "learning_rate": 9.573921004642117e-06, "epoch": 0.219131245629031, "percentage": 21.91, "elapsed_time": "2:11:12", "remaining_time": "7:47:33"} -{"current_steps": 2830, "total_steps": 12869, "loss": 1.0129, "learning_rate": 9.568425752726442e-06, "epoch": 0.21990830678374387, "percentage": 21.99, "elapsed_time": "2:11:38", "remaining_time": "7:46:57"} -{"current_steps": 2840, "total_steps": 12869, "loss": 1.0893, "learning_rate": 9.562896888456758e-06, "epoch": 0.22068536793845675, "percentage": 22.07, "elapsed_time": "2:12:03", "remaining_time": "7:46:21"} -{"current_steps": 2850, "total_steps": 12869, "loss": 1.0424, "learning_rate": 9.557334452511879e-06, "epoch": 0.22146242909316963, "percentage": 22.15, "elapsed_time": "2:12:30", "remaining_time": "7:45:49"} -{"current_steps": 2860, "total_steps": 12869, "loss": 1.0459, "learning_rate": 9.551738485817622e-06, "epoch": 0.2222394902478825, "percentage": 22.22, "elapsed_time": "2:13:01", "remaining_time": "7:45:30"} -{"current_steps": 2870, "total_steps": 12869, "loss": 1.1147, "learning_rate": 9.546109029546511e-06, "epoch": 0.22301655140259538, "percentage": 22.3, "elapsed_time": "2:13:27", "remaining_time": "7:44:56"} -{"current_steps": 2880, "total_steps": 12869, "loss": 1.0552, "learning_rate": 9.540446125117468e-06, "epoch": 0.22379361255730826, "percentage": 22.38, "elapsed_time": "2:13:52", "remaining_time": "7:44:21"} -{"current_steps": 2890, "total_steps": 12869, "loss": 1.0951, "learning_rate": 9.534749814195516e-06, "epoch": 0.22457067371202113, "percentage": 22.46, "elapsed_time": "2:14:18", "remaining_time": "7:43:46"} -{"current_steps": 2900, "total_steps": 12869, "loss": 1.0408, "learning_rate": 9.529020138691463e-06, "epoch": 0.225347734866734, "percentage": 22.53, "elapsed_time": "2:14:41", "remaining_time": "7:43:01"} -{"current_steps": 2910, "total_steps": 12869, "loss": 1.019, "learning_rate": 9.523257140761595e-06, "epoch": 0.2261247960214469, "percentage": 22.61, "elapsed_time": "2:15:14", "remaining_time": "7:42:49"} -{"current_steps": 2920, "total_steps": 12869, "loss": 1.1172, "learning_rate": 9.517460862807378e-06, "epoch": 0.22690185717615977, "percentage": 22.69, "elapsed_time": "2:15:42", "remaining_time": "7:42:22"} -{"current_steps": 2930, "total_steps": 12869, "loss": 1.092, "learning_rate": 9.51163134747513e-06, "epoch": 0.22767891833087264, "percentage": 22.77, "elapsed_time": "2:16:10", "remaining_time": "7:41:54"} -{"current_steps": 2940, "total_steps": 12869, "loss": 1.1078, "learning_rate": 9.505768637655717e-06, "epoch": 0.22845597948558552, "percentage": 22.85, "elapsed_time": "2:16:36", "remaining_time": "7:41:21"} -{"current_steps": 2950, "total_steps": 12869, "loss": 1.0636, "learning_rate": 9.499872776484234e-06, "epoch": 0.2292330406402984, "percentage": 22.92, "elapsed_time": "2:17:05", "remaining_time": "7:40:58"} -{"current_steps": 2960, "total_steps": 12869, "loss": 1.066, "learning_rate": 9.493943807339686e-06, "epoch": 0.23001010179501127, "percentage": 23.0, "elapsed_time": "2:17:29", "remaining_time": "7:40:14"} -{"current_steps": 2970, "total_steps": 12869, "loss": 1.1468, "learning_rate": 9.487981773844673e-06, "epoch": 0.23078716294972415, "percentage": 23.08, "elapsed_time": "2:17:58", "remaining_time": "7:39:52"} -{"current_steps": 2980, "total_steps": 12869, "loss": 1.1332, "learning_rate": 9.48198671986507e-06, "epoch": 0.23156422410443703, "percentage": 23.16, "elapsed_time": "2:18:29", "remaining_time": "7:39:35"} -{"current_steps": 2990, "total_steps": 12869, "loss": 1.1255, "learning_rate": 9.475958689509697e-06, "epoch": 0.2323412852591499, "percentage": 23.23, "elapsed_time": "2:19:00", "remaining_time": "7:39:17"} -{"current_steps": 3000, "total_steps": 12869, "loss": 1.081, "learning_rate": 9.469897727130001e-06, "epoch": 0.23311834641386278, "percentage": 23.31, "elapsed_time": "2:19:27", "remaining_time": "7:38:45"} -{"current_steps": 3010, "total_steps": 12869, "loss": 1.1154, "learning_rate": 9.463803877319727e-06, "epoch": 0.23389540756857566, "percentage": 23.39, "elapsed_time": "2:19:54", "remaining_time": "7:38:15"} -{"current_steps": 3020, "total_steps": 12869, "loss": 1.0648, "learning_rate": 9.45767718491459e-06, "epoch": 0.23467246872328854, "percentage": 23.47, "elapsed_time": "2:20:18", "remaining_time": "7:37:34"} -{"current_steps": 3030, "total_steps": 12869, "loss": 1.0645, "learning_rate": 9.451517694991947e-06, "epoch": 0.2354495298780014, "percentage": 23.54, "elapsed_time": "2:20:44", "remaining_time": "7:36:59"} -{"current_steps": 3040, "total_steps": 12869, "loss": 1.0544, "learning_rate": 9.445325452870459e-06, "epoch": 0.23622659103271426, "percentage": 23.62, "elapsed_time": "2:21:10", "remaining_time": "7:36:27"} -{"current_steps": 3050, "total_steps": 12869, "loss": 1.1751, "learning_rate": 9.439100504109772e-06, "epoch": 0.23700365218742714, "percentage": 23.7, "elapsed_time": "2:21:32", "remaining_time": "7:35:39"} -{"current_steps": 3060, "total_steps": 12869, "loss": 1.074, "learning_rate": 9.432842894510164e-06, "epoch": 0.23778071334214002, "percentage": 23.78, "elapsed_time": "2:21:58", "remaining_time": "7:35:06"} -{"current_steps": 3070, "total_steps": 12869, "loss": 1.0174, "learning_rate": 9.42655267011222e-06, "epoch": 0.2385577744968529, "percentage": 23.86, "elapsed_time": "2:22:31", "remaining_time": "7:34:54"} -{"current_steps": 3080, "total_steps": 12869, "loss": 0.9944, "learning_rate": 9.420229877196484e-06, "epoch": 0.23933483565156577, "percentage": 23.93, "elapsed_time": "2:23:01", "remaining_time": "7:34:33"} -{"current_steps": 3090, "total_steps": 12869, "loss": 1.1172, "learning_rate": 9.413874562283136e-06, "epoch": 0.24011189680627865, "percentage": 24.01, "elapsed_time": "2:23:23", "remaining_time": "7:33:47"} -{"current_steps": 3100, "total_steps": 12869, "loss": 1.0647, "learning_rate": 9.407486772131624e-06, "epoch": 0.24088895796099152, "percentage": 24.09, "elapsed_time": "2:23:46", "remaining_time": "7:33:03"} -{"current_steps": 3110, "total_steps": 12869, "loss": 1.0644, "learning_rate": 9.401066553740343e-06, "epoch": 0.2416660191157044, "percentage": 24.17, "elapsed_time": "2:24:10", "remaining_time": "7:32:23"} -{"current_steps": 3120, "total_steps": 12869, "loss": 1.0657, "learning_rate": 9.394613954346274e-06, "epoch": 0.24244308027041728, "percentage": 24.24, "elapsed_time": "2:24:39", "remaining_time": "7:32:01"} -{"current_steps": 3130, "total_steps": 12869, "loss": 1.0674, "learning_rate": 9.388129021424648e-06, "epoch": 0.24322014142513015, "percentage": 24.32, "elapsed_time": "2:25:04", "remaining_time": "7:31:22"} -{"current_steps": 3140, "total_steps": 12869, "loss": 1.0762, "learning_rate": 9.381611802688586e-06, "epoch": 0.24399720257984303, "percentage": 24.4, "elapsed_time": "2:25:30", "remaining_time": "7:30:51"} -{"current_steps": 3150, "total_steps": 12869, "loss": 1.0726, "learning_rate": 9.375062346088759e-06, "epoch": 0.2447742637345559, "percentage": 24.48, "elapsed_time": "2:26:03", "remaining_time": "7:30:37"} -{"current_steps": 3160, "total_steps": 12869, "loss": 1.0111, "learning_rate": 9.368480699813021e-06, "epoch": 0.24555132488926878, "percentage": 24.56, "elapsed_time": "2:26:33", "remaining_time": "7:30:19"} -{"current_steps": 3170, "total_steps": 12869, "loss": 0.9924, "learning_rate": 9.36186691228607e-06, "epoch": 0.24632838604398166, "percentage": 24.63, "elapsed_time": "2:27:01", "remaining_time": "7:29:51"} -{"current_steps": 3180, "total_steps": 12869, "loss": 0.9769, "learning_rate": 9.35522103216908e-06, "epoch": 0.24710544719869454, "percentage": 24.71, "elapsed_time": "2:27:35", "remaining_time": "7:29:42"} -{"current_steps": 3190, "total_steps": 12869, "loss": 1.1175, "learning_rate": 9.34854310835935e-06, "epoch": 0.24788250835340742, "percentage": 24.79, "elapsed_time": "2:28:04", "remaining_time": "7:29:17"} -{"current_steps": 3200, "total_steps": 12869, "loss": 0.9318, "learning_rate": 9.341833189989942e-06, "epoch": 0.2486595695081203, "percentage": 24.87, "elapsed_time": "2:28:30", "remaining_time": "7:28:43"} -{"current_steps": 3210, "total_steps": 12869, "loss": 1.0761, "learning_rate": 9.335091326429313e-06, "epoch": 0.24943663066283317, "percentage": 24.94, "elapsed_time": "2:28:58", "remaining_time": "7:28:15"} -{"current_steps": 3220, "total_steps": 12869, "loss": 1.0416, "learning_rate": 9.328317567280968e-06, "epoch": 0.25021369181754605, "percentage": 25.02, "elapsed_time": "2:29:25", "remaining_time": "7:27:46"} -{"current_steps": 3230, "total_steps": 12869, "loss": 0.9979, "learning_rate": 9.321511962383077e-06, "epoch": 0.2509907529722589, "percentage": 25.1, "elapsed_time": "2:29:51", "remaining_time": "7:27:12"} -{"current_steps": 3240, "total_steps": 12869, "loss": 1.0504, "learning_rate": 9.314674561808117e-06, "epoch": 0.2517678141269718, "percentage": 25.18, "elapsed_time": "2:30:10", "remaining_time": "7:26:19"} -{"current_steps": 3250, "total_steps": 12869, "loss": 1.0131, "learning_rate": 9.307805415862507e-06, "epoch": 0.2525448752816847, "percentage": 25.25, "elapsed_time": "2:30:40", "remaining_time": "7:25:58"} -{"current_steps": 3260, "total_steps": 12869, "loss": 0.9976, "learning_rate": 9.300904575086232e-06, "epoch": 0.25332193643639755, "percentage": 25.33, "elapsed_time": "2:31:11", "remaining_time": "7:25:38"} -{"current_steps": 3270, "total_steps": 12869, "loss": 1.0265, "learning_rate": 9.293972090252468e-06, "epoch": 0.25409899759111043, "percentage": 25.41, "elapsed_time": "2:31:39", "remaining_time": "7:25:12"} -{"current_steps": 3280, "total_steps": 12869, "loss": 1.0767, "learning_rate": 9.287008012367221e-06, "epoch": 0.2548760587458233, "percentage": 25.49, "elapsed_time": "2:32:06", "remaining_time": "7:24:39"} -{"current_steps": 3290, "total_steps": 12869, "loss": 1.0873, "learning_rate": 9.280012392668938e-06, "epoch": 0.2556531199005362, "percentage": 25.57, "elapsed_time": "2:32:36", "remaining_time": "7:24:18"} -{"current_steps": 3300, "total_steps": 12869, "loss": 1.0538, "learning_rate": 9.272985282628138e-06, "epoch": 0.25643018105524906, "percentage": 25.64, "elapsed_time": "2:33:03", "remaining_time": "7:23:50"} -{"current_steps": 3310, "total_steps": 12869, "loss": 1.0367, "learning_rate": 9.265926733947035e-06, "epoch": 0.25720724220996194, "percentage": 25.72, "elapsed_time": "2:33:29", "remaining_time": "7:23:16"} -{"current_steps": 3320, "total_steps": 12869, "loss": 0.9405, "learning_rate": 9.258836798559148e-06, "epoch": 0.2579843033646748, "percentage": 25.8, "elapsed_time": "2:34:01", "remaining_time": "7:22:59"} -{"current_steps": 3330, "total_steps": 12869, "loss": 1.0488, "learning_rate": 9.251715528628926e-06, "epoch": 0.2587613645193877, "percentage": 25.88, "elapsed_time": "2:34:34", "remaining_time": "7:22:46"} -{"current_steps": 3340, "total_steps": 12869, "loss": 1.0808, "learning_rate": 9.244562976551368e-06, "epoch": 0.25953842567410057, "percentage": 25.95, "elapsed_time": "2:35:03", "remaining_time": "7:22:22"} -{"current_steps": 3350, "total_steps": 12869, "loss": 1.0063, "learning_rate": 9.237379194951626e-06, "epoch": 0.26031548682881345, "percentage": 26.03, "elapsed_time": "2:35:30", "remaining_time": "7:21:53"} -{"current_steps": 3360, "total_steps": 12869, "loss": 1.0327, "learning_rate": 9.230164236684628e-06, "epoch": 0.2610925479835263, "percentage": 26.11, "elapsed_time": "2:36:03", "remaining_time": "7:21:38"} -{"current_steps": 3370, "total_steps": 12869, "loss": 1.1362, "learning_rate": 9.222918154834684e-06, "epoch": 0.2618696091382392, "percentage": 26.19, "elapsed_time": "2:36:30", "remaining_time": "7:21:08"} -{"current_steps": 3380, "total_steps": 12869, "loss": 1.1352, "learning_rate": 9.215641002715097e-06, "epoch": 0.2626466702929521, "percentage": 26.26, "elapsed_time": "2:36:55", "remaining_time": "7:20:33"} -{"current_steps": 3390, "total_steps": 12869, "loss": 0.9834, "learning_rate": 9.208332833867772e-06, "epoch": 0.26342373144766495, "percentage": 26.34, "elapsed_time": "2:37:27", "remaining_time": "7:20:17"} -{"current_steps": 3400, "total_steps": 12869, "loss": 1.0777, "learning_rate": 9.200993702062821e-06, "epoch": 0.26420079260237783, "percentage": 26.42, "elapsed_time": "2:37:49", "remaining_time": "7:19:33"} -{"current_steps": 3410, "total_steps": 12869, "loss": 0.9774, "learning_rate": 9.193623661298164e-06, "epoch": 0.2649778537570907, "percentage": 26.5, "elapsed_time": "2:38:25", "remaining_time": "7:19:26"} -{"current_steps": 3420, "total_steps": 12869, "loss": 1.0362, "learning_rate": 9.186222765799137e-06, "epoch": 0.2657549149118036, "percentage": 26.58, "elapsed_time": "2:38:51", "remaining_time": "7:18:53"} -{"current_steps": 3430, "total_steps": 12869, "loss": 1.0274, "learning_rate": 9.17879107001809e-06, "epoch": 0.2665319760665164, "percentage": 26.65, "elapsed_time": "2:39:17", "remaining_time": "7:18:20"} -{"current_steps": 3440, "total_steps": 12869, "loss": 1.0831, "learning_rate": 9.171328628633987e-06, "epoch": 0.2673090372212293, "percentage": 26.73, "elapsed_time": "2:39:45", "remaining_time": "7:17:54"} -{"current_steps": 3450, "total_steps": 12869, "loss": 0.9786, "learning_rate": 9.163835496552006e-06, "epoch": 0.26808609837594216, "percentage": 26.81, "elapsed_time": "2:40:13", "remaining_time": "7:17:25"} -{"current_steps": 3460, "total_steps": 12869, "loss": 1.043, "learning_rate": 9.15631172890313e-06, "epoch": 0.26886315953065504, "percentage": 26.89, "elapsed_time": "2:40:46", "remaining_time": "7:17:13"} -{"current_steps": 3470, "total_steps": 12869, "loss": 1.0399, "learning_rate": 9.148757381043745e-06, "epoch": 0.2696402206853679, "percentage": 26.96, "elapsed_time": "2:41:15", "remaining_time": "7:16:46"} -{"current_steps": 3480, "total_steps": 12869, "loss": 1.0161, "learning_rate": 9.141172508555234e-06, "epoch": 0.2704172818400808, "percentage": 27.04, "elapsed_time": "2:41:42", "remaining_time": "7:16:18"} -{"current_steps": 3490, "total_steps": 12869, "loss": 1.0268, "learning_rate": 9.133557167243565e-06, "epoch": 0.27119434299479367, "percentage": 27.12, "elapsed_time": "2:42:06", "remaining_time": "7:15:39"} -{"current_steps": 3500, "total_steps": 12869, "loss": 1.0141, "learning_rate": 9.125911413138877e-06, "epoch": 0.27197140414950655, "percentage": 27.2, "elapsed_time": "2:42:38", "remaining_time": "7:15:20"} -{"current_steps": 3510, "total_steps": 12869, "loss": 0.9466, "learning_rate": 9.11823530249508e-06, "epoch": 0.2727484653042194, "percentage": 27.27, "elapsed_time": "2:43:05", "remaining_time": "7:14:52"} -{"current_steps": 3520, "total_steps": 12869, "loss": 0.9504, "learning_rate": 9.11052889178943e-06, "epoch": 0.2735255264589323, "percentage": 27.35, "elapsed_time": "2:43:35", "remaining_time": "7:14:29"} -{"current_steps": 3530, "total_steps": 12869, "loss": 1.059, "learning_rate": 9.102792237722114e-06, "epoch": 0.2743025876136452, "percentage": 27.43, "elapsed_time": "2:44:03", "remaining_time": "7:14:02"} -{"current_steps": 3540, "total_steps": 12869, "loss": 1.0183, "learning_rate": 9.095025397215838e-06, "epoch": 0.27507964876835805, "percentage": 27.51, "elapsed_time": "2:44:34", "remaining_time": "7:13:42"} -{"current_steps": 3550, "total_steps": 12869, "loss": 1.0115, "learning_rate": 9.087228427415405e-06, "epoch": 0.27585670992307093, "percentage": 27.59, "elapsed_time": "2:45:00", "remaining_time": "7:13:08"} -{"current_steps": 3560, "total_steps": 12869, "loss": 1.0167, "learning_rate": 9.079401385687299e-06, "epoch": 0.2766337710777838, "percentage": 27.66, "elapsed_time": "2:45:21", "remaining_time": "7:12:23"} -{"current_steps": 3570, "total_steps": 12869, "loss": 1.0083, "learning_rate": 9.071544329619253e-06, "epoch": 0.2774108322324967, "percentage": 27.74, "elapsed_time": "2:45:49", "remaining_time": "7:11:56"} -{"current_steps": 3580, "total_steps": 12869, "loss": 0.9729, "learning_rate": 9.063657317019838e-06, "epoch": 0.27818789338720956, "percentage": 27.82, "elapsed_time": "2:46:17", "remaining_time": "7:11:28"} -{"current_steps": 3590, "total_steps": 12869, "loss": 1.0459, "learning_rate": 9.055740405918026e-06, "epoch": 0.27896495454192244, "percentage": 27.9, "elapsed_time": "2:46:46", "remaining_time": "7:11:04"} -{"current_steps": 3600, "total_steps": 12869, "loss": 1.0589, "learning_rate": 9.04779365456277e-06, "epoch": 0.2797420156966353, "percentage": 27.97, "elapsed_time": "2:47:14", "remaining_time": "7:10:36"} -{"current_steps": 3610, "total_steps": 12869, "loss": 0.9598, "learning_rate": 9.039817121422575e-06, "epoch": 0.2805190768513482, "percentage": 28.05, "elapsed_time": "2:47:46", "remaining_time": "7:10:18"} -{"current_steps": 3620, "total_steps": 12869, "loss": 0.997, "learning_rate": 9.031810865185066e-06, "epoch": 0.28129613800606107, "percentage": 28.13, "elapsed_time": "2:48:11", "remaining_time": "7:09:44"} -{"current_steps": 3630, "total_steps": 12869, "loss": 1.1015, "learning_rate": 9.023774944756555e-06, "epoch": 0.28207319916077395, "percentage": 28.21, "elapsed_time": "2:48:37", "remaining_time": "7:09:11"} -{"current_steps": 3640, "total_steps": 12869, "loss": 1.0593, "learning_rate": 9.015709419261612e-06, "epoch": 0.2828502603154868, "percentage": 28.29, "elapsed_time": "2:49:07", "remaining_time": "7:08:47"} -{"current_steps": 3650, "total_steps": 12869, "loss": 1.0162, "learning_rate": 9.007614348042626e-06, "epoch": 0.2836273214701997, "percentage": 28.36, "elapsed_time": "2:49:31", "remaining_time": "7:08:09"} -{"current_steps": 3660, "total_steps": 12869, "loss": 0.9571, "learning_rate": 8.999489790659368e-06, "epoch": 0.2844043826249126, "percentage": 28.44, "elapsed_time": "2:49:57", "remaining_time": "7:07:38"} -{"current_steps": 3670, "total_steps": 12869, "loss": 1.0446, "learning_rate": 8.991335806888558e-06, "epoch": 0.28518144377962545, "percentage": 28.52, "elapsed_time": "2:50:28", "remaining_time": "7:07:19"} -{"current_steps": 3680, "total_steps": 12869, "loss": 1.059, "learning_rate": 8.983152456723419e-06, "epoch": 0.28595850493433833, "percentage": 28.6, "elapsed_time": "2:50:55", "remaining_time": "7:06:48"} -{"current_steps": 3690, "total_steps": 12869, "loss": 1.0575, "learning_rate": 8.97493980037324e-06, "epoch": 0.2867355660890512, "percentage": 28.67, "elapsed_time": "2:51:25", "remaining_time": "7:06:24"} -{"current_steps": 3700, "total_steps": 12869, "loss": 1.025, "learning_rate": 8.96669789826293e-06, "epoch": 0.2875126272437641, "percentage": 28.75, "elapsed_time": "2:51:57", "remaining_time": "7:06:07"} -{"current_steps": 3710, "total_steps": 12869, "loss": 1.0202, "learning_rate": 8.958426811032576e-06, "epoch": 0.28828968839847696, "percentage": 28.83, "elapsed_time": "2:52:22", "remaining_time": "7:05:31"} -{"current_steps": 3720, "total_steps": 12869, "loss": 1.0628, "learning_rate": 8.950126599536993e-06, "epoch": 0.28906674955318984, "percentage": 28.91, "elapsed_time": "2:52:47", "remaining_time": "7:04:58"} -{"current_steps": 3730, "total_steps": 12869, "loss": 1.0229, "learning_rate": 8.941797324845284e-06, "epoch": 0.2898438107079027, "percentage": 28.98, "elapsed_time": "2:53:10", "remaining_time": "7:04:17"} -{"current_steps": 3740, "total_steps": 12869, "loss": 0.9406, "learning_rate": 8.933439048240376e-06, "epoch": 0.2906208718626156, "percentage": 29.06, "elapsed_time": "2:53:39", "remaining_time": "7:03:52"} -{"current_steps": 3750, "total_steps": 12869, "loss": 0.9897, "learning_rate": 8.92505183121859e-06, "epoch": 0.29139793301732847, "percentage": 29.14, "elapsed_time": "2:54:06", "remaining_time": "7:03:23"} -{"current_steps": 3760, "total_steps": 12869, "loss": 1.0337, "learning_rate": 8.91663573548917e-06, "epoch": 0.29217499417204135, "percentage": 29.22, "elapsed_time": "2:54:36", "remaining_time": "7:03:01"} -{"current_steps": 3770, "total_steps": 12869, "loss": 0.9567, "learning_rate": 8.908190822973838e-06, "epoch": 0.2929520553267542, "percentage": 29.3, "elapsed_time": "2:55:05", "remaining_time": "7:02:34"} -{"current_steps": 3780, "total_steps": 12869, "loss": 0.9206, "learning_rate": 8.899717155806337e-06, "epoch": 0.2937291164814671, "percentage": 29.37, "elapsed_time": "2:55:34", "remaining_time": "7:02:10"} -{"current_steps": 3790, "total_steps": 12869, "loss": 1.0304, "learning_rate": 8.891214796331973e-06, "epoch": 0.29450617763618, "percentage": 29.45, "elapsed_time": "2:56:03", "remaining_time": "7:01:44"} -{"current_steps": 3800, "total_steps": 12869, "loss": 0.9984, "learning_rate": 8.882683807107154e-06, "epoch": 0.29528323879089285, "percentage": 29.53, "elapsed_time": "2:56:33", "remaining_time": "7:01:21"} -{"current_steps": 3810, "total_steps": 12869, "loss": 0.9685, "learning_rate": 8.874124250898937e-06, "epoch": 0.29606029994560573, "percentage": 29.61, "elapsed_time": "2:57:00", "remaining_time": "7:00:51"} -{"current_steps": 3820, "total_steps": 12869, "loss": 0.9924, "learning_rate": 8.865536190684559e-06, "epoch": 0.2968373611003186, "percentage": 29.68, "elapsed_time": "2:57:25", "remaining_time": "7:00:18"} -{"current_steps": 3830, "total_steps": 12869, "loss": 0.9392, "learning_rate": 8.856919689650977e-06, "epoch": 0.2976144222550315, "percentage": 29.76, "elapsed_time": "2:57:57", "remaining_time": "6:59:59"} -{"current_steps": 3840, "total_steps": 12869, "loss": 1.0644, "learning_rate": 8.848274811194402e-06, "epoch": 0.29839148340974436, "percentage": 29.84, "elapsed_time": "2:58:19", "remaining_time": "6:59:17"} -{"current_steps": 3850, "total_steps": 12869, "loss": 0.9759, "learning_rate": 8.839601618919833e-06, "epoch": 0.29916854456445724, "percentage": 29.92, "elapsed_time": "2:58:51", "remaining_time": "6:59:00"} -{"current_steps": 3860, "total_steps": 12869, "loss": 1.0696, "learning_rate": 8.830900176640587e-06, "epoch": 0.2999456057191701, "percentage": 29.99, "elapsed_time": "2:59:20", "remaining_time": "6:58:33"} -{"current_steps": 3870, "total_steps": 12869, "loss": 1.0384, "learning_rate": 8.822170548377835e-06, "epoch": 0.300722666873883, "percentage": 30.07, "elapsed_time": "2:59:51", "remaining_time": "6:58:13"} -{"current_steps": 3880, "total_steps": 12869, "loss": 0.9441, "learning_rate": 8.813412798360126e-06, "epoch": 0.30149972802859587, "percentage": 30.15, "elapsed_time": "3:00:15", "remaining_time": "6:57:37"} -{"current_steps": 3890, "total_steps": 12869, "loss": 1.0254, "learning_rate": 8.804626991022915e-06, "epoch": 0.30227678918330875, "percentage": 30.23, "elapsed_time": "3:00:49", "remaining_time": "6:57:22"} -{"current_steps": 3900, "total_steps": 12869, "loss": 0.9772, "learning_rate": 8.79581319100809e-06, "epoch": 0.3030538503380216, "percentage": 30.31, "elapsed_time": "3:01:15", "remaining_time": "6:56:51"} -{"current_steps": 3910, "total_steps": 12869, "loss": 1.0083, "learning_rate": 8.786971463163495e-06, "epoch": 0.3038309114927345, "percentage": 30.38, "elapsed_time": "3:01:42", "remaining_time": "6:56:20"} -{"current_steps": 3920, "total_steps": 12869, "loss": 1.0375, "learning_rate": 8.778101872542458e-06, "epoch": 0.3046079726474474, "percentage": 30.46, "elapsed_time": "3:02:05", "remaining_time": "6:55:41"} -{"current_steps": 3930, "total_steps": 12869, "loss": 0.9423, "learning_rate": 8.769204484403304e-06, "epoch": 0.30538503380216026, "percentage": 30.54, "elapsed_time": "3:02:35", "remaining_time": "6:55:18"} -{"current_steps": 3940, "total_steps": 12869, "loss": 0.9695, "learning_rate": 8.760279364208879e-06, "epoch": 0.30616209495687313, "percentage": 30.62, "elapsed_time": "3:03:01", "remaining_time": "6:54:47"} -{"current_steps": 3950, "total_steps": 12869, "loss": 1.0528, "learning_rate": 8.751326577626075e-06, "epoch": 0.306939156111586, "percentage": 30.69, "elapsed_time": "3:03:30", "remaining_time": "6:54:21"} -{"current_steps": 3960, "total_steps": 12869, "loss": 1.0144, "learning_rate": 8.742346190525332e-06, "epoch": 0.30771621726629883, "percentage": 30.77, "elapsed_time": "3:03:52", "remaining_time": "6:53:41"} -{"current_steps": 3970, "total_steps": 12869, "loss": 0.9437, "learning_rate": 8.733338268980166e-06, "epoch": 0.3084932784210117, "percentage": 30.85, "elapsed_time": "3:04:24", "remaining_time": "6:53:21"} -{"current_steps": 3980, "total_steps": 12869, "loss": 0.967, "learning_rate": 8.72430287926668e-06, "epoch": 0.3092703395757246, "percentage": 30.93, "elapsed_time": "3:04:52", "remaining_time": "6:52:53"} -{"current_steps": 3990, "total_steps": 12869, "loss": 0.9615, "learning_rate": 8.715240087863072e-06, "epoch": 0.31004740073043746, "percentage": 31.0, "elapsed_time": "3:05:21", "remaining_time": "6:52:29"} -{"current_steps": 4000, "total_steps": 12869, "loss": 0.9359, "learning_rate": 8.70614996144915e-06, "epoch": 0.31082446188515034, "percentage": 31.08, "elapsed_time": "3:05:42", "remaining_time": "6:51:45"} -{"current_steps": 4010, "total_steps": 12869, "loss": 0.9823, "learning_rate": 8.697032566905842e-06, "epoch": 0.3116015230398632, "percentage": 31.16, "elapsed_time": "3:06:12", "remaining_time": "6:51:22"} -{"current_steps": 4020, "total_steps": 12869, "loss": 0.9722, "learning_rate": 8.6878879713147e-06, "epoch": 0.3123785841945761, "percentage": 31.24, "elapsed_time": "3:06:42", "remaining_time": "6:50:58"} -{"current_steps": 4030, "total_steps": 12869, "loss": 0.95, "learning_rate": 8.678716241957408e-06, "epoch": 0.31315564534928897, "percentage": 31.32, "elapsed_time": "3:07:06", "remaining_time": "6:50:22"} -{"current_steps": 4040, "total_steps": 12869, "loss": 0.9859, "learning_rate": 8.669517446315292e-06, "epoch": 0.31393270650400185, "percentage": 31.39, "elapsed_time": "3:07:36", "remaining_time": "6:49:59"} -{"current_steps": 4050, "total_steps": 12869, "loss": 0.9907, "learning_rate": 8.660291652068813e-06, "epoch": 0.3147097676587147, "percentage": 31.47, "elapsed_time": "3:08:00", "remaining_time": "6:49:22"} -{"current_steps": 4060, "total_steps": 12869, "loss": 1.0202, "learning_rate": 8.65103892709708e-06, "epoch": 0.3154868288134276, "percentage": 31.55, "elapsed_time": "3:08:33", "remaining_time": "6:49:07"} -{"current_steps": 4070, "total_steps": 12869, "loss": 1.0117, "learning_rate": 8.641759339477345e-06, "epoch": 0.3162638899681405, "percentage": 31.63, "elapsed_time": "3:08:59", "remaining_time": "6:48:35"} -{"current_steps": 4080, "total_steps": 12869, "loss": 0.9423, "learning_rate": 8.632452957484498e-06, "epoch": 0.31704095112285335, "percentage": 31.7, "elapsed_time": "3:09:29", "remaining_time": "6:48:12"} -{"current_steps": 4090, "total_steps": 12869, "loss": 0.9523, "learning_rate": 8.62311984959058e-06, "epoch": 0.31781801227756623, "percentage": 31.78, "elapsed_time": "3:09:58", "remaining_time": "6:47:46"} -{"current_steps": 4100, "total_steps": 12869, "loss": 0.9486, "learning_rate": 8.613760084464258e-06, "epoch": 0.3185950734322791, "percentage": 31.86, "elapsed_time": "3:10:29", "remaining_time": "6:47:26"} -{"current_steps": 4110, "total_steps": 12869, "loss": 0.9697, "learning_rate": 8.604373730970334e-06, "epoch": 0.319372134586992, "percentage": 31.94, "elapsed_time": "3:11:02", "remaining_time": "6:47:09"} -{"current_steps": 4120, "total_steps": 12869, "loss": 0.9766, "learning_rate": 8.59496085816924e-06, "epoch": 0.32014919574170486, "percentage": 32.01, "elapsed_time": "3:11:29", "remaining_time": "6:46:38"} -{"current_steps": 4130, "total_steps": 12869, "loss": 1.0718, "learning_rate": 8.585521535316517e-06, "epoch": 0.32092625689641774, "percentage": 32.09, "elapsed_time": "3:11:50", "remaining_time": "6:45:56"} -{"current_steps": 4140, "total_steps": 12869, "loss": 1.0401, "learning_rate": 8.576055831862317e-06, "epoch": 0.3217033180511306, "percentage": 32.17, "elapsed_time": "3:12:23", "remaining_time": "6:45:38"} -{"current_steps": 4150, "total_steps": 12869, "loss": 0.94, "learning_rate": 8.56656381745089e-06, "epoch": 0.3224803792058435, "percentage": 32.25, "elapsed_time": "3:12:50", "remaining_time": "6:45:08"} -{"current_steps": 4160, "total_steps": 12869, "loss": 0.9775, "learning_rate": 8.557045561920066e-06, "epoch": 0.32325744036055637, "percentage": 32.33, "elapsed_time": "3:13:18", "remaining_time": "6:44:41"} -{"current_steps": 4170, "total_steps": 12869, "loss": 1.0126, "learning_rate": 8.547501135300747e-06, "epoch": 0.32403450151526925, "percentage": 32.4, "elapsed_time": "3:13:39", "remaining_time": "6:44:00"} -{"current_steps": 4180, "total_steps": 12869, "loss": 1.0238, "learning_rate": 8.537930607816386e-06, "epoch": 0.3248115626699821, "percentage": 32.48, "elapsed_time": "3:14:04", "remaining_time": "6:43:24"} -{"current_steps": 4190, "total_steps": 12869, "loss": 0.9839, "learning_rate": 8.528334049882482e-06, "epoch": 0.325588623824695, "percentage": 32.56, "elapsed_time": "3:14:32", "remaining_time": "6:42:58"} -{"current_steps": 4200, "total_steps": 12869, "loss": 0.9681, "learning_rate": 8.51871153210605e-06, "epoch": 0.3263656849794079, "percentage": 32.64, "elapsed_time": "3:15:01", "remaining_time": "6:42:32"} -{"current_steps": 4210, "total_steps": 12869, "loss": 0.9211, "learning_rate": 8.5090631252851e-06, "epoch": 0.32714274613412075, "percentage": 32.71, "elapsed_time": "3:15:32", "remaining_time": "6:42:10"} -{"current_steps": 4220, "total_steps": 12869, "loss": 0.9219, "learning_rate": 8.499388900408131e-06, "epoch": 0.32791980728883363, "percentage": 32.79, "elapsed_time": "3:16:02", "remaining_time": "6:41:47"} -{"current_steps": 4230, "total_steps": 12869, "loss": 0.9561, "learning_rate": 8.489688928653593e-06, "epoch": 0.3286968684435465, "percentage": 32.87, "elapsed_time": "3:16:28", "remaining_time": "6:41:16"} -{"current_steps": 4240, "total_steps": 12869, "loss": 0.9471, "learning_rate": 8.479963281389369e-06, "epoch": 0.3294739295982594, "percentage": 32.95, "elapsed_time": "3:16:54", "remaining_time": "6:40:43"} -{"current_steps": 4250, "total_steps": 12869, "loss": 0.9027, "learning_rate": 8.470212030172254e-06, "epoch": 0.33025099075297226, "percentage": 33.03, "elapsed_time": "3:17:23", "remaining_time": "6:40:18"} -{"current_steps": 4260, "total_steps": 12869, "loss": 1.0048, "learning_rate": 8.460435246747425e-06, "epoch": 0.33102805190768514, "percentage": 33.1, "elapsed_time": "3:17:49", "remaining_time": "6:39:46"} -{"current_steps": 4270, "total_steps": 12869, "loss": 1.0203, "learning_rate": 8.45063300304791e-06, "epoch": 0.331805113062398, "percentage": 33.18, "elapsed_time": "3:18:19", "remaining_time": "6:39:23"} -{"current_steps": 4280, "total_steps": 12869, "loss": 0.9287, "learning_rate": 8.440805371194064e-06, "epoch": 0.3325821742171109, "percentage": 33.26, "elapsed_time": "3:18:46", "remaining_time": "6:38:53"} -{"current_steps": 4290, "total_steps": 12869, "loss": 0.9561, "learning_rate": 8.430952423493038e-06, "epoch": 0.33335923537182377, "percentage": 33.34, "elapsed_time": "3:19:10", "remaining_time": "6:38:17"} -{"current_steps": 4300, "total_steps": 12869, "loss": 0.9816, "learning_rate": 8.42107423243824e-06, "epoch": 0.33413629652653665, "percentage": 33.41, "elapsed_time": "3:19:32", "remaining_time": "6:37:39"} -{"current_steps": 4310, "total_steps": 12869, "loss": 0.9279, "learning_rate": 8.41117087070881e-06, "epoch": 0.3349133576812495, "percentage": 33.49, "elapsed_time": "3:20:01", "remaining_time": "6:37:13"} -{"current_steps": 4320, "total_steps": 12869, "loss": 0.9791, "learning_rate": 8.401242411169085e-06, "epoch": 0.3356904188359624, "percentage": 33.57, "elapsed_time": "3:20:33", "remaining_time": "6:36:54"} -{"current_steps": 4330, "total_steps": 12869, "loss": 0.9904, "learning_rate": 8.391288926868055e-06, "epoch": 0.3364674799906753, "percentage": 33.65, "elapsed_time": "3:20:59", "remaining_time": "6:36:21"} -{"current_steps": 4340, "total_steps": 12869, "loss": 0.9367, "learning_rate": 8.381310491038835e-06, "epoch": 0.33724454114538815, "percentage": 33.72, "elapsed_time": "3:21:28", "remaining_time": "6:35:57"} -{"current_steps": 4350, "total_steps": 12869, "loss": 0.9962, "learning_rate": 8.371307177098114e-06, "epoch": 0.33802160230010103, "percentage": 33.8, "elapsed_time": "3:21:56", "remaining_time": "6:35:28"} -{"current_steps": 4360, "total_steps": 12869, "loss": 0.9245, "learning_rate": 8.361279058645634e-06, "epoch": 0.3387986634548139, "percentage": 33.88, "elapsed_time": "3:22:29", "remaining_time": "6:35:11"} -{"current_steps": 4370, "total_steps": 12869, "loss": 0.9284, "learning_rate": 8.351226209463628e-06, "epoch": 0.3395757246095268, "percentage": 33.96, "elapsed_time": "3:22:59", "remaining_time": "6:34:47"} -{"current_steps": 4380, "total_steps": 12869, "loss": 0.9684, "learning_rate": 8.341148703516291e-06, "epoch": 0.34035278576423966, "percentage": 34.04, "elapsed_time": "3:23:26", "remaining_time": "6:34:17"} -{"current_steps": 4390, "total_steps": 12869, "loss": 0.9593, "learning_rate": 8.331046614949228e-06, "epoch": 0.34112984691895254, "percentage": 34.11, "elapsed_time": "3:23:52", "remaining_time": "6:33:46"} -{"current_steps": 4400, "total_steps": 12869, "loss": 0.9546, "learning_rate": 8.320920018088912e-06, "epoch": 0.3419069080736654, "percentage": 34.19, "elapsed_time": "3:24:19", "remaining_time": "6:33:16"} -{"current_steps": 4410, "total_steps": 12869, "loss": 1.0303, "learning_rate": 8.310768987442139e-06, "epoch": 0.3426839692283783, "percentage": 34.27, "elapsed_time": "3:24:45", "remaining_time": "6:32:44"} -{"current_steps": 4420, "total_steps": 12869, "loss": 1.0021, "learning_rate": 8.300593597695476e-06, "epoch": 0.34346103038309117, "percentage": 34.35, "elapsed_time": "3:25:10", "remaining_time": "6:32:11"} -{"current_steps": 4430, "total_steps": 12869, "loss": 1.0256, "learning_rate": 8.290393923714713e-06, "epoch": 0.34423809153780405, "percentage": 34.42, "elapsed_time": "3:25:33", "remaining_time": "6:31:34"} -{"current_steps": 4440, "total_steps": 12869, "loss": 0.9167, "learning_rate": 8.280170040544312e-06, "epoch": 0.3450151526925169, "percentage": 34.5, "elapsed_time": "3:26:00", "remaining_time": "6:31:05"} -{"current_steps": 4450, "total_steps": 12869, "loss": 0.869, "learning_rate": 8.269922023406851e-06, "epoch": 0.3457922138472298, "percentage": 34.58, "elapsed_time": "3:26:36", "remaining_time": "6:30:53"} -{"current_steps": 4460, "total_steps": 12869, "loss": 0.9428, "learning_rate": 8.259649947702485e-06, "epoch": 0.3465692750019427, "percentage": 34.66, "elapsed_time": "3:27:00", "remaining_time": "6:30:18"} -{"current_steps": 4470, "total_steps": 12869, "loss": 0.8973, "learning_rate": 8.24935388900837e-06, "epoch": 0.34734633615665556, "percentage": 34.73, "elapsed_time": "3:27:25", "remaining_time": "6:29:45"} -{"current_steps": 4480, "total_steps": 12869, "loss": 0.9542, "learning_rate": 8.239033923078124e-06, "epoch": 0.34812339731136843, "percentage": 34.81, "elapsed_time": "3:27:48", "remaining_time": "6:29:07"} -{"current_steps": 4490, "total_steps": 12869, "loss": 0.9261, "learning_rate": 8.228690125841258e-06, "epoch": 0.34890045846608125, "percentage": 34.89, "elapsed_time": "3:28:18", "remaining_time": "6:28:43"} -{"current_steps": 4500, "total_steps": 12869, "loss": 0.8971, "learning_rate": 8.218322573402629e-06, "epoch": 0.34967751962079413, "percentage": 34.97, "elapsed_time": "3:28:48", "remaining_time": "6:28:19"} -{"current_steps": 4510, "total_steps": 12869, "loss": 0.9525, "learning_rate": 8.20793134204187e-06, "epoch": 0.350454580775507, "percentage": 35.05, "elapsed_time": "3:29:20", "remaining_time": "6:28:00"} -{"current_steps": 4520, "total_steps": 12869, "loss": 0.9453, "learning_rate": 8.197516508212832e-06, "epoch": 0.3512316419302199, "percentage": 35.12, "elapsed_time": "3:29:46", "remaining_time": "6:27:28"} -{"current_steps": 4530, "total_steps": 12869, "loss": 0.8981, "learning_rate": 8.187078148543026e-06, "epoch": 0.35200870308493276, "percentage": 35.2, "elapsed_time": "3:30:07", "remaining_time": "6:26:48"} -{"current_steps": 4540, "total_steps": 12869, "loss": 1.0509, "learning_rate": 8.176616339833048e-06, "epoch": 0.35278576423964564, "percentage": 35.28, "elapsed_time": "3:30:27", "remaining_time": "6:26:06"} -{"current_steps": 4550, "total_steps": 12869, "loss": 0.9513, "learning_rate": 8.166131159056028e-06, "epoch": 0.3535628253943585, "percentage": 35.36, "elapsed_time": "3:30:52", "remaining_time": "6:25:32"} -{"current_steps": 4560, "total_steps": 12869, "loss": 1.0418, "learning_rate": 8.155622683357056e-06, "epoch": 0.3543398865490714, "percentage": 35.43, "elapsed_time": "3:31:18", "remaining_time": "6:25:02"} -{"current_steps": 4570, "total_steps": 12869, "loss": 0.9766, "learning_rate": 8.14509099005261e-06, "epoch": 0.35511694770378427, "percentage": 35.51, "elapsed_time": "3:31:50", "remaining_time": "6:24:42"} -{"current_steps": 4580, "total_steps": 12869, "loss": 0.9681, "learning_rate": 8.13453615663e-06, "epoch": 0.35589400885849715, "percentage": 35.59, "elapsed_time": "3:32:14", "remaining_time": "6:24:08"} -{"current_steps": 4590, "total_steps": 12869, "loss": 0.9795, "learning_rate": 8.123958260746781e-06, "epoch": 0.35667107001321, "percentage": 35.67, "elapsed_time": "3:32:43", "remaining_time": "6:23:41"} -{"current_steps": 4600, "total_steps": 12869, "loss": 0.9547, "learning_rate": 8.113357380230198e-06, "epoch": 0.3574481311679229, "percentage": 35.74, "elapsed_time": "3:33:04", "remaining_time": "6:23:01"} -{"current_steps": 4610, "total_steps": 12869, "loss": 0.9743, "learning_rate": 8.102733593076608e-06, "epoch": 0.3582251923226358, "percentage": 35.82, "elapsed_time": "3:33:26", "remaining_time": "6:22:23"} -{"current_steps": 4620, "total_steps": 12869, "loss": 0.9315, "learning_rate": 8.092086977450896e-06, "epoch": 0.35900225347734865, "percentage": 35.9, "elapsed_time": "3:33:56", "remaining_time": "6:22:00"} -{"current_steps": 4630, "total_steps": 12869, "loss": 0.8746, "learning_rate": 8.081417611685914e-06, "epoch": 0.35977931463206153, "percentage": 35.98, "elapsed_time": "3:34:25", "remaining_time": "6:21:34"} -{"current_steps": 4640, "total_steps": 12869, "loss": 0.95, "learning_rate": 8.0707255742819e-06, "epoch": 0.3605563757867744, "percentage": 36.06, "elapsed_time": "3:34:49", "remaining_time": "6:21:00"} -{"current_steps": 4650, "total_steps": 12869, "loss": 0.9034, "learning_rate": 8.060010943905894e-06, "epoch": 0.3613334369414873, "percentage": 36.13, "elapsed_time": "3:35:22", "remaining_time": "6:20:40"} -{"current_steps": 4660, "total_steps": 12869, "loss": 0.9103, "learning_rate": 8.049273799391171e-06, "epoch": 0.36211049809620016, "percentage": 36.21, "elapsed_time": "3:35:45", "remaining_time": "6:20:05"} -{"current_steps": 4670, "total_steps": 12869, "loss": 0.9736, "learning_rate": 8.038514219736648e-06, "epoch": 0.36288755925091304, "percentage": 36.29, "elapsed_time": "3:36:10", "remaining_time": "6:19:32"} -{"current_steps": 4680, "total_steps": 12869, "loss": 0.908, "learning_rate": 8.027732284106316e-06, "epoch": 0.3636646204056259, "percentage": 36.37, "elapsed_time": "3:36:35", "remaining_time": "6:18:58"} -{"current_steps": 4690, "total_steps": 12869, "loss": 0.9475, "learning_rate": 8.016928071828644e-06, "epoch": 0.3644416815603388, "percentage": 36.44, "elapsed_time": "3:37:00", "remaining_time": "6:18:26"} -{"current_steps": 4700, "total_steps": 12869, "loss": 0.954, "learning_rate": 8.006101662396011e-06, "epoch": 0.36521874271505167, "percentage": 36.52, "elapsed_time": "3:37:26", "remaining_time": "6:17:55"} -{"current_steps": 4710, "total_steps": 12869, "loss": 0.8625, "learning_rate": 7.995253135464103e-06, "epoch": 0.36599580386976455, "percentage": 36.6, "elapsed_time": "3:37:54", "remaining_time": "6:17:28"} -{"current_steps": 4720, "total_steps": 12869, "loss": 0.9555, "learning_rate": 7.984382570851341e-06, "epoch": 0.3667728650244774, "percentage": 36.68, "elapsed_time": "3:38:21", "remaining_time": "6:16:59"} -{"current_steps": 4730, "total_steps": 12869, "loss": 0.8748, "learning_rate": 7.973490048538291e-06, "epoch": 0.3675499261791903, "percentage": 36.75, "elapsed_time": "3:38:48", "remaining_time": "6:16:30"} -{"current_steps": 4740, "total_steps": 12869, "loss": 0.8828, "learning_rate": 7.962575648667068e-06, "epoch": 0.3683269873339032, "percentage": 36.83, "elapsed_time": "3:39:14", "remaining_time": "6:16:00"} -{"current_steps": 4750, "total_steps": 12869, "loss": 0.9119, "learning_rate": 7.951639451540759e-06, "epoch": 0.36910404848861605, "percentage": 36.91, "elapsed_time": "3:39:38", "remaining_time": "6:15:26"} -{"current_steps": 4760, "total_steps": 12869, "loss": 0.9125, "learning_rate": 7.940681537622816e-06, "epoch": 0.36988110964332893, "percentage": 36.99, "elapsed_time": "3:40:03", "remaining_time": "6:14:52"} -{"current_steps": 4770, "total_steps": 12869, "loss": 0.9035, "learning_rate": 7.92970198753648e-06, "epoch": 0.3706581707980418, "percentage": 37.07, "elapsed_time": "3:40:32", "remaining_time": "6:14:27"} -{"current_steps": 4780, "total_steps": 12869, "loss": 0.9566, "learning_rate": 7.918700882064181e-06, "epoch": 0.3714352319527547, "percentage": 37.14, "elapsed_time": "3:41:02", "remaining_time": "6:14:03"} -{"current_steps": 4790, "total_steps": 12869, "loss": 0.9639, "learning_rate": 7.907678302146939e-06, "epoch": 0.37221229310746756, "percentage": 37.22, "elapsed_time": "3:41:31", "remaining_time": "6:13:37"} -{"current_steps": 4800, "total_steps": 12869, "loss": 0.8919, "learning_rate": 7.896634328883777e-06, "epoch": 0.37298935426218044, "percentage": 37.3, "elapsed_time": "3:41:57", "remaining_time": "6:13:08"} -{"current_steps": 4810, "total_steps": 12869, "loss": 0.9314, "learning_rate": 7.885569043531118e-06, "epoch": 0.3737664154168933, "percentage": 37.38, "elapsed_time": "3:42:26", "remaining_time": "6:12:41"} -{"current_steps": 4820, "total_steps": 12869, "loss": 0.8823, "learning_rate": 7.874482527502192e-06, "epoch": 0.3745434765716062, "percentage": 37.45, "elapsed_time": "3:42:58", "remaining_time": "6:12:20"} -{"current_steps": 4830, "total_steps": 12869, "loss": 0.8885, "learning_rate": 7.863374862366428e-06, "epoch": 0.37532053772631907, "percentage": 37.53, "elapsed_time": "3:43:25", "remaining_time": "6:11:51"} -{"current_steps": 4840, "total_steps": 12869, "loss": 0.8694, "learning_rate": 7.85224612984887e-06, "epoch": 0.37609759888103195, "percentage": 37.61, "elapsed_time": "3:43:53", "remaining_time": "6:11:24"} -{"current_steps": 4850, "total_steps": 12869, "loss": 0.9156, "learning_rate": 7.841096411829561e-06, "epoch": 0.3768746600357448, "percentage": 37.69, "elapsed_time": "3:44:28", "remaining_time": "6:11:08"} -{"current_steps": 4860, "total_steps": 12869, "loss": 0.8447, "learning_rate": 7.829925790342942e-06, "epoch": 0.3776517211904577, "percentage": 37.77, "elapsed_time": "3:44:59", "remaining_time": "6:10:45"} -{"current_steps": 4870, "total_steps": 12869, "loss": 0.8717, "learning_rate": 7.818734347577258e-06, "epoch": 0.3784287823451706, "percentage": 37.84, "elapsed_time": "3:45:26", "remaining_time": "6:10:16"} -{"current_steps": 4880, "total_steps": 12869, "loss": 0.9381, "learning_rate": 7.807522165873945e-06, "epoch": 0.37920584349988345, "percentage": 37.92, "elapsed_time": "3:45:56", "remaining_time": "6:09:52"} -{"current_steps": 4890, "total_steps": 12869, "loss": 0.8592, "learning_rate": 7.796289327727022e-06, "epoch": 0.37998290465459633, "percentage": 38.0, "elapsed_time": "3:46:28", "remaining_time": "6:09:31"} -{"current_steps": 4900, "total_steps": 12869, "loss": 0.9155, "learning_rate": 7.7850359157825e-06, "epoch": 0.3807599658093092, "percentage": 38.08, "elapsed_time": "3:46:56", "remaining_time": "6:09:04"} -{"current_steps": 4910, "total_steps": 12869, "loss": 0.9459, "learning_rate": 7.773762012837751e-06, "epoch": 0.3815370269640221, "percentage": 38.15, "elapsed_time": "3:47:28", "remaining_time": "6:08:43"} -{"current_steps": 4920, "total_steps": 12869, "loss": 0.9355, "learning_rate": 7.762467701840914e-06, "epoch": 0.38231408811873496, "percentage": 38.23, "elapsed_time": "3:47:58", "remaining_time": "6:08:20"} -{"current_steps": 4930, "total_steps": 12869, "loss": 0.8749, "learning_rate": 7.751153065890284e-06, "epoch": 0.38309114927344784, "percentage": 38.31, "elapsed_time": "3:48:25", "remaining_time": "6:07:50"} -{"current_steps": 4940, "total_steps": 12869, "loss": 0.9385, "learning_rate": 7.739818188233693e-06, "epoch": 0.3838682104281607, "percentage": 38.39, "elapsed_time": "3:48:47", "remaining_time": "6:07:14"} -{"current_steps": 4950, "total_steps": 12869, "loss": 0.9565, "learning_rate": 7.728463152267905e-06, "epoch": 0.3846452715828736, "percentage": 38.46, "elapsed_time": "3:49:18", "remaining_time": "6:06:50"} -{"current_steps": 4960, "total_steps": 12869, "loss": 0.859, "learning_rate": 7.717088041538e-06, "epoch": 0.38542233273758647, "percentage": 38.54, "elapsed_time": "3:49:44", "remaining_time": "6:06:20"} -{"current_steps": 4970, "total_steps": 12869, "loss": 0.9319, "learning_rate": 7.705692939736754e-06, "epoch": 0.38619939389229935, "percentage": 38.62, "elapsed_time": "3:50:15", "remaining_time": "6:05:58"} -{"current_steps": 4980, "total_steps": 12869, "loss": 0.9563, "learning_rate": 7.694277930704035e-06, "epoch": 0.3869764550470122, "percentage": 38.7, "elapsed_time": "3:50:44", "remaining_time": "6:05:30"} -{"current_steps": 4990, "total_steps": 12869, "loss": 0.9563, "learning_rate": 7.682843098426173e-06, "epoch": 0.3877535162017251, "percentage": 38.78, "elapsed_time": "3:51:11", "remaining_time": "6:05:02"} -{"current_steps": 5000, "total_steps": 12869, "loss": 0.9262, "learning_rate": 7.671388527035353e-06, "epoch": 0.388530577356438, "percentage": 38.85, "elapsed_time": "3:51:38", "remaining_time": "6:04:33"} -{"current_steps": 5010, "total_steps": 12869, "loss": 0.9176, "learning_rate": 7.659914300808987e-06, "epoch": 0.38930763851115086, "percentage": 38.93, "elapsed_time": "3:52:04", "remaining_time": "6:04:02"} -{"current_steps": 5020, "total_steps": 12869, "loss": 1.0067, "learning_rate": 7.6484205041691e-06, "epoch": 0.3900846996658637, "percentage": 39.01, "elapsed_time": "3:52:32", "remaining_time": "6:03:35"} -{"current_steps": 5030, "total_steps": 12869, "loss": 0.9046, "learning_rate": 7.63690722168171e-06, "epoch": 0.39086176082057655, "percentage": 39.09, "elapsed_time": "3:53:02", "remaining_time": "6:03:10"} -{"current_steps": 5040, "total_steps": 12869, "loss": 0.9619, "learning_rate": 7.625374538056196e-06, "epoch": 0.39163882197528943, "percentage": 39.16, "elapsed_time": "3:53:33", "remaining_time": "6:02:47"} -{"current_steps": 5050, "total_steps": 12869, "loss": 0.9203, "learning_rate": 7.61382253814469e-06, "epoch": 0.3924158831300023, "percentage": 39.24, "elapsed_time": "3:53:56", "remaining_time": "6:02:13"} -{"current_steps": 5060, "total_steps": 12869, "loss": 0.9922, "learning_rate": 7.6022513069414375e-06, "epoch": 0.3931929442847152, "percentage": 39.32, "elapsed_time": "3:54:23", "remaining_time": "6:01:44"} -{"current_steps": 5070, "total_steps": 12869, "loss": 0.8563, "learning_rate": 7.5906609295821785e-06, "epoch": 0.39397000543942806, "percentage": 39.4, "elapsed_time": "3:54:53", "remaining_time": "6:01:19"} -{"current_steps": 5080, "total_steps": 12869, "loss": 0.8927, "learning_rate": 7.57905149134353e-06, "epoch": 0.39474706659414094, "percentage": 39.47, "elapsed_time": "3:55:19", "remaining_time": "6:00:48"} -{"current_steps": 5090, "total_steps": 12869, "loss": 0.8936, "learning_rate": 7.567423077642342e-06, "epoch": 0.3955241277488538, "percentage": 39.55, "elapsed_time": "3:55:40", "remaining_time": "6:00:11"} -{"current_steps": 5100, "total_steps": 12869, "loss": 0.93, "learning_rate": 7.555775774035077e-06, "epoch": 0.3963011889035667, "percentage": 39.63, "elapsed_time": "3:56:01", "remaining_time": "5:59:33"} -{"current_steps": 5110, "total_steps": 12869, "loss": 0.8723, "learning_rate": 7.544109666217186e-06, "epoch": 0.39707825005827957, "percentage": 39.71, "elapsed_time": "3:56:28", "remaining_time": "5:59:03"} -{"current_steps": 5120, "total_steps": 12869, "loss": 0.9019, "learning_rate": 7.532424840022468e-06, "epoch": 0.39785531121299245, "percentage": 39.79, "elapsed_time": "3:56:51", "remaining_time": "5:58:29"} -{"current_steps": 5130, "total_steps": 12869, "loss": 0.9229, "learning_rate": 7.520721381422444e-06, "epoch": 0.3986323723677053, "percentage": 39.86, "elapsed_time": "3:57:19", "remaining_time": "5:58:01"} -{"current_steps": 5140, "total_steps": 12869, "loss": 0.8897, "learning_rate": 7.5089993765257295e-06, "epoch": 0.3994094335224182, "percentage": 39.94, "elapsed_time": "3:57:48", "remaining_time": "5:57:35"} -{"current_steps": 5150, "total_steps": 12869, "loss": 0.8864, "learning_rate": 7.497258911577385e-06, "epoch": 0.4001864946771311, "percentage": 40.02, "elapsed_time": "3:58:16", "remaining_time": "5:57:08"} -{"current_steps": 5160, "total_steps": 12869, "loss": 0.8612, "learning_rate": 7.485500072958298e-06, "epoch": 0.40096355583184395, "percentage": 40.1, "elapsed_time": "3:58:43", "remaining_time": "5:56:38"} -{"current_steps": 5170, "total_steps": 12869, "loss": 0.9213, "learning_rate": 7.4737229471845384e-06, "epoch": 0.40174061698655683, "percentage": 40.17, "elapsed_time": "3:59:12", "remaining_time": "5:56:13"} -{"current_steps": 5180, "total_steps": 12869, "loss": 0.9266, "learning_rate": 7.46192762090673e-06, "epoch": 0.4025176781412697, "percentage": 40.25, "elapsed_time": "3:59:41", "remaining_time": "5:55:47"} -{"current_steps": 5190, "total_steps": 12869, "loss": 0.9065, "learning_rate": 7.450114180909396e-06, "epoch": 0.4032947392959826, "percentage": 40.33, "elapsed_time": "4:00:06", "remaining_time": "5:55:15"} -{"current_steps": 5200, "total_steps": 12869, "loss": 0.9056, "learning_rate": 7.438282714110346e-06, "epoch": 0.40407180045069546, "percentage": 40.41, "elapsed_time": "4:00:32", "remaining_time": "5:54:45"} -{"current_steps": 5210, "total_steps": 12869, "loss": 0.8398, "learning_rate": 7.4264333075600094e-06, "epoch": 0.40484886160540834, "percentage": 40.48, "elapsed_time": "4:01:04", "remaining_time": "5:54:23"} -{"current_steps": 5220, "total_steps": 12869, "loss": 0.8255, "learning_rate": 7.414566048440815e-06, "epoch": 0.4056259227601212, "percentage": 40.56, "elapsed_time": "4:01:35", "remaining_time": "5:54:00"} -{"current_steps": 5230, "total_steps": 12869, "loss": 0.9152, "learning_rate": 7.4026810240665455e-06, "epoch": 0.4064029839148341, "percentage": 40.64, "elapsed_time": "4:02:03", "remaining_time": "5:53:33"} -{"current_steps": 5240, "total_steps": 12869, "loss": 0.8518, "learning_rate": 7.390778321881684e-06, "epoch": 0.40718004506954697, "percentage": 40.72, "elapsed_time": "4:02:27", "remaining_time": "5:52:59"} -{"current_steps": 5250, "total_steps": 12869, "loss": 0.8828, "learning_rate": 7.378858029460785e-06, "epoch": 0.40795710622425985, "percentage": 40.8, "elapsed_time": "4:02:52", "remaining_time": "5:52:28"} -{"current_steps": 5260, "total_steps": 12869, "loss": 0.9044, "learning_rate": 7.366920234507819e-06, "epoch": 0.4087341673789727, "percentage": 40.87, "elapsed_time": "4:03:18", "remaining_time": "5:51:58"} -{"current_steps": 5270, "total_steps": 12869, "loss": 0.8711, "learning_rate": 7.354965024855536e-06, "epoch": 0.4095112285336856, "percentage": 40.95, "elapsed_time": "4:03:53", "remaining_time": "5:51:40"} -{"current_steps": 5280, "total_steps": 12869, "loss": 0.913, "learning_rate": 7.342992488464813e-06, "epoch": 0.4102882896883985, "percentage": 41.03, "elapsed_time": "4:04:25", "remaining_time": "5:51:18"} -{"current_steps": 5290, "total_steps": 12869, "loss": 0.8492, "learning_rate": 7.331002713424012e-06, "epoch": 0.41106535084311135, "percentage": 41.11, "elapsed_time": "4:04:50", "remaining_time": "5:50:47"} -{"current_steps": 5300, "total_steps": 12869, "loss": 0.8946, "learning_rate": 7.3189957879483235e-06, "epoch": 0.41184241199782423, "percentage": 41.18, "elapsed_time": "4:05:22", "remaining_time": "5:50:24"} -{"current_steps": 5310, "total_steps": 12869, "loss": 0.9577, "learning_rate": 7.3069718003791276e-06, "epoch": 0.4126194731525371, "percentage": 41.26, "elapsed_time": "4:05:49", "remaining_time": "5:49:57"} -{"current_steps": 5320, "total_steps": 12869, "loss": 0.8947, "learning_rate": 7.29493083918334e-06, "epoch": 0.41339653430725, "percentage": 41.34, "elapsed_time": "4:06:15", "remaining_time": "5:49:26"} -{"current_steps": 5330, "total_steps": 12869, "loss": 0.8438, "learning_rate": 7.282872992952757e-06, "epoch": 0.41417359546196286, "percentage": 41.42, "elapsed_time": "4:06:41", "remaining_time": "5:48:56"} -{"current_steps": 5340, "total_steps": 12869, "loss": 0.8194, "learning_rate": 7.270798350403407e-06, "epoch": 0.41495065661667574, "percentage": 41.5, "elapsed_time": "4:07:08", "remaining_time": "5:48:27"} -{"current_steps": 5350, "total_steps": 12869, "loss": 0.8634, "learning_rate": 7.2587070003749015e-06, "epoch": 0.4157277177713886, "percentage": 41.57, "elapsed_time": "4:07:38", "remaining_time": "5:48:02"} -{"current_steps": 5360, "total_steps": 12869, "loss": 0.8767, "learning_rate": 7.246599031829775e-06, "epoch": 0.4165047789261015, "percentage": 41.65, "elapsed_time": "4:08:02", "remaining_time": "5:47:29"} -{"current_steps": 5370, "total_steps": 12869, "loss": 0.8764, "learning_rate": 7.234474533852834e-06, "epoch": 0.41728184008081437, "percentage": 41.73, "elapsed_time": "4:08:35", "remaining_time": "5:47:08"} -{"current_steps": 5380, "total_steps": 12869, "loss": 0.9036, "learning_rate": 7.222333595650502e-06, "epoch": 0.41805890123552725, "percentage": 41.81, "elapsed_time": "4:09:00", "remaining_time": "5:46:37"} -{"current_steps": 5390, "total_steps": 12869, "loss": 0.8951, "learning_rate": 7.210176306550161e-06, "epoch": 0.4188359623902401, "percentage": 41.88, "elapsed_time": "4:09:31", "remaining_time": "5:46:14"} -{"current_steps": 5400, "total_steps": 12869, "loss": 0.8656, "learning_rate": 7.198002755999495e-06, "epoch": 0.419613023544953, "percentage": 41.96, "elapsed_time": "4:09:57", "remaining_time": "5:45:43"} -{"current_steps": 5410, "total_steps": 12869, "loss": 0.891, "learning_rate": 7.185813033565832e-06, "epoch": 0.4203900846996659, "percentage": 42.04, "elapsed_time": "4:10:19", "remaining_time": "5:45:08"} -{"current_steps": 5420, "total_steps": 12869, "loss": 0.9101, "learning_rate": 7.1736072289354875e-06, "epoch": 0.42116714585437875, "percentage": 42.12, "elapsed_time": "4:10:52", "remaining_time": "5:44:48"} -{"current_steps": 5430, "total_steps": 12869, "loss": 0.815, "learning_rate": 7.161385431913098e-06, "epoch": 0.42194420700909163, "percentage": 42.19, "elapsed_time": "4:11:18", "remaining_time": "5:44:17"} -{"current_steps": 5440, "total_steps": 12869, "loss": 0.8847, "learning_rate": 7.149147732420971e-06, "epoch": 0.4227212681638045, "percentage": 42.27, "elapsed_time": "4:11:50", "remaining_time": "5:43:55"} -{"current_steps": 5450, "total_steps": 12869, "loss": 0.8509, "learning_rate": 7.1368942204984094e-06, "epoch": 0.4234983293185174, "percentage": 42.35, "elapsed_time": "4:12:25", "remaining_time": "5:43:37"} -{"current_steps": 5460, "total_steps": 12869, "loss": 0.8748, "learning_rate": 7.124624986301062e-06, "epoch": 0.42427539047323026, "percentage": 42.43, "elapsed_time": "4:12:50", "remaining_time": "5:43:05"} -{"current_steps": 5470, "total_steps": 12869, "loss": 0.9175, "learning_rate": 7.112340120100255e-06, "epoch": 0.42505245162794314, "percentage": 42.51, "elapsed_time": "4:13:16", "remaining_time": "5:42:35"} -{"current_steps": 5480, "total_steps": 12869, "loss": 0.8612, "learning_rate": 7.100039712282323e-06, "epoch": 0.425829512782656, "percentage": 42.58, "elapsed_time": "4:13:42", "remaining_time": "5:42:05"} -{"current_steps": 5490, "total_steps": 12869, "loss": 0.868, "learning_rate": 7.0877238533479535e-06, "epoch": 0.4266065739373689, "percentage": 42.66, "elapsed_time": "4:14:14", "remaining_time": "5:41:43"} -{"current_steps": 5500, "total_steps": 12869, "loss": 0.9019, "learning_rate": 7.075392633911513e-06, "epoch": 0.42738363509208177, "percentage": 42.74, "elapsed_time": "4:14:38", "remaining_time": "5:41:10"} -{"current_steps": 5510, "total_steps": 12869, "loss": 0.89, "learning_rate": 7.063046144700383e-06, "epoch": 0.42816069624679465, "percentage": 42.82, "elapsed_time": "4:15:07", "remaining_time": "5:40:43"} -{"current_steps": 5520, "total_steps": 12869, "loss": 0.8953, "learning_rate": 7.050684476554299e-06, "epoch": 0.4289377574015075, "percentage": 42.89, "elapsed_time": "4:15:32", "remaining_time": "5:40:12"} -{"current_steps": 5530, "total_steps": 12869, "loss": 0.8996, "learning_rate": 7.038307720424668e-06, "epoch": 0.4297148185562204, "percentage": 42.97, "elapsed_time": "4:16:02", "remaining_time": "5:39:47"} -{"current_steps": 5540, "total_steps": 12869, "loss": 0.8625, "learning_rate": 7.025915967373911e-06, "epoch": 0.4304918797109332, "percentage": 43.05, "elapsed_time": "4:16:31", "remaining_time": "5:39:21"} -{"current_steps": 5550, "total_steps": 12869, "loss": 0.7744, "learning_rate": 7.013509308574788e-06, "epoch": 0.4312689408656461, "percentage": 43.13, "elapsed_time": "4:17:03", "remaining_time": "5:39:00"} -{"current_steps": 5560, "total_steps": 12869, "loss": 0.8442, "learning_rate": 7.001087835309734e-06, "epoch": 0.432046002020359, "percentage": 43.2, "elapsed_time": "4:17:27", "remaining_time": "5:38:27"} -{"current_steps": 5570, "total_steps": 12869, "loss": 0.841, "learning_rate": 6.988651638970175e-06, "epoch": 0.43282306317507185, "percentage": 43.28, "elapsed_time": "4:18:02", "remaining_time": "5:38:09"} -{"current_steps": 5580, "total_steps": 12869, "loss": 0.9147, "learning_rate": 6.976200811055867e-06, "epoch": 0.43360012432978473, "percentage": 43.36, "elapsed_time": "4:18:29", "remaining_time": "5:37:39"} -{"current_steps": 5590, "total_steps": 12869, "loss": 0.8256, "learning_rate": 6.963735443174213e-06, "epoch": 0.4343771854844976, "percentage": 43.44, "elapsed_time": "4:18:58", "remaining_time": "5:37:12"} -{"current_steps": 5600, "total_steps": 12869, "loss": 0.8467, "learning_rate": 6.9512556270395996e-06, "epoch": 0.4351542466392105, "percentage": 43.52, "elapsed_time": "4:19:25", "remaining_time": "5:36:44"} -{"current_steps": 5610, "total_steps": 12869, "loss": 0.8628, "learning_rate": 6.938761454472718e-06, "epoch": 0.43593130779392336, "percentage": 43.59, "elapsed_time": "4:19:50", "remaining_time": "5:36:13"} -{"current_steps": 5620, "total_steps": 12869, "loss": 0.8008, "learning_rate": 6.926253017399882e-06, "epoch": 0.43670836894863624, "percentage": 43.67, "elapsed_time": "4:20:16", "remaining_time": "5:35:42"} -{"current_steps": 5630, "total_steps": 12869, "loss": 0.8434, "learning_rate": 6.913730407852359e-06, "epoch": 0.4374854301033491, "percentage": 43.75, "elapsed_time": "4:20:43", "remaining_time": "5:35:14"} -{"current_steps": 5640, "total_steps": 12869, "loss": 0.9165, "learning_rate": 6.9011937179656956e-06, "epoch": 0.438262491258062, "percentage": 43.83, "elapsed_time": "4:21:09", "remaining_time": "5:34:44"} -{"current_steps": 5650, "total_steps": 12869, "loss": 0.9012, "learning_rate": 6.888643039979025e-06, "epoch": 0.43903955241277487, "percentage": 43.9, "elapsed_time": "4:21:31", "remaining_time": "5:34:08"} -{"current_steps": 5660, "total_steps": 12869, "loss": 0.8585, "learning_rate": 6.8760784662344085e-06, "epoch": 0.43981661356748775, "percentage": 43.98, "elapsed_time": "4:21:54", "remaining_time": "5:33:35"} -{"current_steps": 5670, "total_steps": 12869, "loss": 0.8402, "learning_rate": 6.863500089176141e-06, "epoch": 0.4405936747222006, "percentage": 44.06, "elapsed_time": "4:22:26", "remaining_time": "5:33:12"} -{"current_steps": 5680, "total_steps": 12869, "loss": 0.8527, "learning_rate": 6.850908001350076e-06, "epoch": 0.4413707358769135, "percentage": 44.14, "elapsed_time": "4:22:54", "remaining_time": "5:32:45"} -{"current_steps": 5690, "total_steps": 12869, "loss": 0.8888, "learning_rate": 6.838302295402944e-06, "epoch": 0.4421477970316264, "percentage": 44.21, "elapsed_time": "4:23:23", "remaining_time": "5:32:19"} -{"current_steps": 5700, "total_steps": 12869, "loss": 0.8213, "learning_rate": 6.825683064081673e-06, "epoch": 0.44292485818633925, "percentage": 44.29, "elapsed_time": "4:23:44", "remaining_time": "5:31:42"} -{"current_steps": 5710, "total_steps": 12869, "loss": 0.8079, "learning_rate": 6.813050400232705e-06, "epoch": 0.44370191934105213, "percentage": 44.37, "elapsed_time": "4:24:14", "remaining_time": "5:31:17"} -{"current_steps": 5720, "total_steps": 12869, "loss": 0.8429, "learning_rate": 6.800404396801309e-06, "epoch": 0.444478980495765, "percentage": 44.45, "elapsed_time": "4:24:45", "remaining_time": "5:30:53"} -{"current_steps": 5730, "total_steps": 12869, "loss": 0.8214, "learning_rate": 6.787745146830903e-06, "epoch": 0.4452560416504779, "percentage": 44.53, "elapsed_time": "4:25:12", "remaining_time": "5:30:24"} -{"current_steps": 5740, "total_steps": 12869, "loss": 0.7911, "learning_rate": 6.775072743462368e-06, "epoch": 0.44603310280519076, "percentage": 44.6, "elapsed_time": "4:25:42", "remaining_time": "5:30:00"} -{"current_steps": 5750, "total_steps": 12869, "loss": 0.8339, "learning_rate": 6.762387279933355e-06, "epoch": 0.44681016395990364, "percentage": 44.68, "elapsed_time": "4:26:12", "remaining_time": "5:29:35"} -{"current_steps": 5760, "total_steps": 12869, "loss": 0.7772, "learning_rate": 6.749688849577616e-06, "epoch": 0.4475872251146165, "percentage": 44.76, "elapsed_time": "4:26:42", "remaining_time": "5:29:10"} -{"current_steps": 5770, "total_steps": 12869, "loss": 0.82, "learning_rate": 6.736977545824299e-06, "epoch": 0.4483642862693294, "percentage": 44.84, "elapsed_time": "4:27:13", "remaining_time": "5:28:45"} -{"current_steps": 5780, "total_steps": 12869, "loss": 0.7768, "learning_rate": 6.72425346219727e-06, "epoch": 0.44914134742404227, "percentage": 44.91, "elapsed_time": "4:27:37", "remaining_time": "5:28:14"} -{"current_steps": 5790, "total_steps": 12869, "loss": 0.874, "learning_rate": 6.711516692314426e-06, "epoch": 0.44991840857875515, "percentage": 44.99, "elapsed_time": "4:28:00", "remaining_time": "5:27:40"} -{"current_steps": 5800, "total_steps": 12869, "loss": 0.8542, "learning_rate": 6.698767329887001e-06, "epoch": 0.450695469733468, "percentage": 45.07, "elapsed_time": "4:28:28", "remaining_time": "5:27:12"} -{"current_steps": 5810, "total_steps": 12869, "loss": 0.8054, "learning_rate": 6.686005468718879e-06, "epoch": 0.4514725308881809, "percentage": 45.15, "elapsed_time": "4:28:52", "remaining_time": "5:26:41"} -{"current_steps": 5820, "total_steps": 12869, "loss": 0.7824, "learning_rate": 6.673231202705906e-06, "epoch": 0.4522495920428938, "percentage": 45.22, "elapsed_time": "4:29:23", "remaining_time": "5:26:16"} -{"current_steps": 5830, "total_steps": 12869, "loss": 0.7816, "learning_rate": 6.660444625835194e-06, "epoch": 0.45302665319760665, "percentage": 45.3, "elapsed_time": "4:29:49", "remaining_time": "5:25:46"} -{"current_steps": 5840, "total_steps": 12869, "loss": 0.8073, "learning_rate": 6.647645832184437e-06, "epoch": 0.45380371435231953, "percentage": 45.38, "elapsed_time": "4:30:19", "remaining_time": "5:25:21"} -{"current_steps": 5850, "total_steps": 12869, "loss": 0.7702, "learning_rate": 6.634834915921211e-06, "epoch": 0.4545807755070324, "percentage": 45.46, "elapsed_time": "4:30:49", "remaining_time": "5:24:56"} -{"current_steps": 5860, "total_steps": 12869, "loss": 0.8115, "learning_rate": 6.6220119713022855e-06, "epoch": 0.4553578366617453, "percentage": 45.54, "elapsed_time": "4:31:18", "remaining_time": "5:24:30"} -{"current_steps": 5870, "total_steps": 12869, "loss": 0.8586, "learning_rate": 6.609177092672927e-06, "epoch": 0.45613489781645816, "percentage": 45.61, "elapsed_time": "4:31:48", "remaining_time": "5:24:05"} -{"current_steps": 5880, "total_steps": 12869, "loss": 0.8145, "learning_rate": 6.596330374466212e-06, "epoch": 0.45691195897117104, "percentage": 45.69, "elapsed_time": "4:32:19", "remaining_time": "5:23:41"} -{"current_steps": 5890, "total_steps": 12869, "loss": 0.7983, "learning_rate": 6.5834719112023215e-06, "epoch": 0.4576890201258839, "percentage": 45.77, "elapsed_time": "4:32:48", "remaining_time": "5:23:14"} -{"current_steps": 5900, "total_steps": 12869, "loss": 0.8798, "learning_rate": 6.570601797487854e-06, "epoch": 0.4584660812805968, "percentage": 45.85, "elapsed_time": "4:33:11", "remaining_time": "5:22:41"} -{"current_steps": 5910, "total_steps": 12869, "loss": 0.8541, "learning_rate": 6.557720128015127e-06, "epoch": 0.45924314243530967, "percentage": 45.92, "elapsed_time": "4:33:42", "remaining_time": "5:22:17"} -{"current_steps": 5920, "total_steps": 12869, "loss": 0.8198, "learning_rate": 6.544826997561479e-06, "epoch": 0.46002020359002255, "percentage": 46.0, "elapsed_time": "4:34:03", "remaining_time": "5:21:41"} -{"current_steps": 5930, "total_steps": 12869, "loss": 0.7833, "learning_rate": 6.531922500988572e-06, "epoch": 0.4607972647447354, "percentage": 46.08, "elapsed_time": "4:34:31", "remaining_time": "5:21:14"} -{"current_steps": 5940, "total_steps": 12869, "loss": 0.8182, "learning_rate": 6.519006733241697e-06, "epoch": 0.4615743258994483, "percentage": 46.16, "elapsed_time": "4:35:00", "remaining_time": "5:20:48"} -{"current_steps": 5950, "total_steps": 12869, "loss": 0.8258, "learning_rate": 6.506079789349074e-06, "epoch": 0.4623513870541612, "percentage": 46.24, "elapsed_time": "4:35:28", "remaining_time": "5:20:20"} -{"current_steps": 5960, "total_steps": 12869, "loss": 0.9173, "learning_rate": 6.493141764421145e-06, "epoch": 0.46312844820887406, "percentage": 46.31, "elapsed_time": "4:35:50", "remaining_time": "5:19:45"} -{"current_steps": 5970, "total_steps": 12869, "loss": 0.8255, "learning_rate": 6.48019275364989e-06, "epoch": 0.46390550936358693, "percentage": 46.39, "elapsed_time": "4:36:17", "remaining_time": "5:19:17"} -{"current_steps": 5980, "total_steps": 12869, "loss": 0.838, "learning_rate": 6.46723285230811e-06, "epoch": 0.4646825705182998, "percentage": 46.47, "elapsed_time": "4:36:44", "remaining_time": "5:18:47"} -{"current_steps": 5990, "total_steps": 12869, "loss": 0.7882, "learning_rate": 6.454262155748741e-06, "epoch": 0.4654596316730127, "percentage": 46.55, "elapsed_time": "4:37:07", "remaining_time": "5:18:15"} -{"current_steps": 6000, "total_steps": 12869, "loss": 0.8379, "learning_rate": 6.4412807594041396e-06, "epoch": 0.46623669282772556, "percentage": 46.62, "elapsed_time": "4:37:34", "remaining_time": "5:17:47"} -{"current_steps": 6010, "total_steps": 12869, "loss": 0.8245, "learning_rate": 6.428288758785387e-06, "epoch": 0.46701375398243844, "percentage": 46.7, "elapsed_time": "4:38:03", "remaining_time": "5:17:20"} -{"current_steps": 6020, "total_steps": 12869, "loss": 0.82, "learning_rate": 6.415286249481591e-06, "epoch": 0.4677908151371513, "percentage": 46.78, "elapsed_time": "4:38:29", "remaining_time": "5:16:50"} -{"current_steps": 6030, "total_steps": 12869, "loss": 0.7297, "learning_rate": 6.402273327159169e-06, "epoch": 0.4685678762918642, "percentage": 46.86, "elapsed_time": "4:38:55", "remaining_time": "5:16:20"} -{"current_steps": 6040, "total_steps": 12869, "loss": 0.8095, "learning_rate": 6.389250087561162e-06, "epoch": 0.46934493744657707, "percentage": 46.93, "elapsed_time": "4:39:25", "remaining_time": "5:15:55"} -{"current_steps": 6050, "total_steps": 12869, "loss": 0.7832, "learning_rate": 6.376216626506513e-06, "epoch": 0.47012199860128995, "percentage": 47.01, "elapsed_time": "4:39:56", "remaining_time": "5:15:31"} -{"current_steps": 6060, "total_steps": 12869, "loss": 0.8725, "learning_rate": 6.363173039889373e-06, "epoch": 0.4708990597560028, "percentage": 47.09, "elapsed_time": "4:40:25", "remaining_time": "5:15:05"} -{"current_steps": 6070, "total_steps": 12869, "loss": 0.8634, "learning_rate": 6.350119423678391e-06, "epoch": 0.47167612091071565, "percentage": 47.17, "elapsed_time": "4:40:50", "remaining_time": "5:14:34"} -{"current_steps": 6080, "total_steps": 12869, "loss": 0.792, "learning_rate": 6.3370558739160096e-06, "epoch": 0.4724531820654285, "percentage": 47.25, "elapsed_time": "4:41:23", "remaining_time": "5:14:12"} -{"current_steps": 6090, "total_steps": 12869, "loss": 0.8393, "learning_rate": 6.32398248671776e-06, "epoch": 0.4732302432201414, "percentage": 47.32, "elapsed_time": "4:41:52", "remaining_time": "5:13:46"} -{"current_steps": 6100, "total_steps": 12869, "loss": 0.8546, "learning_rate": 6.310899358271549e-06, "epoch": 0.4740073043748543, "percentage": 47.4, "elapsed_time": "4:42:24", "remaining_time": "5:13:22"} -{"current_steps": 6110, "total_steps": 12869, "loss": 0.8002, "learning_rate": 6.2978065848369594e-06, "epoch": 0.47478436552956715, "percentage": 47.48, "elapsed_time": "4:42:47", "remaining_time": "5:12:50"} -{"current_steps": 6120, "total_steps": 12869, "loss": 0.8221, "learning_rate": 6.284704262744532e-06, "epoch": 0.47556142668428003, "percentage": 47.56, "elapsed_time": "4:43:16", "remaining_time": "5:12:23"} -{"current_steps": 6130, "total_steps": 12869, "loss": 0.806, "learning_rate": 6.271592488395064e-06, "epoch": 0.4763384878389929, "percentage": 47.63, "elapsed_time": "4:43:45", "remaining_time": "5:11:56"} -{"current_steps": 6140, "total_steps": 12869, "loss": 0.8486, "learning_rate": 6.2584713582589015e-06, "epoch": 0.4771155489937058, "percentage": 47.71, "elapsed_time": "4:44:10", "remaining_time": "5:11:25"} -{"current_steps": 6150, "total_steps": 12869, "loss": 0.7994, "learning_rate": 6.2453409688752244e-06, "epoch": 0.47789261014841866, "percentage": 47.79, "elapsed_time": "4:44:41", "remaining_time": "5:11:01"} -{"current_steps": 6160, "total_steps": 12869, "loss": 0.7856, "learning_rate": 6.232201416851332e-06, "epoch": 0.47866967130313154, "percentage": 47.87, "elapsed_time": "4:45:14", "remaining_time": "5:10:40"} -{"current_steps": 6170, "total_steps": 12869, "loss": 0.8543, "learning_rate": 6.219052798861948e-06, "epoch": 0.4794467324578444, "percentage": 47.94, "elapsed_time": "4:45:40", "remaining_time": "5:10:09"} -{"current_steps": 6180, "total_steps": 12869, "loss": 0.8354, "learning_rate": 6.205895211648489e-06, "epoch": 0.4802237936125573, "percentage": 48.02, "elapsed_time": "4:46:05", "remaining_time": "5:09:39"} -{"current_steps": 6190, "total_steps": 12869, "loss": 0.936, "learning_rate": 6.192728752018373e-06, "epoch": 0.48100085476727017, "percentage": 48.1, "elapsed_time": "4:46:26", "remaining_time": "5:09:03"} -{"current_steps": 6200, "total_steps": 12869, "loss": 0.7728, "learning_rate": 6.179553516844291e-06, "epoch": 0.48177791592198305, "percentage": 48.18, "elapsed_time": "4:46:49", "remaining_time": "5:08:30"} -{"current_steps": 6210, "total_steps": 12869, "loss": 0.8029, "learning_rate": 6.1663696030635e-06, "epoch": 0.4825549770766959, "percentage": 48.26, "elapsed_time": "4:47:26", "remaining_time": "5:08:13"} -{"current_steps": 6220, "total_steps": 12869, "loss": 0.8078, "learning_rate": 6.153177107677112e-06, "epoch": 0.4833320382314088, "percentage": 48.33, "elapsed_time": "4:47:55", "remaining_time": "5:07:46"} -{"current_steps": 6230, "total_steps": 12869, "loss": 0.8084, "learning_rate": 6.139976127749381e-06, "epoch": 0.4841090993861217, "percentage": 48.41, "elapsed_time": "4:48:21", "remaining_time": "5:07:17"} -{"current_steps": 6240, "total_steps": 12869, "loss": 0.8284, "learning_rate": 6.126766760406982e-06, "epoch": 0.48488616054083455, "percentage": 48.49, "elapsed_time": "4:48:50", "remaining_time": "5:06:50"} -{"current_steps": 6250, "total_steps": 12869, "loss": 0.8658, "learning_rate": 6.1135491028383e-06, "epoch": 0.48566322169554743, "percentage": 48.57, "elapsed_time": "4:49:19", "remaining_time": "5:06:24"} -{"current_steps": 6260, "total_steps": 12869, "loss": 0.8166, "learning_rate": 6.100323252292721e-06, "epoch": 0.4864402828502603, "percentage": 48.64, "elapsed_time": "4:49:43", "remaining_time": "5:05:53"} -{"current_steps": 6270, "total_steps": 12869, "loss": 0.7965, "learning_rate": 6.087089306079907e-06, "epoch": 0.4872173440049732, "percentage": 48.72, "elapsed_time": "4:50:10", "remaining_time": "5:05:23"} -{"current_steps": 6280, "total_steps": 12869, "loss": 0.8101, "learning_rate": 6.073847361569085e-06, "epoch": 0.48799440515968606, "percentage": 48.8, "elapsed_time": "4:50:37", "remaining_time": "5:04:55"} -{"current_steps": 6290, "total_steps": 12869, "loss": 0.8184, "learning_rate": 6.06059751618833e-06, "epoch": 0.48877146631439894, "percentage": 48.88, "elapsed_time": "4:51:06", "remaining_time": "5:04:28"} -{"current_steps": 6300, "total_steps": 12869, "loss": 0.801, "learning_rate": 6.047339867423849e-06, "epoch": 0.4895485274691118, "percentage": 48.95, "elapsed_time": "4:51:38", "remaining_time": "5:04:05"} -{"current_steps": 6310, "total_steps": 12869, "loss": 0.8388, "learning_rate": 6.034074512819259e-06, "epoch": 0.4903255886238247, "percentage": 49.03, "elapsed_time": "4:52:04", "remaining_time": "5:03:36"} -{"current_steps": 6320, "total_steps": 12869, "loss": 0.8018, "learning_rate": 6.020801549974879e-06, "epoch": 0.49110264977853757, "percentage": 49.11, "elapsed_time": "4:52:29", "remaining_time": "5:03:05"} -{"current_steps": 6330, "total_steps": 12869, "loss": 0.7304, "learning_rate": 6.007521076546999e-06, "epoch": 0.49187971093325045, "percentage": 49.19, "elapsed_time": "4:53:02", "remaining_time": "5:02:43"} -{"current_steps": 6340, "total_steps": 12869, "loss": 0.7499, "learning_rate": 5.994233190247174e-06, "epoch": 0.4926567720879633, "percentage": 49.27, "elapsed_time": "4:53:30", "remaining_time": "5:02:15"} -{"current_steps": 6350, "total_steps": 12869, "loss": 0.7569, "learning_rate": 5.9809379888414975e-06, "epoch": 0.4934338332426762, "percentage": 49.34, "elapsed_time": "4:53:54", "remaining_time": "5:01:43"} -{"current_steps": 6360, "total_steps": 12869, "loss": 0.816, "learning_rate": 5.967635570149881e-06, "epoch": 0.4942108943973891, "percentage": 49.42, "elapsed_time": "4:54:18", "remaining_time": "5:01:12"} -{"current_steps": 6370, "total_steps": 12869, "loss": 0.7609, "learning_rate": 5.9543260320453445e-06, "epoch": 0.49498795555210195, "percentage": 49.5, "elapsed_time": "4:54:42", "remaining_time": "5:00:40"} -{"current_steps": 6380, "total_steps": 12869, "loss": 0.7798, "learning_rate": 5.941009472453283e-06, "epoch": 0.49576501670681483, "percentage": 49.58, "elapsed_time": "4:55:10", "remaining_time": "5:00:13"} -{"current_steps": 6390, "total_steps": 12869, "loss": 0.8385, "learning_rate": 5.927685989350755e-06, "epoch": 0.4965420778615277, "percentage": 49.65, "elapsed_time": "4:55:30", "remaining_time": "4:59:37"} -{"current_steps": 6400, "total_steps": 12869, "loss": 0.7923, "learning_rate": 5.914355680765757e-06, "epoch": 0.4973191390162406, "percentage": 49.73, "elapsed_time": "4:55:56", "remaining_time": "4:59:07"} -{"current_steps": 6410, "total_steps": 12869, "loss": 0.7968, "learning_rate": 5.901018644776509e-06, "epoch": 0.49809620017095346, "percentage": 49.81, "elapsed_time": "4:56:25", "remaining_time": "4:58:41"} -{"current_steps": 6420, "total_steps": 12869, "loss": 0.8284, "learning_rate": 5.8876749795107214e-06, "epoch": 0.49887326132566634, "percentage": 49.89, "elapsed_time": "4:56:57", "remaining_time": "4:58:18"} -{"current_steps": 6430, "total_steps": 12869, "loss": 0.833, "learning_rate": 5.874324783144885e-06, "epoch": 0.4996503224803792, "percentage": 49.97, "elapsed_time": "4:57:22", "remaining_time": "4:57:47"} -{"current_steps": 6440, "total_steps": 12869, "loss": 0.7482, "learning_rate": 5.860968153903542e-06, "epoch": 0.5004273836350921, "percentage": 50.04, "elapsed_time": "4:57:52", "remaining_time": "4:57:22"} -{"current_steps": 6450, "total_steps": 12869, "loss": 0.7782, "learning_rate": 5.847605190058563e-06, "epoch": 0.501204444789805, "percentage": 50.12, "elapsed_time": "4:58:22", "remaining_time": "4:56:56"} -{"current_steps": 6460, "total_steps": 12869, "loss": 0.827, "learning_rate": 5.8342359899284286e-06, "epoch": 0.5019815059445178, "percentage": 50.2, "elapsed_time": "4:58:44", "remaining_time": "4:56:23"} -{"current_steps": 6470, "total_steps": 12869, "loss": 0.8045, "learning_rate": 5.8208606518775e-06, "epoch": 0.5027585670992307, "percentage": 50.28, "elapsed_time": "4:59:12", "remaining_time": "4:55:55"} -{"current_steps": 6480, "total_steps": 12869, "loss": 0.7561, "learning_rate": 5.807479274315302e-06, "epoch": 0.5035356282539436, "percentage": 50.35, "elapsed_time": "4:59:39", "remaining_time": "4:55:27"} -{"current_steps": 6490, "total_steps": 12869, "loss": 0.8068, "learning_rate": 5.79409195569579e-06, "epoch": 0.5043126894086565, "percentage": 50.43, "elapsed_time": "5:00:10", "remaining_time": "4:55:02"} -{"current_steps": 6500, "total_steps": 12869, "loss": 0.7549, "learning_rate": 5.780698794516636e-06, "epoch": 0.5050897505633694, "percentage": 50.51, "elapsed_time": "5:00:31", "remaining_time": "4:54:27"} -{"current_steps": 6510, "total_steps": 12869, "loss": 0.8041, "learning_rate": 5.767299889318496e-06, "epoch": 0.5058668117180822, "percentage": 50.59, "elapsed_time": "5:00:54", "remaining_time": "4:53:55"} -{"current_steps": 6520, "total_steps": 12869, "loss": 0.8521, "learning_rate": 5.75389533868429e-06, "epoch": 0.5066438728727951, "percentage": 50.66, "elapsed_time": "5:01:18", "remaining_time": "4:53:24"} -{"current_steps": 6530, "total_steps": 12869, "loss": 0.7317, "learning_rate": 5.7404852412384725e-06, "epoch": 0.507420934027508, "percentage": 50.74, "elapsed_time": "5:01:45", "remaining_time": "4:52:55"} -{"current_steps": 6540, "total_steps": 12869, "loss": 0.8322, "learning_rate": 5.72706969564631e-06, "epoch": 0.5081979951822209, "percentage": 50.82, "elapsed_time": "5:02:08", "remaining_time": "4:52:23"} -{"current_steps": 6550, "total_steps": 12869, "loss": 0.7625, "learning_rate": 5.713648800613154e-06, "epoch": 0.5089750563369337, "percentage": 50.9, "elapsed_time": "5:02:33", "remaining_time": "4:51:53"} -{"current_steps": 6560, "total_steps": 12869, "loss": 0.8423, "learning_rate": 5.700222654883712e-06, "epoch": 0.5097521174916466, "percentage": 50.98, "elapsed_time": "5:02:58", "remaining_time": "4:51:23"} -{"current_steps": 6570, "total_steps": 12869, "loss": 0.8007, "learning_rate": 5.686791357241329e-06, "epoch": 0.5105291786463595, "percentage": 51.05, "elapsed_time": "5:03:26", "remaining_time": "4:50:55"} -{"current_steps": 6580, "total_steps": 12869, "loss": 0.8672, "learning_rate": 5.673355006507251e-06, "epoch": 0.5113062398010724, "percentage": 51.13, "elapsed_time": "5:03:50", "remaining_time": "4:50:23"} -{"current_steps": 6590, "total_steps": 12869, "loss": 0.8016, "learning_rate": 5.659913701539903e-06, "epoch": 0.5120833009557852, "percentage": 51.21, "elapsed_time": "5:04:15", "remaining_time": "4:49:53"} -{"current_steps": 6600, "total_steps": 12869, "loss": 0.7564, "learning_rate": 5.646467541234162e-06, "epoch": 0.5128603621104981, "percentage": 51.29, "elapsed_time": "5:04:45", "remaining_time": "4:49:28"} -{"current_steps": 6610, "total_steps": 12869, "loss": 0.7744, "learning_rate": 5.633016624520627e-06, "epoch": 0.513637423265211, "percentage": 51.36, "elapsed_time": "5:05:11", "remaining_time": "4:48:58"} -{"current_steps": 6620, "total_steps": 12869, "loss": 0.7355, "learning_rate": 5.619561050364897e-06, "epoch": 0.5144144844199239, "percentage": 51.44, "elapsed_time": "5:05:40", "remaining_time": "4:48:32"} -{"current_steps": 6630, "total_steps": 12869, "loss": 0.7991, "learning_rate": 5.606100917766829e-06, "epoch": 0.5151915455746368, "percentage": 51.52, "elapsed_time": "5:06:07", "remaining_time": "4:48:04"} -{"current_steps": 6640, "total_steps": 12869, "loss": 0.7376, "learning_rate": 5.592636325759829e-06, "epoch": 0.5159686067293496, "percentage": 51.6, "elapsed_time": "5:06:36", "remaining_time": "4:47:38"} -{"current_steps": 6650, "total_steps": 12869, "loss": 0.7941, "learning_rate": 5.579167373410108e-06, "epoch": 0.5167456678840625, "percentage": 51.67, "elapsed_time": "5:07:07", "remaining_time": "4:47:13"} -{"current_steps": 6660, "total_steps": 12869, "loss": 0.8006, "learning_rate": 5.565694159815955e-06, "epoch": 0.5175227290387754, "percentage": 51.75, "elapsed_time": "5:07:32", "remaining_time": "4:46:42"} -{"current_steps": 6670, "total_steps": 12869, "loss": 0.807, "learning_rate": 5.552216784107022e-06, "epoch": 0.5182997901934883, "percentage": 51.83, "elapsed_time": "5:07:58", "remaining_time": "4:46:13"} -{"current_steps": 6680, "total_steps": 12869, "loss": 0.7846, "learning_rate": 5.538735345443573e-06, "epoch": 0.5190768513482011, "percentage": 51.91, "elapsed_time": "5:08:28", "remaining_time": "4:45:47"} -{"current_steps": 6690, "total_steps": 12869, "loss": 0.7988, "learning_rate": 5.525249943015771e-06, "epoch": 0.519853912502914, "percentage": 51.99, "elapsed_time": "5:08:49", "remaining_time": "4:45:14"} -{"current_steps": 6700, "total_steps": 12869, "loss": 0.7986, "learning_rate": 5.511760676042941e-06, "epoch": 0.5206309736576269, "percentage": 52.06, "elapsed_time": "5:09:21", "remaining_time": "4:44:50"} -{"current_steps": 6710, "total_steps": 12869, "loss": 0.7432, "learning_rate": 5.498267643772842e-06, "epoch": 0.5214080348123398, "percentage": 52.14, "elapsed_time": "5:09:49", "remaining_time": "4:44:23"} -{"current_steps": 6720, "total_steps": 12869, "loss": 0.7978, "learning_rate": 5.484770945480935e-06, "epoch": 0.5221850959670526, "percentage": 52.22, "elapsed_time": "5:10:17", "remaining_time": "4:43:55"} -{"current_steps": 6730, "total_steps": 12869, "loss": 0.7618, "learning_rate": 5.471270680469656e-06, "epoch": 0.5229621571217655, "percentage": 52.3, "elapsed_time": "5:10:44", "remaining_time": "4:43:26"} -{"current_steps": 6740, "total_steps": 12869, "loss": 0.7511, "learning_rate": 5.457766948067682e-06, "epoch": 0.5237392182764784, "percentage": 52.37, "elapsed_time": "5:11:08", "remaining_time": "4:42:56"} -{"current_steps": 6750, "total_steps": 12869, "loss": 0.7604, "learning_rate": 5.4442598476292e-06, "epoch": 0.5245162794311913, "percentage": 52.45, "elapsed_time": "5:11:38", "remaining_time": "4:42:30"} -{"current_steps": 6760, "total_steps": 12869, "loss": 0.7497, "learning_rate": 5.430749478533182e-06, "epoch": 0.5252933405859042, "percentage": 52.53, "elapsed_time": "5:12:07", "remaining_time": "4:42:03"} -{"current_steps": 6770, "total_steps": 12869, "loss": 0.7485, "learning_rate": 5.417235940182646e-06, "epoch": 0.526070401740617, "percentage": 52.61, "elapsed_time": "5:12:40", "remaining_time": "4:41:40"} -{"current_steps": 6780, "total_steps": 12869, "loss": 0.738, "learning_rate": 5.403719332003925e-06, "epoch": 0.5268474628953299, "percentage": 52.68, "elapsed_time": "5:13:11", "remaining_time": "4:41:16"} -{"current_steps": 6790, "total_steps": 12869, "loss": 0.7943, "learning_rate": 5.390199753445945e-06, "epoch": 0.5276245240500428, "percentage": 52.76, "elapsed_time": "5:13:40", "remaining_time": "4:40:49"} -{"current_steps": 6800, "total_steps": 12869, "loss": 0.7842, "learning_rate": 5.376677303979481e-06, "epoch": 0.5284015852047557, "percentage": 52.84, "elapsed_time": "5:14:06", "remaining_time": "4:40:20"} -{"current_steps": 6810, "total_steps": 12869, "loss": 0.7973, "learning_rate": 5.3631520830964335e-06, "epoch": 0.5291786463594685, "percentage": 52.92, "elapsed_time": "5:14:34", "remaining_time": "4:39:52"} -{"current_steps": 6820, "total_steps": 12869, "loss": 0.7236, "learning_rate": 5.349624190309095e-06, "epoch": 0.5299557075141814, "percentage": 53.0, "elapsed_time": "5:15:01", "remaining_time": "4:39:24"} -{"current_steps": 6830, "total_steps": 12869, "loss": 0.7575, "learning_rate": 5.3360937251494145e-06, "epoch": 0.5307327686688943, "percentage": 53.07, "elapsed_time": "5:15:26", "remaining_time": "4:38:54"} -{"current_steps": 6840, "total_steps": 12869, "loss": 0.7508, "learning_rate": 5.322560787168266e-06, "epoch": 0.5315098298236072, "percentage": 53.15, "elapsed_time": "5:15:51", "remaining_time": "4:38:24"} -{"current_steps": 6850, "total_steps": 12869, "loss": 0.7538, "learning_rate": 5.30902547593472e-06, "epoch": 0.53228689097832, "percentage": 53.23, "elapsed_time": "5:16:23", "remaining_time": "4:38:00"} -{"current_steps": 6860, "total_steps": 12869, "loss": 0.7554, "learning_rate": 5.29548789103531e-06, "epoch": 0.5330639521330328, "percentage": 53.31, "elapsed_time": "5:16:44", "remaining_time": "4:37:26"} -{"current_steps": 6870, "total_steps": 12869, "loss": 0.7584, "learning_rate": 5.281948132073293e-06, "epoch": 0.5338410132877457, "percentage": 53.38, "elapsed_time": "5:17:11", "remaining_time": "4:36:58"} -{"current_steps": 6880, "total_steps": 12869, "loss": 0.7961, "learning_rate": 5.2684062986679245e-06, "epoch": 0.5346180744424586, "percentage": 53.46, "elapsed_time": "5:17:46", "remaining_time": "4:36:37"} -{"current_steps": 6890, "total_steps": 12869, "loss": 0.7608, "learning_rate": 5.254862490453723e-06, "epoch": 0.5353951355971714, "percentage": 53.54, "elapsed_time": "5:18:11", "remaining_time": "4:36:07"} -{"current_steps": 6900, "total_steps": 12869, "loss": 0.7328, "learning_rate": 5.241316807079735e-06, "epoch": 0.5361721967518843, "percentage": 53.62, "elapsed_time": "5:18:40", "remaining_time": "4:35:40"} -{"current_steps": 6910, "total_steps": 12869, "loss": 0.7254, "learning_rate": 5.227769348208808e-06, "epoch": 0.5369492579065972, "percentage": 53.69, "elapsed_time": "5:19:08", "remaining_time": "4:35:12"} -{"current_steps": 6920, "total_steps": 12869, "loss": 0.7281, "learning_rate": 5.214220213516849e-06, "epoch": 0.5377263190613101, "percentage": 53.77, "elapsed_time": "5:19:38", "remaining_time": "4:34:47"} -{"current_steps": 6930, "total_steps": 12869, "loss": 0.738, "learning_rate": 5.200669502692092e-06, "epoch": 0.538503380216023, "percentage": 53.85, "elapsed_time": "5:20:03", "remaining_time": "4:34:17"} -{"current_steps": 6940, "total_steps": 12869, "loss": 0.7477, "learning_rate": 5.187117315434374e-06, "epoch": 0.5392804413707358, "percentage": 53.93, "elapsed_time": "5:20:31", "remaining_time": "4:33:50"} -{"current_steps": 6950, "total_steps": 12869, "loss": 0.8348, "learning_rate": 5.173563751454393e-06, "epoch": 0.5400575025254487, "percentage": 54.01, "elapsed_time": "5:20:58", "remaining_time": "4:33:21"} -{"current_steps": 6960, "total_steps": 12869, "loss": 0.7506, "learning_rate": 5.160008910472971e-06, "epoch": 0.5408345636801616, "percentage": 54.08, "elapsed_time": "5:21:24", "remaining_time": "4:32:52"} -{"current_steps": 6970, "total_steps": 12869, "loss": 0.7767, "learning_rate": 5.146452892220334e-06, "epoch": 0.5416116248348745, "percentage": 54.16, "elapsed_time": "5:21:50", "remaining_time": "4:32:23"} -{"current_steps": 6980, "total_steps": 12869, "loss": 0.6725, "learning_rate": 5.132895796435363e-06, "epoch": 0.5423886859895873, "percentage": 54.24, "elapsed_time": "5:22:20", "remaining_time": "4:31:57"} -{"current_steps": 6990, "total_steps": 12869, "loss": 0.7375, "learning_rate": 5.119337722864871e-06, "epoch": 0.5431657471443002, "percentage": 54.32, "elapsed_time": "5:22:47", "remaining_time": "4:31:29"} -{"current_steps": 7000, "total_steps": 12869, "loss": 0.7256, "learning_rate": 5.1057787712628645e-06, "epoch": 0.5439428082990131, "percentage": 54.39, "elapsed_time": "5:23:14", "remaining_time": "4:31:01"} -{"current_steps": 7010, "total_steps": 12869, "loss": 0.7524, "learning_rate": 5.092219041389809e-06, "epoch": 0.544719869453726, "percentage": 54.47, "elapsed_time": "5:23:40", "remaining_time": "4:30:32"} -{"current_steps": 7020, "total_steps": 12869, "loss": 0.7085, "learning_rate": 5.0786586330118936e-06, "epoch": 0.5454969306084388, "percentage": 54.55, "elapsed_time": "5:24:15", "remaining_time": "4:30:09"} -{"current_steps": 7030, "total_steps": 12869, "loss": 0.8073, "learning_rate": 5.065097645900305e-06, "epoch": 0.5462739917631517, "percentage": 54.63, "elapsed_time": "5:24:39", "remaining_time": "4:29:39"} -{"current_steps": 7040, "total_steps": 12869, "loss": 0.7485, "learning_rate": 5.051536179830485e-06, "epoch": 0.5470510529178646, "percentage": 54.71, "elapsed_time": "5:25:03", "remaining_time": "4:29:08"} -{"current_steps": 7050, "total_steps": 12869, "loss": 0.7352, "learning_rate": 5.0379743345814e-06, "epoch": 0.5478281140725775, "percentage": 54.78, "elapsed_time": "5:25:33", "remaining_time": "4:28:42"} -{"current_steps": 7060, "total_steps": 12869, "loss": 0.7624, "learning_rate": 5.024412209934806e-06, "epoch": 0.5486051752272904, "percentage": 54.86, "elapsed_time": "5:25:58", "remaining_time": "4:28:12"} -{"current_steps": 7070, "total_steps": 12869, "loss": 0.7218, "learning_rate": 5.010849905674513e-06, "epoch": 0.5493822363820032, "percentage": 54.94, "elapsed_time": "5:26:26", "remaining_time": "4:27:45"} -{"current_steps": 7080, "total_steps": 12869, "loss": 0.716, "learning_rate": 4.997287521585657e-06, "epoch": 0.5501592975367161, "percentage": 55.02, "elapsed_time": "5:26:58", "remaining_time": "4:27:20"} -{"current_steps": 7090, "total_steps": 12869, "loss": 0.7328, "learning_rate": 4.983725157453956e-06, "epoch": 0.550936358691429, "percentage": 55.09, "elapsed_time": "5:27:24", "remaining_time": "4:26:51"} -{"current_steps": 7100, "total_steps": 12869, "loss": 0.7748, "learning_rate": 4.9701629130649834e-06, "epoch": 0.5517134198461419, "percentage": 55.17, "elapsed_time": "5:27:51", "remaining_time": "4:26:23"} -{"current_steps": 7110, "total_steps": 12869, "loss": 0.7378, "learning_rate": 4.956600888203433e-06, "epoch": 0.5524904810008547, "percentage": 55.25, "elapsed_time": "5:28:16", "remaining_time": "4:25:54"} -{"current_steps": 7120, "total_steps": 12869, "loss": 0.7678, "learning_rate": 4.943039182652383e-06, "epoch": 0.5532675421555676, "percentage": 55.33, "elapsed_time": "5:28:48", "remaining_time": "4:25:29"} -{"current_steps": 7130, "total_steps": 12869, "loss": 0.8275, "learning_rate": 4.929477896192561e-06, "epoch": 0.5540446033102805, "percentage": 55.4, "elapsed_time": "5:29:11", "remaining_time": "4:24:58"} -{"current_steps": 7140, "total_steps": 12869, "loss": 0.7642, "learning_rate": 4.915917128601611e-06, "epoch": 0.5548216644649934, "percentage": 55.48, "elapsed_time": "5:29:35", "remaining_time": "4:24:27"} -{"current_steps": 7150, "total_steps": 12869, "loss": 0.7351, "learning_rate": 4.902356979653361e-06, "epoch": 0.5555987256197062, "percentage": 55.56, "elapsed_time": "5:30:04", "remaining_time": "4:24:00"} -{"current_steps": 7160, "total_steps": 12869, "loss": 0.7643, "learning_rate": 4.8887975491170845e-06, "epoch": 0.5563757867744191, "percentage": 55.64, "elapsed_time": "5:30:33", "remaining_time": "4:23:34"} -{"current_steps": 7170, "total_steps": 12869, "loss": 0.7172, "learning_rate": 4.875238936756774e-06, "epoch": 0.557152847929132, "percentage": 55.72, "elapsed_time": "5:31:04", "remaining_time": "4:23:08"} -{"current_steps": 7180, "total_steps": 12869, "loss": 0.7546, "learning_rate": 4.861681242330397e-06, "epoch": 0.5579299090838449, "percentage": 55.79, "elapsed_time": "5:31:30", "remaining_time": "4:22:39"} -{"current_steps": 7190, "total_steps": 12869, "loss": 0.7045, "learning_rate": 4.84812456558917e-06, "epoch": 0.5587069702385578, "percentage": 55.87, "elapsed_time": "5:31:53", "remaining_time": "4:22:08"} -{"current_steps": 7200, "total_steps": 12869, "loss": 0.7188, "learning_rate": 4.834569006276823e-06, "epoch": 0.5594840313932706, "percentage": 55.95, "elapsed_time": "5:32:21", "remaining_time": "4:21:40"} -{"current_steps": 7210, "total_steps": 12869, "loss": 0.7794, "learning_rate": 4.821014664128859e-06, "epoch": 0.5602610925479835, "percentage": 56.03, "elapsed_time": "5:32:47", "remaining_time": "4:21:12"} -{"current_steps": 7220, "total_steps": 12869, "loss": 0.7846, "learning_rate": 4.807461638871835e-06, "epoch": 0.5610381537026964, "percentage": 56.1, "elapsed_time": "5:33:12", "remaining_time": "4:20:42"} -{"current_steps": 7230, "total_steps": 12869, "loss": 0.7591, "learning_rate": 4.79391003022261e-06, "epoch": 0.5618152148574093, "percentage": 56.18, "elapsed_time": "5:33:38", "remaining_time": "4:20:13"} -{"current_steps": 7240, "total_steps": 12869, "loss": 0.7448, "learning_rate": 4.780359937887625e-06, "epoch": 0.5625922760121221, "percentage": 56.26, "elapsed_time": "5:34:08", "remaining_time": "4:19:47"} -{"current_steps": 7250, "total_steps": 12869, "loss": 0.7174, "learning_rate": 4.766811461562163e-06, "epoch": 0.563369337166835, "percentage": 56.34, "elapsed_time": "5:34:38", "remaining_time": "4:19:21"} -{"current_steps": 7260, "total_steps": 12869, "loss": 0.7098, "learning_rate": 4.753264700929619e-06, "epoch": 0.5641463983215479, "percentage": 56.41, "elapsed_time": "5:35:09", "remaining_time": "4:18:56"} -{"current_steps": 7270, "total_steps": 12869, "loss": 0.7222, "learning_rate": 4.739719755660761e-06, "epoch": 0.5649234594762608, "percentage": 56.49, "elapsed_time": "5:35:41", "remaining_time": "4:18:31"} -{"current_steps": 7280, "total_steps": 12869, "loss": 0.7493, "learning_rate": 4.726176725413004e-06, "epoch": 0.5657005206309736, "percentage": 56.57, "elapsed_time": "5:36:12", "remaining_time": "4:18:06"} -{"current_steps": 7290, "total_steps": 12869, "loss": 0.7132, "learning_rate": 4.712635709829672e-06, "epoch": 0.5664775817856865, "percentage": 56.65, "elapsed_time": "5:36:40", "remaining_time": "4:17:39"} -{"current_steps": 7300, "total_steps": 12869, "loss": 0.7768, "learning_rate": 4.699096808539264e-06, "epoch": 0.5672546429403994, "percentage": 56.73, "elapsed_time": "5:37:06", "remaining_time": "4:17:10"} -{"current_steps": 7310, "total_steps": 12869, "loss": 0.7114, "learning_rate": 4.685560121154729e-06, "epoch": 0.5680317040951123, "percentage": 56.8, "elapsed_time": "5:37:36", "remaining_time": "4:16:44"} -{"current_steps": 7320, "total_steps": 12869, "loss": 0.7542, "learning_rate": 4.672025747272721e-06, "epoch": 0.5688087652498252, "percentage": 56.88, "elapsed_time": "5:38:10", "remaining_time": "4:16:21"} -{"current_steps": 7330, "total_steps": 12869, "loss": 0.7154, "learning_rate": 4.658493786472874e-06, "epoch": 0.569585826404538, "percentage": 56.96, "elapsed_time": "5:38:41", "remaining_time": "4:15:55"} -{"current_steps": 7340, "total_steps": 12869, "loss": 0.7705, "learning_rate": 4.644964338317069e-06, "epoch": 0.5703628875592509, "percentage": 57.04, "elapsed_time": "5:39:05", "remaining_time": "4:15:25"} -{"current_steps": 7350, "total_steps": 12869, "loss": 0.7029, "learning_rate": 4.631437502348697e-06, "epoch": 0.5711399487139638, "percentage": 57.11, "elapsed_time": "5:39:35", "remaining_time": "4:14:59"} -{"current_steps": 7360, "total_steps": 12869, "loss": 0.752, "learning_rate": 4.617913378091935e-06, "epoch": 0.5719170098686767, "percentage": 57.19, "elapsed_time": "5:40:05", "remaining_time": "4:14:33"} -{"current_steps": 7370, "total_steps": 12869, "loss": 0.7961, "learning_rate": 4.604392065051003e-06, "epoch": 0.5726940710233895, "percentage": 57.27, "elapsed_time": "5:40:28", "remaining_time": "4:14:02"} -{"current_steps": 7380, "total_steps": 12869, "loss": 0.7682, "learning_rate": 4.590873662709441e-06, "epoch": 0.5734711321781024, "percentage": 57.35, "elapsed_time": "5:40:47", "remaining_time": "4:13:27"} -{"current_steps": 7390, "total_steps": 12869, "loss": 0.7377, "learning_rate": 4.577358270529371e-06, "epoch": 0.5742481933328153, "percentage": 57.42, "elapsed_time": "5:41:14", "remaining_time": "4:12:59"} -{"current_steps": 7400, "total_steps": 12869, "loss": 0.7215, "learning_rate": 4.5638459879507685e-06, "epoch": 0.5750252544875282, "percentage": 57.5, "elapsed_time": "5:41:46", "remaining_time": "4:12:35"} -{"current_steps": 7410, "total_steps": 12869, "loss": 0.7156, "learning_rate": 4.550336914390734e-06, "epoch": 0.575802315642241, "percentage": 57.58, "elapsed_time": "5:42:18", "remaining_time": "4:12:11"} -{"current_steps": 7420, "total_steps": 12869, "loss": 0.7144, "learning_rate": 4.536831149242752e-06, "epoch": 0.5765793767969539, "percentage": 57.66, "elapsed_time": "5:42:49", "remaining_time": "4:11:45"} -{"current_steps": 7430, "total_steps": 12869, "loss": 0.7531, "learning_rate": 4.5233287918759645e-06, "epoch": 0.5773564379516668, "percentage": 57.74, "elapsed_time": "5:43:17", "remaining_time": "4:11:18"} -{"current_steps": 7440, "total_steps": 12869, "loss": 0.7373, "learning_rate": 4.509829941634447e-06, "epoch": 0.5781334991063797, "percentage": 57.81, "elapsed_time": "5:43:45", "remaining_time": "4:10:50"} -{"current_steps": 7450, "total_steps": 12869, "loss": 0.7282, "learning_rate": 4.496334697836466e-06, "epoch": 0.5789105602610926, "percentage": 57.89, "elapsed_time": "5:44:12", "remaining_time": "4:10:22"} -{"current_steps": 7460, "total_steps": 12869, "loss": 0.7787, "learning_rate": 4.482843159773753e-06, "epoch": 0.5796876214158054, "percentage": 57.97, "elapsed_time": "5:44:43", "remaining_time": "4:09:56"} -{"current_steps": 7470, "total_steps": 12869, "loss": 0.6722, "learning_rate": 4.46935542671078e-06, "epoch": 0.5804646825705183, "percentage": 58.05, "elapsed_time": "5:45:12", "remaining_time": "4:09:30"} -{"current_steps": 7480, "total_steps": 12869, "loss": 0.774, "learning_rate": 4.455871597884016e-06, "epoch": 0.5812417437252312, "percentage": 58.12, "elapsed_time": "5:45:41", "remaining_time": "4:09:03"} -{"current_steps": 7490, "total_steps": 12869, "loss": 0.6699, "learning_rate": 4.4423917725012125e-06, "epoch": 0.5820188048799441, "percentage": 58.2, "elapsed_time": "5:46:14", "remaining_time": "4:08:39"} -{"current_steps": 7500, "total_steps": 12869, "loss": 0.6446, "learning_rate": 4.428916049740657e-06, "epoch": 0.5827958660346569, "percentage": 58.28, "elapsed_time": "5:46:42", "remaining_time": "4:08:11"} -{"current_steps": 7510, "total_steps": 12869, "loss": 0.7247, "learning_rate": 4.41544452875046e-06, "epoch": 0.5835729271893698, "percentage": 58.36, "elapsed_time": "5:47:03", "remaining_time": "4:07:39"} -{"current_steps": 7520, "total_steps": 12869, "loss": 0.6988, "learning_rate": 4.401977308647811e-06, "epoch": 0.5843499883440827, "percentage": 58.43, "elapsed_time": "5:47:28", "remaining_time": "4:07:09"} -{"current_steps": 7530, "total_steps": 12869, "loss": 0.7477, "learning_rate": 4.38851448851826e-06, "epoch": 0.5851270494987956, "percentage": 58.51, "elapsed_time": "5:47:57", "remaining_time": "4:06:42"} -{"current_steps": 7540, "total_steps": 12869, "loss": 0.6747, "learning_rate": 4.3750561674149815e-06, "epoch": 0.5859041106535084, "percentage": 58.59, "elapsed_time": "5:48:20", "remaining_time": "4:06:11"} -{"current_steps": 7550, "total_steps": 12869, "loss": 0.6934, "learning_rate": 4.3616024443580475e-06, "epoch": 0.5866811718082213, "percentage": 58.67, "elapsed_time": "5:48:51", "remaining_time": "4:05:45"} -{"current_steps": 7560, "total_steps": 12869, "loss": 0.7018, "learning_rate": 4.348153418333703e-06, "epoch": 0.5874582329629342, "percentage": 58.75, "elapsed_time": "5:49:23", "remaining_time": "4:05:21"} -{"current_steps": 7570, "total_steps": 12869, "loss": 0.7153, "learning_rate": 4.334709188293631e-06, "epoch": 0.5882352941176471, "percentage": 58.82, "elapsed_time": "5:49:51", "remaining_time": "4:04:53"} -{"current_steps": 7580, "total_steps": 12869, "loss": 0.7218, "learning_rate": 4.321269853154231e-06, "epoch": 0.58901235527236, "percentage": 58.9, "elapsed_time": "5:50:16", "remaining_time": "4:04:24"} -{"current_steps": 7590, "total_steps": 12869, "loss": 0.6635, "learning_rate": 4.307835511795883e-06, "epoch": 0.5897894164270728, "percentage": 58.98, "elapsed_time": "5:50:48", "remaining_time": "4:03:59"} -{"current_steps": 7600, "total_steps": 12869, "loss": 0.6768, "learning_rate": 4.294406263062235e-06, "epoch": 0.5905664775817857, "percentage": 59.06, "elapsed_time": "5:51:15", "remaining_time": "4:03:31"} -{"current_steps": 7610, "total_steps": 12869, "loss": 0.7471, "learning_rate": 4.280982205759453e-06, "epoch": 0.5913435387364986, "percentage": 59.13, "elapsed_time": "5:51:39", "remaining_time": "4:03:01"} -{"current_steps": 7620, "total_steps": 12869, "loss": 0.7309, "learning_rate": 4.267563438655517e-06, "epoch": 0.5921205998912115, "percentage": 59.21, "elapsed_time": "5:52:10", "remaining_time": "4:02:35"} -{"current_steps": 7630, "total_steps": 12869, "loss": 0.706, "learning_rate": 4.254150060479479e-06, "epoch": 0.5928976610459243, "percentage": 59.29, "elapsed_time": "5:52:36", "remaining_time": "4:02:06"} -{"current_steps": 7640, "total_steps": 12869, "loss": 0.7263, "learning_rate": 4.240742169920744e-06, "epoch": 0.5936747222006372, "percentage": 59.37, "elapsed_time": "5:53:02", "remaining_time": "4:01:38"} -{"current_steps": 7650, "total_steps": 12869, "loss": 0.6545, "learning_rate": 4.22733986562834e-06, "epoch": 0.5944517833553501, "percentage": 59.45, "elapsed_time": "5:53:31", "remaining_time": "4:01:10"} -{"current_steps": 7660, "total_steps": 12869, "loss": 0.7429, "learning_rate": 4.213943246210195e-06, "epoch": 0.595228844510063, "percentage": 59.52, "elapsed_time": "5:54:02", "remaining_time": "4:00:45"} -{"current_steps": 7670, "total_steps": 12869, "loss": 0.7398, "learning_rate": 4.200552410232411e-06, "epoch": 0.5960059056647758, "percentage": 59.6, "elapsed_time": "5:54:26", "remaining_time": "4:00:15"} -{"current_steps": 7680, "total_steps": 12869, "loss": 0.7473, "learning_rate": 4.187167456218536e-06, "epoch": 0.5967829668194887, "percentage": 59.68, "elapsed_time": "5:54:52", "remaining_time": "3:59:46"} -{"current_steps": 7690, "total_steps": 12869, "loss": 0.7005, "learning_rate": 4.173788482648841e-06, "epoch": 0.5975600279742016, "percentage": 59.76, "elapsed_time": "5:55:15", "remaining_time": "3:59:15"} -{"current_steps": 7700, "total_steps": 12869, "loss": 0.6452, "learning_rate": 4.1604155879595985e-06, "epoch": 0.5983370891289145, "percentage": 59.83, "elapsed_time": "5:55:40", "remaining_time": "3:58:45"} -{"current_steps": 7710, "total_steps": 12869, "loss": 0.7283, "learning_rate": 4.147048870542358e-06, "epoch": 0.5991141502836274, "percentage": 59.91, "elapsed_time": "5:56:04", "remaining_time": "3:58:15"} -{"current_steps": 7720, "total_steps": 12869, "loss": 0.6913, "learning_rate": 4.133688428743209e-06, "epoch": 0.5998912114383402, "percentage": 59.99, "elapsed_time": "5:56:28", "remaining_time": "3:57:45"} -{"current_steps": 7730, "total_steps": 12869, "loss": 0.6783, "learning_rate": 4.120334360862078e-06, "epoch": 0.6006682725930531, "percentage": 60.07, "elapsed_time": "5:56:51", "remaining_time": "3:57:14"} -{"current_steps": 7740, "total_steps": 12869, "loss": 0.7374, "learning_rate": 4.106986765151992e-06, "epoch": 0.601445333747766, "percentage": 60.14, "elapsed_time": "5:57:16", "remaining_time": "3:56:45"} -{"current_steps": 7750, "total_steps": 12869, "loss": 0.6704, "learning_rate": 4.093645739818357e-06, "epoch": 0.6022223949024789, "percentage": 60.22, "elapsed_time": "5:57:42", "remaining_time": "3:56:16"} -{"current_steps": 7760, "total_steps": 12869, "loss": 0.7583, "learning_rate": 4.080311383018239e-06, "epoch": 0.6029994560571917, "percentage": 60.3, "elapsed_time": "5:58:09", "remaining_time": "3:55:48"} -{"current_steps": 7770, "total_steps": 12869, "loss": 0.7552, "learning_rate": 4.06698379285964e-06, "epoch": 0.6037765172119046, "percentage": 60.38, "elapsed_time": "5:58:40", "remaining_time": "3:55:22"} -{"current_steps": 7780, "total_steps": 12869, "loss": 0.6704, "learning_rate": 4.0536630674007734e-06, "epoch": 0.6045535783666175, "percentage": 60.46, "elapsed_time": "5:59:07", "remaining_time": "3:54:54"} -{"current_steps": 7790, "total_steps": 12869, "loss": 0.7276, "learning_rate": 4.040349304649351e-06, "epoch": 0.6053306395213304, "percentage": 60.53, "elapsed_time": "5:59:34", "remaining_time": "3:54:26"} -{"current_steps": 7800, "total_steps": 12869, "loss": 0.7128, "learning_rate": 4.027042602561853e-06, "epoch": 0.6061077006760432, "percentage": 60.61, "elapsed_time": "6:00:00", "remaining_time": "3:53:57"} -{"current_steps": 7810, "total_steps": 12869, "loss": 0.7269, "learning_rate": 4.013743059042808e-06, "epoch": 0.6068847618307561, "percentage": 60.69, "elapsed_time": "6:00:24", "remaining_time": "3:53:27"} -{"current_steps": 7820, "total_steps": 12869, "loss": 0.6959, "learning_rate": 4.0004507719440795e-06, "epoch": 0.607661822985469, "percentage": 60.77, "elapsed_time": "6:00:53", "remaining_time": "3:53:00"} -{"current_steps": 7830, "total_steps": 12869, "loss": 0.7095, "learning_rate": 3.987165839064141e-06, "epoch": 0.6084388841401819, "percentage": 60.84, "elapsed_time": "6:01:19", "remaining_time": "3:52:31"} -{"current_steps": 7840, "total_steps": 12869, "loss": 0.676, "learning_rate": 3.973888358147353e-06, "epoch": 0.6092159452948948, "percentage": 60.92, "elapsed_time": "6:01:48", "remaining_time": "3:52:05"} -{"current_steps": 7850, "total_steps": 12869, "loss": 0.7426, "learning_rate": 3.9606184268832525e-06, "epoch": 0.6099930064496076, "percentage": 61.0, "elapsed_time": "6:02:14", "remaining_time": "3:51:36"} -{"current_steps": 7860, "total_steps": 12869, "loss": 0.6787, "learning_rate": 3.947356142905827e-06, "epoch": 0.6107700676043205, "percentage": 61.08, "elapsed_time": "6:02:44", "remaining_time": "3:51:10"} -{"current_steps": 7870, "total_steps": 12869, "loss": 0.6693, "learning_rate": 3.934101603792802e-06, "epoch": 0.6115471287590334, "percentage": 61.15, "elapsed_time": "6:03:11", "remaining_time": "3:50:41"} -{"current_steps": 7880, "total_steps": 12869, "loss": 0.6879, "learning_rate": 3.920854907064912e-06, "epoch": 0.6123241899137463, "percentage": 61.23, "elapsed_time": "6:03:37", "remaining_time": "3:50:12"} -{"current_steps": 7890, "total_steps": 12869, "loss": 0.7523, "learning_rate": 3.907616150185205e-06, "epoch": 0.6131012510684591, "percentage": 61.31, "elapsed_time": "6:03:58", "remaining_time": "3:49:41"} -{"current_steps": 7900, "total_steps": 12869, "loss": 0.6819, "learning_rate": 3.894385430558297e-06, "epoch": 0.613878312223172, "percentage": 61.39, "elapsed_time": "6:04:28", "remaining_time": "3:49:14"} -{"current_steps": 7910, "total_steps": 12869, "loss": 0.6757, "learning_rate": 3.881162845529678e-06, "epoch": 0.6146553733778849, "percentage": 61.47, "elapsed_time": "6:04:56", "remaining_time": "3:48:47"} -{"current_steps": 7920, "total_steps": 12869, "loss": 0.7311, "learning_rate": 3.867948492384983e-06, "epoch": 0.6154324345325977, "percentage": 61.54, "elapsed_time": "6:05:24", "remaining_time": "3:48:19"} -{"current_steps": 7930, "total_steps": 12869, "loss": 0.7413, "learning_rate": 3.854742468349283e-06, "epoch": 0.6162094956873105, "percentage": 61.62, "elapsed_time": "6:05:49", "remaining_time": "3:47:50"} -{"current_steps": 7940, "total_steps": 12869, "loss": 0.7886, "learning_rate": 3.841544870586369e-06, "epoch": 0.6169865568420234, "percentage": 61.7, "elapsed_time": "6:06:21", "remaining_time": "3:47:25"} -{"current_steps": 7950, "total_steps": 12869, "loss": 0.7118, "learning_rate": 3.828355796198029e-06, "epoch": 0.6177636179967363, "percentage": 61.78, "elapsed_time": "6:06:50", "remaining_time": "3:46:58"} -{"current_steps": 7960, "total_steps": 12869, "loss": 0.7093, "learning_rate": 3.815175342223349e-06, "epoch": 0.6185406791514492, "percentage": 61.85, "elapsed_time": "6:07:21", "remaining_time": "3:46:33"} -{"current_steps": 7970, "total_steps": 12869, "loss": 0.6963, "learning_rate": 3.80200360563798e-06, "epoch": 0.619317740306162, "percentage": 61.93, "elapsed_time": "6:07:49", "remaining_time": "3:46:05"} -{"current_steps": 7980, "total_steps": 12869, "loss": 0.6733, "learning_rate": 3.7888406833534447e-06, "epoch": 0.6200948014608749, "percentage": 62.01, "elapsed_time": "6:08:21", "remaining_time": "3:45:40"} -{"current_steps": 7990, "total_steps": 12869, "loss": 0.6608, "learning_rate": 3.7756866722164055e-06, "epoch": 0.6208718626155878, "percentage": 62.09, "elapsed_time": "6:08:52", "remaining_time": "3:45:14"} -{"current_steps": 8000, "total_steps": 12869, "loss": 0.6338, "learning_rate": 3.7625416690079674e-06, "epoch": 0.6216489237703007, "percentage": 62.16, "elapsed_time": "6:09:19", "remaining_time": "3:44:46"} -{"current_steps": 8010, "total_steps": 12869, "loss": 0.6696, "learning_rate": 3.749405770442954e-06, "epoch": 0.6224259849250136, "percentage": 62.24, "elapsed_time": "6:09:42", "remaining_time": "3:44:16"} -{"current_steps": 8020, "total_steps": 12869, "loss": 0.6059, "learning_rate": 3.7362790731692045e-06, "epoch": 0.6232030460797264, "percentage": 62.32, "elapsed_time": "6:10:16", "remaining_time": "3:43:52"} -{"current_steps": 8030, "total_steps": 12869, "loss": 0.7064, "learning_rate": 3.7231616737668587e-06, "epoch": 0.6239801072344393, "percentage": 62.4, "elapsed_time": "6:10:40", "remaining_time": "3:43:22"} -{"current_steps": 8040, "total_steps": 12869, "loss": 0.7594, "learning_rate": 3.710053668747644e-06, "epoch": 0.6247571683891522, "percentage": 62.48, "elapsed_time": "6:11:06", "remaining_time": "3:42:53"} -{"current_steps": 8050, "total_steps": 12869, "loss": 0.7473, "learning_rate": 3.696955154554174e-06, "epoch": 0.6255342295438651, "percentage": 62.55, "elapsed_time": "6:11:34", "remaining_time": "3:42:25"} -{"current_steps": 8060, "total_steps": 12869, "loss": 0.6737, "learning_rate": 3.6838662275592285e-06, "epoch": 0.6263112906985779, "percentage": 62.63, "elapsed_time": "6:12:00", "remaining_time": "3:41:57"} -{"current_steps": 8070, "total_steps": 12869, "loss": 0.6631, "learning_rate": 3.670786984065049e-06, "epoch": 0.6270883518532908, "percentage": 62.71, "elapsed_time": "6:12:24", "remaining_time": "3:41:27"} -{"current_steps": 8080, "total_steps": 12869, "loss": 0.6951, "learning_rate": 3.657717520302635e-06, "epoch": 0.6278654130080037, "percentage": 62.79, "elapsed_time": "6:12:50", "remaining_time": "3:40:59"} -{"current_steps": 8090, "total_steps": 12869, "loss": 0.6422, "learning_rate": 3.6446579324310283e-06, "epoch": 0.6286424741627166, "percentage": 62.86, "elapsed_time": "6:13:18", "remaining_time": "3:40:31"} -{"current_steps": 8100, "total_steps": 12869, "loss": 0.7278, "learning_rate": 3.6316083165366066e-06, "epoch": 0.6294195353174294, "percentage": 62.94, "elapsed_time": "6:13:45", "remaining_time": "3:40:03"} -{"current_steps": 8110, "total_steps": 12869, "loss": 0.7085, "learning_rate": 3.61856876863238e-06, "epoch": 0.6301965964721423, "percentage": 63.02, "elapsed_time": "6:14:11", "remaining_time": "3:39:34"} -{"current_steps": 8120, "total_steps": 12869, "loss": 0.6833, "learning_rate": 3.6055393846572863e-06, "epoch": 0.6309736576268552, "percentage": 63.1, "elapsed_time": "6:14:38", "remaining_time": "3:39:06"} -{"current_steps": 8130, "total_steps": 12869, "loss": 0.6525, "learning_rate": 3.592520260475474e-06, "epoch": 0.6317507187815681, "percentage": 63.18, "elapsed_time": "6:15:10", "remaining_time": "3:38:41"} -{"current_steps": 8140, "total_steps": 12869, "loss": 0.6105, "learning_rate": 3.579511491875614e-06, "epoch": 0.632527779936281, "percentage": 63.25, "elapsed_time": "6:15:45", "remaining_time": "3:38:17"} -{"current_steps": 8150, "total_steps": 12869, "loss": 0.7653, "learning_rate": 3.5665131745701796e-06, "epoch": 0.6333048410909938, "percentage": 63.33, "elapsed_time": "6:16:09", "remaining_time": "3:37:48"} -{"current_steps": 8160, "total_steps": 12869, "loss": 0.7136, "learning_rate": 3.5535254041947487e-06, "epoch": 0.6340819022457067, "percentage": 63.41, "elapsed_time": "6:16:35", "remaining_time": "3:37:19"} -{"current_steps": 8170, "total_steps": 12869, "loss": 0.6722, "learning_rate": 3.5405482763073006e-06, "epoch": 0.6348589634004196, "percentage": 63.49, "elapsed_time": "6:17:01", "remaining_time": "3:36:51"} -{"current_steps": 8180, "total_steps": 12869, "loss": 0.6918, "learning_rate": 3.5275818863875176e-06, "epoch": 0.6356360245551325, "percentage": 63.56, "elapsed_time": "6:17:31", "remaining_time": "3:36:24"} -{"current_steps": 8190, "total_steps": 12869, "loss": 0.714, "learning_rate": 3.5146263298360676e-06, "epoch": 0.6364130857098453, "percentage": 63.64, "elapsed_time": "6:17:58", "remaining_time": "3:35:56"} -{"current_steps": 8200, "total_steps": 12869, "loss": 0.6529, "learning_rate": 3.501681701973917e-06, "epoch": 0.6371901468645582, "percentage": 63.72, "elapsed_time": "6:18:20", "remaining_time": "3:35:25"} -{"current_steps": 8210, "total_steps": 12869, "loss": 0.6414, "learning_rate": 3.488748098041623e-06, "epoch": 0.6379672080192711, "percentage": 63.8, "elapsed_time": "6:18:43", "remaining_time": "3:34:55"} -{"current_steps": 8220, "total_steps": 12869, "loss": 0.692, "learning_rate": 3.4758256131986333e-06, "epoch": 0.638744269173984, "percentage": 63.87, "elapsed_time": "6:19:10", "remaining_time": "3:34:27"} -{"current_steps": 8230, "total_steps": 12869, "loss": 0.7268, "learning_rate": 3.4629143425225893e-06, "epoch": 0.6395213303286968, "percentage": 63.95, "elapsed_time": "6:19:42", "remaining_time": "3:34:01"} -{"current_steps": 8240, "total_steps": 12869, "loss": 0.7249, "learning_rate": 3.4500143810086194e-06, "epoch": 0.6402983914834097, "percentage": 64.03, "elapsed_time": "6:20:11", "remaining_time": "3:33:34"} -{"current_steps": 8250, "total_steps": 12869, "loss": 0.6915, "learning_rate": 3.437125823568646e-06, "epoch": 0.6410754526381226, "percentage": 64.11, "elapsed_time": "6:20:36", "remaining_time": "3:33:05"} -{"current_steps": 8260, "total_steps": 12869, "loss": 0.6866, "learning_rate": 3.4242487650306867e-06, "epoch": 0.6418525137928355, "percentage": 64.19, "elapsed_time": "6:21:02", "remaining_time": "3:32:36"} -{"current_steps": 8270, "total_steps": 12869, "loss": 0.6584, "learning_rate": 3.4113833001381575e-06, "epoch": 0.6426295749475484, "percentage": 64.26, "elapsed_time": "6:21:32", "remaining_time": "3:32:10"} -{"current_steps": 8280, "total_steps": 12869, "loss": 0.6808, "learning_rate": 3.398529523549169e-06, "epoch": 0.6434066361022612, "percentage": 64.34, "elapsed_time": "6:21:59", "remaining_time": "3:31:42"} -{"current_steps": 8290, "total_steps": 12869, "loss": 0.7081, "learning_rate": 3.3856875298358365e-06, "epoch": 0.6441836972569741, "percentage": 64.42, "elapsed_time": "6:22:25", "remaining_time": "3:31:14"} -{"current_steps": 8300, "total_steps": 12869, "loss": 0.6899, "learning_rate": 3.3728574134835846e-06, "epoch": 0.644960758411687, "percentage": 64.5, "elapsed_time": "6:22:50", "remaining_time": "3:30:45"} -{"current_steps": 8310, "total_steps": 12869, "loss": 0.6798, "learning_rate": 3.360039268890446e-06, "epoch": 0.6457378195663999, "percentage": 64.57, "elapsed_time": "6:23:17", "remaining_time": "3:30:17"} -{"current_steps": 8320, "total_steps": 12869, "loss": 0.6545, "learning_rate": 3.347233190366375e-06, "epoch": 0.6465148807211127, "percentage": 64.65, "elapsed_time": "6:23:47", "remaining_time": "3:29:50"} -{"current_steps": 8330, "total_steps": 12869, "loss": 0.6741, "learning_rate": 3.3344392721325458e-06, "epoch": 0.6472919418758256, "percentage": 64.73, "elapsed_time": "6:24:19", "remaining_time": "3:29:24"} -{"current_steps": 8340, "total_steps": 12869, "loss": 0.6831, "learning_rate": 3.3216576083206637e-06, "epoch": 0.6480690030305385, "percentage": 64.81, "elapsed_time": "6:24:46", "remaining_time": "3:28:57"} -{"current_steps": 8350, "total_steps": 12869, "loss": 0.6192, "learning_rate": 3.308888292972273e-06, "epoch": 0.6488460641852514, "percentage": 64.88, "elapsed_time": "6:25:15", "remaining_time": "3:28:30"} -{"current_steps": 8360, "total_steps": 12869, "loss": 0.6918, "learning_rate": 3.2961314200380616e-06, "epoch": 0.6496231253399642, "percentage": 64.96, "elapsed_time": "6:25:45", "remaining_time": "3:28:03"} -{"current_steps": 8370, "total_steps": 12869, "loss": 0.6748, "learning_rate": 3.2833870833771753e-06, "epoch": 0.6504001864946771, "percentage": 65.04, "elapsed_time": "6:26:20", "remaining_time": "3:27:39"} -{"current_steps": 8380, "total_steps": 12869, "loss": 0.6551, "learning_rate": 3.270655376756521e-06, "epoch": 0.65117724764939, "percentage": 65.12, "elapsed_time": "6:26:44", "remaining_time": "3:27:10"} -{"current_steps": 8390, "total_steps": 12869, "loss": 0.6769, "learning_rate": 3.25793639385008e-06, "epoch": 0.6519543088041029, "percentage": 65.2, "elapsed_time": "6:27:15", "remaining_time": "3:26:44"} -{"current_steps": 8400, "total_steps": 12869, "loss": 0.6324, "learning_rate": 3.2452302282382185e-06, "epoch": 0.6527313699588158, "percentage": 65.27, "elapsed_time": "6:27:46", "remaining_time": "3:26:18"} -{"current_steps": 8410, "total_steps": 12869, "loss": 0.6801, "learning_rate": 3.232536973407e-06, "epoch": 0.6535084311135286, "percentage": 65.35, "elapsed_time": "6:28:12", "remaining_time": "3:25:49"} -{"current_steps": 8420, "total_steps": 12869, "loss": 0.6752, "learning_rate": 3.2198567227474954e-06, "epoch": 0.6542854922682415, "percentage": 65.43, "elapsed_time": "6:28:39", "remaining_time": "3:25:21"} -{"current_steps": 8430, "total_steps": 12869, "loss": 0.6873, "learning_rate": 3.207189569555096e-06, "epoch": 0.6550625534229544, "percentage": 65.51, "elapsed_time": "6:29:02", "remaining_time": "3:24:51"} -{"current_steps": 8440, "total_steps": 12869, "loss": 0.6338, "learning_rate": 3.194535607028832e-06, "epoch": 0.6558396145776673, "percentage": 65.58, "elapsed_time": "6:29:37", "remaining_time": "3:24:27"} -{"current_steps": 8450, "total_steps": 12869, "loss": 0.6433, "learning_rate": 3.1818949282706764e-06, "epoch": 0.6566166757323801, "percentage": 65.66, "elapsed_time": "6:30:05", "remaining_time": "3:23:59"} -{"current_steps": 8460, "total_steps": 12869, "loss": 0.6425, "learning_rate": 3.1692676262848732e-06, "epoch": 0.657393736887093, "percentage": 65.74, "elapsed_time": "6:30:30", "remaining_time": "3:23:30"} -{"current_steps": 8470, "total_steps": 12869, "loss": 0.6656, "learning_rate": 3.1566537939772433e-06, "epoch": 0.6581707980418059, "percentage": 65.82, "elapsed_time": "6:30:55", "remaining_time": "3:23:01"} -{"current_steps": 8480, "total_steps": 12869, "loss": 0.6484, "learning_rate": 3.1440535241545035e-06, "epoch": 0.6589478591965188, "percentage": 65.89, "elapsed_time": "6:31:24", "remaining_time": "3:22:34"} -{"current_steps": 8490, "total_steps": 12869, "loss": 0.6537, "learning_rate": 3.131466909523582e-06, "epoch": 0.6597249203512316, "percentage": 65.97, "elapsed_time": "6:31:51", "remaining_time": "3:22:07"} -{"current_steps": 8500, "total_steps": 12869, "loss": 0.6338, "learning_rate": 3.118894042690945e-06, "epoch": 0.6605019815059445, "percentage": 66.05, "elapsed_time": "6:32:19", "remaining_time": "3:21:39"} -{"current_steps": 8510, "total_steps": 12869, "loss": 0.6619, "learning_rate": 3.1063350161619025e-06, "epoch": 0.6612790426606574, "percentage": 66.13, "elapsed_time": "6:32:46", "remaining_time": "3:21:11"} -{"current_steps": 8520, "total_steps": 12869, "loss": 0.669, "learning_rate": 3.093789922339936e-06, "epoch": 0.6620561038153703, "percentage": 66.21, "elapsed_time": "6:33:13", "remaining_time": "3:20:43"} -{"current_steps": 8530, "total_steps": 12869, "loss": 0.6678, "learning_rate": 3.081258853526018e-06, "epoch": 0.6628331649700832, "percentage": 66.28, "elapsed_time": "6:33:42", "remaining_time": "3:20:16"} -{"current_steps": 8540, "total_steps": 12869, "loss": 0.6736, "learning_rate": 3.0687419019179285e-06, "epoch": 0.663610226124796, "percentage": 66.36, "elapsed_time": "6:34:07", "remaining_time": "3:19:46"} -{"current_steps": 8550, "total_steps": 12869, "loss": 0.6665, "learning_rate": 3.0562391596095833e-06, "epoch": 0.6643872872795089, "percentage": 66.44, "elapsed_time": "6:34:34", "remaining_time": "3:19:19"} -{"current_steps": 8560, "total_steps": 12869, "loss": 0.6887, "learning_rate": 3.0437507185903516e-06, "epoch": 0.6651643484342218, "percentage": 66.52, "elapsed_time": "6:35:04", "remaining_time": "3:18:52"} -{"current_steps": 8570, "total_steps": 12869, "loss": 0.6811, "learning_rate": 3.0312766707443784e-06, "epoch": 0.6659414095889347, "percentage": 66.59, "elapsed_time": "6:35:31", "remaining_time": "3:18:24"} -{"current_steps": 8580, "total_steps": 12869, "loss": 0.6882, "learning_rate": 3.0188171078499117e-06, "epoch": 0.6667184707436475, "percentage": 66.67, "elapsed_time": "6:35:53", "remaining_time": "3:17:53"} -{"current_steps": 8590, "total_steps": 12869, "loss": 0.6677, "learning_rate": 3.0063721215786274e-06, "epoch": 0.6674955318983604, "percentage": 66.75, "elapsed_time": "6:36:15", "remaining_time": "3:17:23"} -{"current_steps": 8600, "total_steps": 12869, "loss": 0.6668, "learning_rate": 2.99394180349495e-06, "epoch": 0.6682725930530733, "percentage": 66.83, "elapsed_time": "6:36:41", "remaining_time": "3:16:54"} -{"current_steps": 8610, "total_steps": 12869, "loss": 0.6542, "learning_rate": 2.981526245055387e-06, "epoch": 0.6690496542077862, "percentage": 66.9, "elapsed_time": "6:37:13", "remaining_time": "3:16:29"} -{"current_steps": 8620, "total_steps": 12869, "loss": 0.6035, "learning_rate": 2.9691255376078464e-06, "epoch": 0.669826715362499, "percentage": 66.98, "elapsed_time": "6:37:45", "remaining_time": "3:16:03"} -{"current_steps": 8630, "total_steps": 12869, "loss": 0.5884, "learning_rate": 2.9567397723909725e-06, "epoch": 0.6706037765172119, "percentage": 67.06, "elapsed_time": "6:38:12", "remaining_time": "3:15:35"} -{"current_steps": 8640, "total_steps": 12869, "loss": 0.6742, "learning_rate": 2.944369040533471e-06, "epoch": 0.6713808376719248, "percentage": 67.14, "elapsed_time": "6:38:41", "remaining_time": "3:15:09"} -{"current_steps": 8650, "total_steps": 12869, "loss": 0.6771, "learning_rate": 2.9320134330534367e-06, "epoch": 0.6721578988266377, "percentage": 67.22, "elapsed_time": "6:39:06", "remaining_time": "3:14:39"} -{"current_steps": 8660, "total_steps": 12869, "loss": 0.6528, "learning_rate": 2.919673040857693e-06, "epoch": 0.6729349599813506, "percentage": 67.29, "elapsed_time": "6:39:29", "remaining_time": "3:14:09"} -{"current_steps": 8670, "total_steps": 12869, "loss": 0.6605, "learning_rate": 2.9073479547411087e-06, "epoch": 0.6737120211360634, "percentage": 67.37, "elapsed_time": "6:39:59", "remaining_time": "3:13:43"} -{"current_steps": 8680, "total_steps": 12869, "loss": 0.6067, "learning_rate": 2.89503826538594e-06, "epoch": 0.6744890822907763, "percentage": 67.45, "elapsed_time": "6:40:25", "remaining_time": "3:13:14"} -{"current_steps": 8690, "total_steps": 12869, "loss": 0.6517, "learning_rate": 2.882744063361165e-06, "epoch": 0.6752661434454892, "percentage": 67.53, "elapsed_time": "6:40:51", "remaining_time": "3:12:46"} -{"current_steps": 8700, "total_steps": 12869, "loss": 0.6617, "learning_rate": 2.870465439121807e-06, "epoch": 0.6760432046002021, "percentage": 67.6, "elapsed_time": "6:41:19", "remaining_time": "3:12:18"} -{"current_steps": 8710, "total_steps": 12869, "loss": 0.6682, "learning_rate": 2.8582024830082796e-06, "epoch": 0.6768202657549149, "percentage": 67.68, "elapsed_time": "6:41:44", "remaining_time": "3:11:49"} -{"current_steps": 8720, "total_steps": 12869, "loss": 0.6366, "learning_rate": 2.845955285245715e-06, "epoch": 0.6775973269096278, "percentage": 67.76, "elapsed_time": "6:42:11", "remaining_time": "3:11:21"} -{"current_steps": 8730, "total_steps": 12869, "loss": 0.6236, "learning_rate": 2.833723935943301e-06, "epoch": 0.6783743880643407, "percentage": 67.84, "elapsed_time": "6:42:36", "remaining_time": "3:10:52"} -{"current_steps": 8740, "total_steps": 12869, "loss": 0.7245, "learning_rate": 2.821508525093627e-06, "epoch": 0.6791514492190536, "percentage": 67.92, "elapsed_time": "6:42:58", "remaining_time": "3:10:22"} -{"current_steps": 8750, "total_steps": 12869, "loss": 0.654, "learning_rate": 2.8093091425720097e-06, "epoch": 0.6799285103737664, "percentage": 67.99, "elapsed_time": "6:43:24", "remaining_time": "3:09:54"} -{"current_steps": 8760, "total_steps": 12869, "loss": 0.6259, "learning_rate": 2.797125878135837e-06, "epoch": 0.6807055715284793, "percentage": 68.07, "elapsed_time": "6:43:52", "remaining_time": "3:09:26"} -{"current_steps": 8770, "total_steps": 12869, "loss": 0.6602, "learning_rate": 2.784958821423907e-06, "epoch": 0.6814826326831922, "percentage": 68.15, "elapsed_time": "6:44:23", "remaining_time": "3:09:00"} -{"current_steps": 8780, "total_steps": 12869, "loss": 0.6581, "learning_rate": 2.7728080619557702e-06, "epoch": 0.6822596938379051, "percentage": 68.23, "elapsed_time": "6:44:46", "remaining_time": "3:08:30"} -{"current_steps": 8790, "total_steps": 12869, "loss": 0.6855, "learning_rate": 2.760673689131068e-06, "epoch": 0.683036754992618, "percentage": 68.3, "elapsed_time": "6:45:09", "remaining_time": "3:08:00"} -{"current_steps": 8800, "total_steps": 12869, "loss": 0.6697, "learning_rate": 2.7485557922288776e-06, "epoch": 0.6838138161473308, "percentage": 68.38, "elapsed_time": "6:45:35", "remaining_time": "3:07:32"} -{"current_steps": 8810, "total_steps": 12869, "loss": 0.6933, "learning_rate": 2.736454460407055e-06, "epoch": 0.6845908773020437, "percentage": 68.46, "elapsed_time": "6:46:03", "remaining_time": "3:07:05"} -{"current_steps": 8820, "total_steps": 12869, "loss": 0.6663, "learning_rate": 2.724369782701578e-06, "epoch": 0.6853679384567566, "percentage": 68.54, "elapsed_time": "6:46:33", "remaining_time": "3:06:38"} -{"current_steps": 8830, "total_steps": 12869, "loss": 0.6166, "learning_rate": 2.7123018480258876e-06, "epoch": 0.6861449996114695, "percentage": 68.61, "elapsed_time": "6:47:00", "remaining_time": "3:06:10"} -{"current_steps": 8840, "total_steps": 12869, "loss": 0.6328, "learning_rate": 2.7002507451702394e-06, "epoch": 0.6869220607661823, "percentage": 68.69, "elapsed_time": "6:47:28", "remaining_time": "3:05:42"} -{"current_steps": 8850, "total_steps": 12869, "loss": 0.6681, "learning_rate": 2.688216562801052e-06, "epoch": 0.6876991219208952, "percentage": 68.77, "elapsed_time": "6:47:54", "remaining_time": "3:05:14"} -{"current_steps": 8860, "total_steps": 12869, "loss": 0.6558, "learning_rate": 2.6761993894602444e-06, "epoch": 0.6884761830756081, "percentage": 68.85, "elapsed_time": "6:48:25", "remaining_time": "3:04:48"} -{"current_steps": 8870, "total_steps": 12869, "loss": 0.6213, "learning_rate": 2.664199313564598e-06, "epoch": 0.689253244230321, "percentage": 68.93, "elapsed_time": "6:48:51", "remaining_time": "3:04:19"} -{"current_steps": 8880, "total_steps": 12869, "loss": 0.6162, "learning_rate": 2.652216423405093e-06, "epoch": 0.6900303053850338, "percentage": 69.0, "elapsed_time": "6:49:14", "remaining_time": "3:03:49"} -{"current_steps": 8890, "total_steps": 12869, "loss": 0.6358, "learning_rate": 2.6402508071462685e-06, "epoch": 0.6908073665397467, "percentage": 69.08, "elapsed_time": "6:49:39", "remaining_time": "3:03:21"} -{"current_steps": 8900, "total_steps": 12869, "loss": 0.687, "learning_rate": 2.6283025528255685e-06, "epoch": 0.6915844276944596, "percentage": 69.16, "elapsed_time": "6:50:07", "remaining_time": "3:02:53"} -{"current_steps": 8910, "total_steps": 12869, "loss": 0.6059, "learning_rate": 2.6163717483526953e-06, "epoch": 0.6923614888491725, "percentage": 69.24, "elapsed_time": "6:50:38", "remaining_time": "3:02:27"} -{"current_steps": 8920, "total_steps": 12869, "loss": 0.6322, "learning_rate": 2.6044584815089667e-06, "epoch": 0.6931385500038854, "percentage": 69.31, "elapsed_time": "6:51:01", "remaining_time": "3:01:58"} -{"current_steps": 8930, "total_steps": 12869, "loss": 0.6245, "learning_rate": 2.592562839946664e-06, "epoch": 0.6939156111585982, "percentage": 69.39, "elapsed_time": "6:51:28", "remaining_time": "3:01:29"} -{"current_steps": 8940, "total_steps": 12869, "loss": 0.6343, "learning_rate": 2.5806849111883913e-06, "epoch": 0.6946926723133111, "percentage": 69.47, "elapsed_time": "6:51:55", "remaining_time": "3:01:02"} -{"current_steps": 8950, "total_steps": 12869, "loss": 0.6436, "learning_rate": 2.56882478262643e-06, "epoch": 0.695469733468024, "percentage": 69.55, "elapsed_time": "6:52:24", "remaining_time": "3:00:35"} -{"current_steps": 8960, "total_steps": 12869, "loss": 0.5772, "learning_rate": 2.556982541522094e-06, "epoch": 0.6962467946227369, "percentage": 69.62, "elapsed_time": "6:52:47", "remaining_time": "3:00:05"} -{"current_steps": 8970, "total_steps": 12869, "loss": 0.6224, "learning_rate": 2.5451582750050896e-06, "epoch": 0.6970238557774496, "percentage": 69.7, "elapsed_time": "6:53:19", "remaining_time": "2:59:39"} -{"current_steps": 8980, "total_steps": 12869, "loss": 0.6125, "learning_rate": 2.5333520700728793e-06, "epoch": 0.6978009169321625, "percentage": 69.78, "elapsed_time": "6:53:47", "remaining_time": "2:59:12"} -{"current_steps": 8990, "total_steps": 12869, "loss": 0.6203, "learning_rate": 2.521564013590031e-06, "epoch": 0.6985779780868754, "percentage": 69.86, "elapsed_time": "6:54:12", "remaining_time": "2:58:43"} -{"current_steps": 9000, "total_steps": 12869, "loss": 0.6354, "learning_rate": 2.509794192287588e-06, "epoch": 0.6993550392415883, "percentage": 69.94, "elapsed_time": "6:54:45", "remaining_time": "2:58:18"} -{"current_steps": 9010, "total_steps": 12869, "loss": 0.6023, "learning_rate": 2.498042692762426e-06, "epoch": 0.7001321003963011, "percentage": 70.01, "elapsed_time": "6:55:12", "remaining_time": "2:57:49"} -{"current_steps": 9020, "total_steps": 12869, "loss": 0.5926, "learning_rate": 2.4863096014766193e-06, "epoch": 0.700909161551014, "percentage": 70.09, "elapsed_time": "6:55:39", "remaining_time": "2:57:21"} -{"current_steps": 9030, "total_steps": 12869, "loss": 0.6266, "learning_rate": 2.474595004756799e-06, "epoch": 0.7016862227057269, "percentage": 70.17, "elapsed_time": "6:56:05", "remaining_time": "2:56:53"} -{"current_steps": 9040, "total_steps": 12869, "loss": 0.6131, "learning_rate": 2.4628989887935266e-06, "epoch": 0.7024632838604398, "percentage": 70.25, "elapsed_time": "6:56:30", "remaining_time": "2:56:25"} -{"current_steps": 9050, "total_steps": 12869, "loss": 0.686, "learning_rate": 2.4512216396406552e-06, "epoch": 0.7032403450151526, "percentage": 70.32, "elapsed_time": "6:56:55", "remaining_time": "2:55:56"} -{"current_steps": 9060, "total_steps": 12869, "loss": 0.6092, "learning_rate": 2.4395630432146926e-06, "epoch": 0.7040174061698655, "percentage": 70.4, "elapsed_time": "6:57:22", "remaining_time": "2:55:28"} -{"current_steps": 9070, "total_steps": 12869, "loss": 0.6286, "learning_rate": 2.427923285294174e-06, "epoch": 0.7047944673245784, "percentage": 70.48, "elapsed_time": "6:57:55", "remaining_time": "2:55:02"} -{"current_steps": 9080, "total_steps": 12869, "loss": 0.6073, "learning_rate": 2.4163024515190293e-06, "epoch": 0.7055715284792913, "percentage": 70.56, "elapsed_time": "6:58:15", "remaining_time": "2:54:32"} -{"current_steps": 9090, "total_steps": 12869, "loss": 0.6488, "learning_rate": 2.4047006273899527e-06, "epoch": 0.7063485896340042, "percentage": 70.63, "elapsed_time": "6:58:41", "remaining_time": "2:54:03"} -{"current_steps": 9100, "total_steps": 12869, "loss": 0.6663, "learning_rate": 2.393117898267779e-06, "epoch": 0.707125650788717, "percentage": 70.71, "elapsed_time": "6:59:09", "remaining_time": "2:53:36"} -{"current_steps": 9110, "total_steps": 12869, "loss": 0.6331, "learning_rate": 2.3815543493728454e-06, "epoch": 0.7079027119434299, "percentage": 70.79, "elapsed_time": "6:59:41", "remaining_time": "2:53:10"} -{"current_steps": 9120, "total_steps": 12869, "loss": 0.6089, "learning_rate": 2.370010065784372e-06, "epoch": 0.7086797730981428, "percentage": 70.87, "elapsed_time": "7:00:04", "remaining_time": "2:52:40"} -{"current_steps": 9130, "total_steps": 12869, "loss": 0.67, "learning_rate": 2.358485132439831e-06, "epoch": 0.7094568342528557, "percentage": 70.95, "elapsed_time": "7:00:29", "remaining_time": "2:52:12"} -{"current_steps": 9140, "total_steps": 12869, "loss": 0.6174, "learning_rate": 2.3469796341343315e-06, "epoch": 0.7102338954075685, "percentage": 71.02, "elapsed_time": "7:01:01", "remaining_time": "2:51:46"} -{"current_steps": 9150, "total_steps": 12869, "loss": 0.5954, "learning_rate": 2.33549365551998e-06, "epoch": 0.7110109565622814, "percentage": 71.1, "elapsed_time": "7:01:34", "remaining_time": "2:51:20"} -{"current_steps": 9160, "total_steps": 12869, "loss": 0.6568, "learning_rate": 2.3240272811052738e-06, "epoch": 0.7117880177169943, "percentage": 71.18, "elapsed_time": "7:01:58", "remaining_time": "2:50:51"} -{"current_steps": 9170, "total_steps": 12869, "loss": 0.6524, "learning_rate": 2.3125805952544666e-06, "epoch": 0.7125650788717072, "percentage": 71.26, "elapsed_time": "7:02:31", "remaining_time": "2:50:26"} -{"current_steps": 9180, "total_steps": 12869, "loss": 0.6202, "learning_rate": 2.301153682186954e-06, "epoch": 0.71334214002642, "percentage": 71.33, "elapsed_time": "7:02:59", "remaining_time": "2:49:58"} -{"current_steps": 9190, "total_steps": 12869, "loss": 0.6402, "learning_rate": 2.289746625976653e-06, "epoch": 0.7141192011811329, "percentage": 71.41, "elapsed_time": "7:03:25", "remaining_time": "2:49:30"} -{"current_steps": 9200, "total_steps": 12869, "loss": 0.6174, "learning_rate": 2.2783595105513832e-06, "epoch": 0.7148962623358458, "percentage": 71.49, "elapsed_time": "7:04:02", "remaining_time": "2:49:06"} -{"current_steps": 9210, "total_steps": 12869, "loss": 0.647, "learning_rate": 2.266992419692247e-06, "epoch": 0.7156733234905587, "percentage": 71.57, "elapsed_time": "7:04:29", "remaining_time": "2:48:38"} -{"current_steps": 9220, "total_steps": 12869, "loss": 0.6243, "learning_rate": 2.2556454370330195e-06, "epoch": 0.7164503846452716, "percentage": 71.65, "elapsed_time": "7:05:00", "remaining_time": "2:48:12"} -{"current_steps": 9230, "total_steps": 12869, "loss": 0.6301, "learning_rate": 2.2443186460595277e-06, "epoch": 0.7172274457999844, "percentage": 71.72, "elapsed_time": "7:05:24", "remaining_time": "2:47:43"} -{"current_steps": 9240, "total_steps": 12869, "loss": 0.6654, "learning_rate": 2.2330121301090362e-06, "epoch": 0.7180045069546973, "percentage": 71.8, "elapsed_time": "7:05:52", "remaining_time": "2:47:15"} -{"current_steps": 9250, "total_steps": 12869, "loss": 0.6276, "learning_rate": 2.221725972369635e-06, "epoch": 0.7187815681094102, "percentage": 71.88, "elapsed_time": "7:06:22", "remaining_time": "2:46:48"} -{"current_steps": 9260, "total_steps": 12869, "loss": 0.5675, "learning_rate": 2.210460255879629e-06, "epoch": 0.7195586292641231, "percentage": 71.96, "elapsed_time": "7:06:51", "remaining_time": "2:46:21"} -{"current_steps": 9270, "total_steps": 12869, "loss": 0.5833, "learning_rate": 2.1992150635269233e-06, "epoch": 0.7203356904188359, "percentage": 72.03, "elapsed_time": "7:07:15", "remaining_time": "2:45:52"} -{"current_steps": 9280, "total_steps": 12869, "loss": 0.6158, "learning_rate": 2.187990478048423e-06, "epoch": 0.7211127515735488, "percentage": 72.11, "elapsed_time": "7:07:40", "remaining_time": "2:45:24"} -{"current_steps": 9290, "total_steps": 12869, "loss": 0.5769, "learning_rate": 2.1767865820294093e-06, "epoch": 0.7218898127282617, "percentage": 72.19, "elapsed_time": "7:08:06", "remaining_time": "2:44:55"} -{"current_steps": 9300, "total_steps": 12869, "loss": 0.5971, "learning_rate": 2.165603457902945e-06, "epoch": 0.7226668738829746, "percentage": 72.27, "elapsed_time": "7:08:32", "remaining_time": "2:44:27"} -{"current_steps": 9310, "total_steps": 12869, "loss": 0.6314, "learning_rate": 2.1544411879492597e-06, "epoch": 0.7234439350376874, "percentage": 72.34, "elapsed_time": "7:09:03", "remaining_time": "2:44:01"} -{"current_steps": 9320, "total_steps": 12869, "loss": 0.6385, "learning_rate": 2.143299854295149e-06, "epoch": 0.7242209961924003, "percentage": 72.42, "elapsed_time": "7:09:33", "remaining_time": "2:43:34"} -{"current_steps": 9330, "total_steps": 12869, "loss": 0.5932, "learning_rate": 2.13217953891337e-06, "epoch": 0.7249980573471132, "percentage": 72.5, "elapsed_time": "7:10:01", "remaining_time": "2:43:06"} -{"current_steps": 9340, "total_steps": 12869, "loss": 0.6409, "learning_rate": 2.121080323622038e-06, "epoch": 0.7257751185018261, "percentage": 72.58, "elapsed_time": "7:10:28", "remaining_time": "2:42:39"} -{"current_steps": 9350, "total_steps": 12869, "loss": 0.5922, "learning_rate": 2.1100022900840208e-06, "epoch": 0.726552179656539, "percentage": 72.66, "elapsed_time": "7:10:59", "remaining_time": "2:42:12"} -{"current_steps": 9360, "total_steps": 12869, "loss": 0.6608, "learning_rate": 2.0989455198063415e-06, "epoch": 0.7273292408112518, "percentage": 72.73, "elapsed_time": "7:11:25", "remaining_time": "2:41:44"} -{"current_steps": 9370, "total_steps": 12869, "loss": 0.5643, "learning_rate": 2.0879100941395787e-06, "epoch": 0.7281063019659647, "percentage": 72.81, "elapsed_time": "7:11:52", "remaining_time": "2:41:16"} -{"current_steps": 9380, "total_steps": 12869, "loss": 0.621, "learning_rate": 2.076896094277265e-06, "epoch": 0.7288833631206776, "percentage": 72.89, "elapsed_time": "7:12:20", "remaining_time": "2:40:49"} -{"current_steps": 9390, "total_steps": 12869, "loss": 0.6036, "learning_rate": 2.065903601255297e-06, "epoch": 0.7296604242753905, "percentage": 72.97, "elapsed_time": "7:12:52", "remaining_time": "2:40:22"} -{"current_steps": 9400, "total_steps": 12869, "loss": 0.5926, "learning_rate": 2.0549326959513287e-06, "epoch": 0.7304374854301033, "percentage": 73.04, "elapsed_time": "7:13:16", "remaining_time": "2:39:53"} -{"current_steps": 9410, "total_steps": 12869, "loss": 0.5715, "learning_rate": 2.0439834590841833e-06, "epoch": 0.7312145465848162, "percentage": 73.12, "elapsed_time": "7:13:42", "remaining_time": "2:39:25"} -{"current_steps": 9420, "total_steps": 12869, "loss": 0.6057, "learning_rate": 2.0330559712132614e-06, "epoch": 0.7319916077395291, "percentage": 73.2, "elapsed_time": "7:14:10", "remaining_time": "2:38:58"} -{"current_steps": 9430, "total_steps": 12869, "loss": 0.5975, "learning_rate": 2.022150312737939e-06, "epoch": 0.732768668894242, "percentage": 73.28, "elapsed_time": "7:14:36", "remaining_time": "2:38:29"} -{"current_steps": 9440, "total_steps": 12869, "loss": 0.6138, "learning_rate": 2.0112665638969842e-06, "epoch": 0.7335457300489548, "percentage": 73.35, "elapsed_time": "7:15:06", "remaining_time": "2:38:02"} -{"current_steps": 9450, "total_steps": 12869, "loss": 0.628, "learning_rate": 2.0004048047679624e-06, "epoch": 0.7343227912036677, "percentage": 73.43, "elapsed_time": "7:15:39", "remaining_time": "2:37:37"} -{"current_steps": 9460, "total_steps": 12869, "loss": 0.6022, "learning_rate": 1.9895651152666538e-06, "epoch": 0.7350998523583806, "percentage": 73.51, "elapsed_time": "7:16:12", "remaining_time": "2:37:11"} -{"current_steps": 9470, "total_steps": 12869, "loss": 0.597, "learning_rate": 1.978747575146455e-06, "epoch": 0.7358769135130935, "percentage": 73.59, "elapsed_time": "7:16:37", "remaining_time": "2:36:42"} -{"current_steps": 9480, "total_steps": 12869, "loss": 0.6303, "learning_rate": 1.967952263997801e-06, "epoch": 0.7366539746678064, "percentage": 73.67, "elapsed_time": "7:17:09", "remaining_time": "2:36:16"} -{"current_steps": 9490, "total_steps": 12869, "loss": 0.6321, "learning_rate": 1.9571792612475747e-06, "epoch": 0.7374310358225192, "percentage": 73.74, "elapsed_time": "7:17:39", "remaining_time": "2:35:49"} -{"current_steps": 9500, "total_steps": 12869, "loss": 0.6083, "learning_rate": 1.9464286461585223e-06, "epoch": 0.7382080969772321, "percentage": 73.82, "elapsed_time": "7:18:06", "remaining_time": "2:35:21"} -{"current_steps": 9510, "total_steps": 12869, "loss": 0.6094, "learning_rate": 1.9357004978286777e-06, "epoch": 0.738985158131945, "percentage": 73.9, "elapsed_time": "7:18:30", "remaining_time": "2:34:53"} -{"current_steps": 9520, "total_steps": 12869, "loss": 0.605, "learning_rate": 1.924994895190772e-06, "epoch": 0.7397622192866579, "percentage": 73.98, "elapsed_time": "7:18:52", "remaining_time": "2:34:23"} -{"current_steps": 9530, "total_steps": 12869, "loss": 0.6072, "learning_rate": 1.9143119170116534e-06, "epoch": 0.7405392804413707, "percentage": 74.05, "elapsed_time": "7:19:15", "remaining_time": "2:33:54"} -{"current_steps": 9540, "total_steps": 12869, "loss": 0.6499, "learning_rate": 1.9036516418917128e-06, "epoch": 0.7413163415960836, "percentage": 74.13, "elapsed_time": "7:19:48", "remaining_time": "2:33:28"} -{"current_steps": 9550, "total_steps": 12869, "loss": 0.6024, "learning_rate": 1.8930141482643005e-06, "epoch": 0.7420934027507965, "percentage": 74.21, "elapsed_time": "7:20:14", "remaining_time": "2:33:00"} -{"current_steps": 9560, "total_steps": 12869, "loss": 0.6265, "learning_rate": 1.88239951439515e-06, "epoch": 0.7428704639055094, "percentage": 74.29, "elapsed_time": "7:20:36", "remaining_time": "2:32:30"} -{"current_steps": 9570, "total_steps": 12869, "loss": 0.6017, "learning_rate": 1.8718078183818094e-06, "epoch": 0.7436475250602222, "percentage": 74.36, "elapsed_time": "7:21:05", "remaining_time": "2:32:03"} -{"current_steps": 9580, "total_steps": 12869, "loss": 0.6093, "learning_rate": 1.8612391381530548e-06, "epoch": 0.7444245862149351, "percentage": 74.44, "elapsed_time": "7:21:32", "remaining_time": "2:31:35"} -{"current_steps": 9590, "total_steps": 12869, "loss": 0.6121, "learning_rate": 1.8506935514683244e-06, "epoch": 0.745201647369648, "percentage": 74.52, "elapsed_time": "7:22:03", "remaining_time": "2:31:08"} -{"current_steps": 9600, "total_steps": 12869, "loss": 0.6083, "learning_rate": 1.8401711359171438e-06, "epoch": 0.7459787085243609, "percentage": 74.6, "elapsed_time": "7:22:33", "remaining_time": "2:30:41"} -{"current_steps": 9610, "total_steps": 12869, "loss": 0.5946, "learning_rate": 1.82967196891856e-06, "epoch": 0.7467557696790738, "percentage": 74.68, "elapsed_time": "7:23:00", "remaining_time": "2:30:14"} -{"current_steps": 9620, "total_steps": 12869, "loss": 0.5835, "learning_rate": 1.819196127720565e-06, "epoch": 0.7475328308337866, "percentage": 74.75, "elapsed_time": "7:23:31", "remaining_time": "2:29:47"} -{"current_steps": 9630, "total_steps": 12869, "loss": 0.6802, "learning_rate": 1.808743689399528e-06, "epoch": 0.7483098919884995, "percentage": 74.83, "elapsed_time": "7:23:53", "remaining_time": "2:29:18"} -{"current_steps": 9640, "total_steps": 12869, "loss": 0.6256, "learning_rate": 1.798314730859637e-06, "epoch": 0.7490869531432124, "percentage": 74.91, "elapsed_time": "7:24:25", "remaining_time": "2:28:51"} -{"current_steps": 9650, "total_steps": 12869, "loss": 0.6194, "learning_rate": 1.787909328832323e-06, "epoch": 0.7498640142979253, "percentage": 74.99, "elapsed_time": "7:24:54", "remaining_time": "2:28:24"} -{"current_steps": 9660, "total_steps": 12869, "loss": 0.6264, "learning_rate": 1.7775275598756974e-06, "epoch": 0.7506410754526381, "percentage": 75.06, "elapsed_time": "7:25:17", "remaining_time": "2:27:55"} -{"current_steps": 9670, "total_steps": 12869, "loss": 0.5695, "learning_rate": 1.7671695003739935e-06, "epoch": 0.751418136607351, "percentage": 75.14, "elapsed_time": "7:25:51", "remaining_time": "2:27:29"} -{"current_steps": 9680, "total_steps": 12869, "loss": 0.6213, "learning_rate": 1.7568352265369987e-06, "epoch": 0.7521951977620639, "percentage": 75.22, "elapsed_time": "7:26:14", "remaining_time": "2:27:00"} -{"current_steps": 9690, "total_steps": 12869, "loss": 0.6213, "learning_rate": 1.7465248143995011e-06, "epoch": 0.7529722589167768, "percentage": 75.3, "elapsed_time": "7:26:38", "remaining_time": "2:26:31"} -{"current_steps": 9700, "total_steps": 12869, "loss": 0.6593, "learning_rate": 1.7362383398207189e-06, "epoch": 0.7537493200714896, "percentage": 75.37, "elapsed_time": "7:26:59", "remaining_time": "2:26:02"} -{"current_steps": 9710, "total_steps": 12869, "loss": 0.6206, "learning_rate": 1.725975878483757e-06, "epoch": 0.7545263812262025, "percentage": 75.45, "elapsed_time": "7:27:25", "remaining_time": "2:25:33"} -{"current_steps": 9720, "total_steps": 12869, "loss": 0.6407, "learning_rate": 1.7157375058950349e-06, "epoch": 0.7553034423809154, "percentage": 75.53, "elapsed_time": "7:27:54", "remaining_time": "2:25:06"} -{"current_steps": 9730, "total_steps": 12869, "loss": 0.6181, "learning_rate": 1.705523297383741e-06, "epoch": 0.7560805035356283, "percentage": 75.61, "elapsed_time": "7:28:21", "remaining_time": "2:24:38"} -{"current_steps": 9740, "total_steps": 12869, "loss": 0.6205, "learning_rate": 1.6953333281012745e-06, "epoch": 0.7568575646903412, "percentage": 75.69, "elapsed_time": "7:28:48", "remaining_time": "2:24:10"} -{"current_steps": 9750, "total_steps": 12869, "loss": 0.5648, "learning_rate": 1.6851676730206978e-06, "epoch": 0.757634625845054, "percentage": 75.76, "elapsed_time": "7:29:13", "remaining_time": "2:23:42"} -{"current_steps": 9760, "total_steps": 12869, "loss": 0.585, "learning_rate": 1.6750264069361755e-06, "epoch": 0.7584116869997669, "percentage": 75.84, "elapsed_time": "7:29:39", "remaining_time": "2:23:14"} -{"current_steps": 9770, "total_steps": 12869, "loss": 0.5775, "learning_rate": 1.664909604462432e-06, "epoch": 0.7591887481544798, "percentage": 75.92, "elapsed_time": "7:30:05", "remaining_time": "2:22:46"} -{"current_steps": 9780, "total_steps": 12869, "loss": 0.5457, "learning_rate": 1.6548173400341988e-06, "epoch": 0.7599658093091927, "percentage": 76.0, "elapsed_time": "7:30:41", "remaining_time": "2:22:20"} -{"current_steps": 9790, "total_steps": 12869, "loss": 0.5967, "learning_rate": 1.6447496879056667e-06, "epoch": 0.7607428704639055, "percentage": 76.07, "elapsed_time": "7:31:05", "remaining_time": "2:21:52"} -{"current_steps": 9800, "total_steps": 12869, "loss": 0.5873, "learning_rate": 1.6347067221499441e-06, "epoch": 0.7615199316186184, "percentage": 76.15, "elapsed_time": "7:31:31", "remaining_time": "2:21:24"} -{"current_steps": 9810, "total_steps": 12869, "loss": 0.6071, "learning_rate": 1.6246885166585081e-06, "epoch": 0.7622969927733313, "percentage": 76.23, "elapsed_time": "7:32:00", "remaining_time": "2:20:56"} -{"current_steps": 9820, "total_steps": 12869, "loss": 0.5689, "learning_rate": 1.6146951451406583e-06, "epoch": 0.7630740539280442, "percentage": 76.31, "elapsed_time": "7:32:31", "remaining_time": "2:20:30"} -{"current_steps": 9830, "total_steps": 12869, "loss": 0.5608, "learning_rate": 1.604726681122979e-06, "epoch": 0.763851115082757, "percentage": 76.39, "elapsed_time": "7:32:56", "remaining_time": "2:20:01"} -{"current_steps": 9840, "total_steps": 12869, "loss": 0.6724, "learning_rate": 1.5947831979487966e-06, "epoch": 0.7646281762374699, "percentage": 76.46, "elapsed_time": "7:33:19", "remaining_time": "2:19:32"} -{"current_steps": 9850, "total_steps": 12869, "loss": 0.5712, "learning_rate": 1.5848647687776397e-06, "epoch": 0.7654052373921828, "percentage": 76.54, "elapsed_time": "7:33:45", "remaining_time": "2:19:04"} -{"current_steps": 9860, "total_steps": 12869, "loss": 0.5803, "learning_rate": 1.574971466584701e-06, "epoch": 0.7661822985468957, "percentage": 76.62, "elapsed_time": "7:34:13", "remaining_time": "2:18:37"} -{"current_steps": 9870, "total_steps": 12869, "loss": 0.6056, "learning_rate": 1.5651033641603041e-06, "epoch": 0.7669593597016086, "percentage": 76.7, "elapsed_time": "7:34:44", "remaining_time": "2:18:10"} -{"current_steps": 9880, "total_steps": 12869, "loss": 0.5759, "learning_rate": 1.555260534109359e-06, "epoch": 0.7677364208563214, "percentage": 76.77, "elapsed_time": "7:35:12", "remaining_time": "2:17:43"} -{"current_steps": 9890, "total_steps": 12869, "loss": 0.5847, "learning_rate": 1.5454430488508359e-06, "epoch": 0.7685134820110343, "percentage": 76.85, "elapsed_time": "7:35:39", "remaining_time": "2:17:14"} -{"current_steps": 9900, "total_steps": 12869, "loss": 0.5929, "learning_rate": 1.5356509806172315e-06, "epoch": 0.7692905431657472, "percentage": 76.93, "elapsed_time": "7:36:02", "remaining_time": "2:16:46"} -{"current_steps": 9910, "total_steps": 12869, "loss": 0.6378, "learning_rate": 1.525884401454033e-06, "epoch": 0.7700676043204601, "percentage": 77.01, "elapsed_time": "7:36:30", "remaining_time": "2:16:18"} -{"current_steps": 9920, "total_steps": 12869, "loss": 0.5887, "learning_rate": 1.5161433832191902e-06, "epoch": 0.7708446654751729, "percentage": 77.08, "elapsed_time": "7:36:52", "remaining_time": "2:15:49"} -{"current_steps": 9930, "total_steps": 12869, "loss": 0.579, "learning_rate": 1.5064279975825923e-06, "epoch": 0.7716217266298858, "percentage": 77.16, "elapsed_time": "7:37:17", "remaining_time": "2:15:20"} -{"current_steps": 9940, "total_steps": 12869, "loss": 0.5905, "learning_rate": 1.4967383160255316e-06, "epoch": 0.7723987877845987, "percentage": 77.24, "elapsed_time": "7:37:46", "remaining_time": "2:14:53"} -{"current_steps": 9950, "total_steps": 12869, "loss": 0.5659, "learning_rate": 1.4870744098401819e-06, "epoch": 0.7731758489393116, "percentage": 77.32, "elapsed_time": "7:38:14", "remaining_time": "2:14:26"} -{"current_steps": 9960, "total_steps": 12869, "loss": 0.5867, "learning_rate": 1.4774363501290755e-06, "epoch": 0.7739529100940244, "percentage": 77.4, "elapsed_time": "7:38:42", "remaining_time": "2:13:58"} -{"current_steps": 9970, "total_steps": 12869, "loss": 0.5998, "learning_rate": 1.4678242078045756e-06, "epoch": 0.7747299712487373, "percentage": 77.47, "elapsed_time": "7:39:10", "remaining_time": "2:13:30"} -{"current_steps": 9980, "total_steps": 12869, "loss": 0.659, "learning_rate": 1.4582380535883622e-06, "epoch": 0.7755070324034502, "percentage": 77.55, "elapsed_time": "7:39:39", "remaining_time": "2:13:03"} -{"current_steps": 9990, "total_steps": 12869, "loss": 0.6148, "learning_rate": 1.4486779580109012e-06, "epoch": 0.7762840935581631, "percentage": 77.63, "elapsed_time": "7:40:11", "remaining_time": "2:12:37"} -{"current_steps": 10000, "total_steps": 12869, "loss": 0.5652, "learning_rate": 1.4391439914109367e-06, "epoch": 0.777061154712876, "percentage": 77.71, "elapsed_time": "7:40:41", "remaining_time": "2:12:10"} -{"current_steps": 10000, "total_steps": 12869, "eval_loss": 0.5870455503463745, "epoch": 0.777061154712876, "percentage": 77.71, "elapsed_time": "7:47:45", "remaining_time": "2:14:12"} -{"current_steps": 10010, "total_steps": 12869, "loss": 0.5896, "learning_rate": 1.429636223934963e-06, "epoch": 0.7778382158675888, "percentage": 77.78, "elapsed_time": "7:49:50", "remaining_time": "2:14:11"} -{"current_steps": 10020, "total_steps": 12869, "loss": 0.6109, "learning_rate": 1.4201547255367165e-06, "epoch": 0.7786152770223017, "percentage": 77.86, "elapsed_time": "7:50:18", "remaining_time": "2:13:43"} -{"current_steps": 10030, "total_steps": 12869, "loss": 0.5602, "learning_rate": 1.4106995659766547e-06, "epoch": 0.7793923381770145, "percentage": 77.94, "elapsed_time": "7:50:45", "remaining_time": "2:13:14"} -{"current_steps": 10040, "total_steps": 12869, "loss": 0.5836, "learning_rate": 1.4012708148214522e-06, "epoch": 0.7801693993317274, "percentage": 78.02, "elapsed_time": "7:51:15", "remaining_time": "2:12:47"} -{"current_steps": 10050, "total_steps": 12869, "loss": 0.5569, "learning_rate": 1.3918685414434763e-06, "epoch": 0.7809464604864402, "percentage": 78.09, "elapsed_time": "7:51:47", "remaining_time": "2:12:20"} -{"current_steps": 10060, "total_steps": 12869, "loss": 0.5669, "learning_rate": 1.3824928150202866e-06, "epoch": 0.7817235216411531, "percentage": 78.17, "elapsed_time": "7:52:11", "remaining_time": "2:11:50"} -{"current_steps": 10070, "total_steps": 12869, "loss": 0.5998, "learning_rate": 1.3731437045341218e-06, "epoch": 0.782500582795866, "percentage": 78.25, "elapsed_time": "7:52:41", "remaining_time": "2:11:23"} -{"current_steps": 10080, "total_steps": 12869, "loss": 0.6208, "learning_rate": 1.363821278771391e-06, "epoch": 0.7832776439505789, "percentage": 78.33, "elapsed_time": "7:53:09", "remaining_time": "2:10:55"} -{"current_steps": 10090, "total_steps": 12869, "loss": 0.6036, "learning_rate": 1.3545256063221745e-06, "epoch": 0.7840547051052917, "percentage": 78.41, "elapsed_time": "7:53:40", "remaining_time": "2:10:27"} -{"current_steps": 10100, "total_steps": 12869, "loss": 0.5987, "learning_rate": 1.3452567555797085e-06, "epoch": 0.7848317662600046, "percentage": 78.48, "elapsed_time": "7:54:05", "remaining_time": "2:09:58"} -{"current_steps": 10110, "total_steps": 12869, "loss": 0.5939, "learning_rate": 1.3360147947398927e-06, "epoch": 0.7856088274147175, "percentage": 78.56, "elapsed_time": "7:54:30", "remaining_time": "2:09:29"} -{"current_steps": 10120, "total_steps": 12869, "loss": 0.5931, "learning_rate": 1.3267997918007792e-06, "epoch": 0.7863858885694304, "percentage": 78.64, "elapsed_time": "7:54:55", "remaining_time": "2:09:00"} -{"current_steps": 10130, "total_steps": 12869, "loss": 0.5896, "learning_rate": 1.3176118145620775e-06, "epoch": 0.7871629497241432, "percentage": 78.72, "elapsed_time": "7:55:19", "remaining_time": "2:08:31"} -{"current_steps": 10140, "total_steps": 12869, "loss": 0.5585, "learning_rate": 1.3084509306246562e-06, "epoch": 0.7879400108788561, "percentage": 78.79, "elapsed_time": "7:55:47", "remaining_time": "2:08:03"} -{"current_steps": 10150, "total_steps": 12869, "loss": 0.5958, "learning_rate": 1.29931720739004e-06, "epoch": 0.788717072033569, "percentage": 78.87, "elapsed_time": "7:56:16", "remaining_time": "2:07:35"} -{"current_steps": 10160, "total_steps": 12869, "loss": 0.5884, "learning_rate": 1.2902107120599249e-06, "epoch": 0.7894941331882819, "percentage": 78.95, "elapsed_time": "7:56:46", "remaining_time": "2:07:07"} -{"current_steps": 10170, "total_steps": 12869, "loss": 0.587, "learning_rate": 1.2811315116356698e-06, "epoch": 0.7902711943429948, "percentage": 79.03, "elapsed_time": "7:57:12", "remaining_time": "2:06:38"} -{"current_steps": 10180, "total_steps": 12869, "loss": 0.638, "learning_rate": 1.2720796729178115e-06, "epoch": 0.7910482554977076, "percentage": 79.1, "elapsed_time": "7:57:39", "remaining_time": "2:06:10"} -{"current_steps": 10190, "total_steps": 12869, "loss": 0.6137, "learning_rate": 1.2630552625055763e-06, "epoch": 0.7918253166524205, "percentage": 79.18, "elapsed_time": "7:58:02", "remaining_time": "2:05:40"} -{"current_steps": 10200, "total_steps": 12869, "loss": 0.5647, "learning_rate": 1.2540583467963817e-06, "epoch": 0.7926023778071334, "percentage": 79.26, "elapsed_time": "7:58:26", "remaining_time": "2:05:11"} -{"current_steps": 10210, "total_steps": 12869, "loss": 0.5836, "learning_rate": 1.245088991985352e-06, "epoch": 0.7933794389618463, "percentage": 79.34, "elapsed_time": "7:58:55", "remaining_time": "2:04:43"} -{"current_steps": 10220, "total_steps": 12869, "loss": 0.5394, "learning_rate": 1.2361472640648347e-06, "epoch": 0.7941565001165591, "percentage": 79.42, "elapsed_time": "7:59:19", "remaining_time": "2:04:14"} -{"current_steps": 10230, "total_steps": 12869, "loss": 0.6011, "learning_rate": 1.227233228823908e-06, "epoch": 0.794933561271272, "percentage": 79.49, "elapsed_time": "7:59:42", "remaining_time": "2:03:44"} -{"current_steps": 10240, "total_steps": 12869, "loss": 0.5912, "learning_rate": 1.2183469518479018e-06, "epoch": 0.7957106224259849, "percentage": 79.57, "elapsed_time": "8:00:09", "remaining_time": "2:03:16"} -{"current_steps": 10250, "total_steps": 12869, "loss": 0.6151, "learning_rate": 1.2094884985179117e-06, "epoch": 0.7964876835806978, "percentage": 79.65, "elapsed_time": "8:00:33", "remaining_time": "2:02:47"} -{"current_steps": 10260, "total_steps": 12869, "loss": 0.5236, "learning_rate": 1.200657934010323e-06, "epoch": 0.7972647447354106, "percentage": 79.73, "elapsed_time": "8:01:03", "remaining_time": "2:02:19"} -{"current_steps": 10270, "total_steps": 12869, "loss": 0.5912, "learning_rate": 1.1918553232963237e-06, "epoch": 0.7980418058901235, "percentage": 79.8, "elapsed_time": "8:01:29", "remaining_time": "2:01:50"} -{"current_steps": 10280, "total_steps": 12869, "loss": 0.5588, "learning_rate": 1.1830807311414355e-06, "epoch": 0.7988188670448364, "percentage": 79.88, "elapsed_time": "8:01:53", "remaining_time": "2:01:21"} -{"current_steps": 10290, "total_steps": 12869, "loss": 0.5963, "learning_rate": 1.1743342221050314e-06, "epoch": 0.7995959281995493, "percentage": 79.96, "elapsed_time": "8:02:23", "remaining_time": "2:00:54"} -{"current_steps": 10300, "total_steps": 12869, "loss": 0.5617, "learning_rate": 1.1656158605398599e-06, "epoch": 0.8003729893542622, "percentage": 80.04, "elapsed_time": "8:02:57", "remaining_time": "2:00:27"} -{"current_steps": 10310, "total_steps": 12869, "loss": 0.5855, "learning_rate": 1.1569257105915743e-06, "epoch": 0.801150050508975, "percentage": 80.12, "elapsed_time": "8:03:20", "remaining_time": "1:59:58"} -{"current_steps": 10320, "total_steps": 12869, "loss": 0.5971, "learning_rate": 1.1482638361982595e-06, "epoch": 0.8019271116636879, "percentage": 80.19, "elapsed_time": "8:03:49", "remaining_time": "1:59:30"} -{"current_steps": 10330, "total_steps": 12869, "loss": 0.5597, "learning_rate": 1.1396303010899623e-06, "epoch": 0.8027041728184008, "percentage": 80.27, "elapsed_time": "8:04:19", "remaining_time": "1:59:02"} -{"current_steps": 10340, "total_steps": 12869, "loss": 0.5974, "learning_rate": 1.131025168788225e-06, "epoch": 0.8034812339731137, "percentage": 80.35, "elapsed_time": "8:04:38", "remaining_time": "1:58:32"} -{"current_steps": 10350, "total_steps": 12869, "loss": 0.582, "learning_rate": 1.122448502605611e-06, "epoch": 0.8042582951278265, "percentage": 80.43, "elapsed_time": "8:05:02", "remaining_time": "1:58:02"} -{"current_steps": 10360, "total_steps": 12869, "loss": 0.5803, "learning_rate": 1.1139003656452451e-06, "epoch": 0.8050353562825394, "percentage": 80.5, "elapsed_time": "8:05:27", "remaining_time": "1:57:34"} -{"current_steps": 10370, "total_steps": 12869, "loss": 0.5745, "learning_rate": 1.1053808208003463e-06, "epoch": 0.8058124174372523, "percentage": 80.58, "elapsed_time": "8:05:56", "remaining_time": "1:57:06"} -{"current_steps": 10380, "total_steps": 12869, "loss": 0.5586, "learning_rate": 1.0968899307537688e-06, "epoch": 0.8065894785919652, "percentage": 80.66, "elapsed_time": "8:06:27", "remaining_time": "1:56:38"} -{"current_steps": 10390, "total_steps": 12869, "loss": 0.5934, "learning_rate": 1.088427757977535e-06, "epoch": 0.807366539746678, "percentage": 80.74, "elapsed_time": "8:06:56", "remaining_time": "1:56:10"} -{"current_steps": 10400, "total_steps": 12869, "loss": 0.5491, "learning_rate": 1.0799943647323823e-06, "epoch": 0.8081436009013909, "percentage": 80.81, "elapsed_time": "8:07:23", "remaining_time": "1:55:42"} -{"current_steps": 10410, "total_steps": 12869, "loss": 0.5584, "learning_rate": 1.071589813067298e-06, "epoch": 0.8089206620561038, "percentage": 80.89, "elapsed_time": "8:07:50", "remaining_time": "1:55:14"} -{"current_steps": 10420, "total_steps": 12869, "loss": 0.5737, "learning_rate": 1.0632141648190685e-06, "epoch": 0.8096977232108167, "percentage": 80.97, "elapsed_time": "8:08:26", "remaining_time": "1:54:47"} -{"current_steps": 10430, "total_steps": 12869, "loss": 0.5621, "learning_rate": 1.054867481611822e-06, "epoch": 0.8104747843655296, "percentage": 81.05, "elapsed_time": "8:08:53", "remaining_time": "1:54:19"} -{"current_steps": 10440, "total_steps": 12869, "loss": 0.5109, "learning_rate": 1.046549824856574e-06, "epoch": 0.8112518455202424, "percentage": 81.13, "elapsed_time": "8:09:27", "remaining_time": "1:53:52"} -{"current_steps": 10450, "total_steps": 12869, "loss": 0.5261, "learning_rate": 1.038261255750781e-06, "epoch": 0.8120289066749553, "percentage": 81.2, "elapsed_time": "8:09:56", "remaining_time": "1:53:24"} -{"current_steps": 10460, "total_steps": 12869, "loss": 0.5435, "learning_rate": 1.0300018352778817e-06, "epoch": 0.8128059678296682, "percentage": 81.28, "elapsed_time": "8:10:18", "remaining_time": "1:52:55"} -{"current_steps": 10470, "total_steps": 12869, "loss": 0.5849, "learning_rate": 1.0217716242068525e-06, "epoch": 0.8135830289843811, "percentage": 81.36, "elapsed_time": "8:10:47", "remaining_time": "1:52:27"} -{"current_steps": 10480, "total_steps": 12869, "loss": 0.5096, "learning_rate": 1.0135706830917663e-06, "epoch": 0.8143600901390939, "percentage": 81.44, "elapsed_time": "8:11:14", "remaining_time": "1:51:58"} -{"current_steps": 10490, "total_steps": 12869, "loss": 0.5968, "learning_rate": 1.0053990722713347e-06, "epoch": 0.8151371512938068, "percentage": 81.51, "elapsed_time": "8:11:51", "remaining_time": "1:51:32"} -{"current_steps": 10500, "total_steps": 12869, "loss": 0.5779, "learning_rate": 9.97256851868474e-07, "epoch": 0.8159142124485197, "percentage": 81.59, "elapsed_time": "8:12:19", "remaining_time": "1:51:04"} -{"current_steps": 10510, "total_steps": 12869, "loss": 0.5205, "learning_rate": 9.891440817898569e-07, "epoch": 0.8166912736032326, "percentage": 81.67, "elapsed_time": "8:12:47", "remaining_time": "1:50:36"} -{"current_steps": 10520, "total_steps": 12869, "loss": 0.5047, "learning_rate": 9.810608217254785e-07, "epoch": 0.8174683347579454, "percentage": 81.75, "elapsed_time": "8:13:11", "remaining_time": "1:50:07"} -{"current_steps": 10530, "total_steps": 12869, "loss": 0.5889, "learning_rate": 9.730071311482104e-07, "epoch": 0.8182453959126583, "percentage": 81.82, "elapsed_time": "8:13:45", "remaining_time": "1:49:40"} -{"current_steps": 10540, "total_steps": 12869, "loss": 0.5639, "learning_rate": 9.649830693133649e-07, "epoch": 0.8190224570673712, "percentage": 81.9, "elapsed_time": "8:14:10", "remaining_time": "1:49:11"} -{"current_steps": 10550, "total_steps": 12869, "loss": 0.5322, "learning_rate": 9.569886952582613e-07, "epoch": 0.8197995182220841, "percentage": 81.98, "elapsed_time": "8:14:34", "remaining_time": "1:48:42"} -{"current_steps": 10560, "total_steps": 12869, "loss": 0.5674, "learning_rate": 9.49024067801787e-07, "epoch": 0.820576579376797, "percentage": 82.06, "elapsed_time": "8:15:04", "remaining_time": "1:48:15"} -{"current_steps": 10570, "total_steps": 12869, "loss": 0.5758, "learning_rate": 9.410892455439724e-07, "epoch": 0.8213536405315098, "percentage": 82.14, "elapsed_time": "8:15:34", "remaining_time": "1:47:47"} -{"current_steps": 10580, "total_steps": 12869, "loss": 0.5313, "learning_rate": 9.331842868655538e-07, "epoch": 0.8221307016862227, "percentage": 82.21, "elapsed_time": "8:16:06", "remaining_time": "1:47:20"} -{"current_steps": 10590, "total_steps": 12869, "loss": 0.6023, "learning_rate": 9.253092499275435e-07, "epoch": 0.8229077628409356, "percentage": 82.29, "elapsed_time": "8:16:30", "remaining_time": "1:46:50"} -{"current_steps": 10600, "total_steps": 12869, "loss": 0.5797, "learning_rate": 9.174641926708028e-07, "epoch": 0.8236848239956485, "percentage": 82.37, "elapsed_time": "8:16:59", "remaining_time": "1:46:23"} -{"current_steps": 10610, "total_steps": 12869, "loss": 0.6112, "learning_rate": 9.096491728156187e-07, "epoch": 0.8244618851503613, "percentage": 82.45, "elapsed_time": "8:17:25", "remaining_time": "1:45:54"} -{"current_steps": 10620, "total_steps": 12869, "loss": 0.6045, "learning_rate": 9.018642478612755e-07, "epoch": 0.8252389463050742, "percentage": 82.52, "elapsed_time": "8:17:53", "remaining_time": "1:45:26"} -{"current_steps": 10630, "total_steps": 12869, "loss": 0.6031, "learning_rate": 8.941094750856349e-07, "epoch": 0.8260160074597871, "percentage": 82.6, "elapsed_time": "8:18:21", "remaining_time": "1:44:58"} -{"current_steps": 10640, "total_steps": 12869, "loss": 0.5648, "learning_rate": 8.863849115447121e-07, "epoch": 0.8267930686145, "percentage": 82.68, "elapsed_time": "8:18:43", "remaining_time": "1:44:28"} -{"current_steps": 10650, "total_steps": 12869, "loss": 0.5542, "learning_rate": 8.786906140722551e-07, "epoch": 0.8275701297692128, "percentage": 82.76, "elapsed_time": "8:19:10", "remaining_time": "1:44:00"} -{"current_steps": 10660, "total_steps": 12869, "loss": 0.5561, "learning_rate": 8.710266392793293e-07, "epoch": 0.8283471909239257, "percentage": 82.83, "elapsed_time": "8:19:38", "remaining_time": "1:43:32"} -{"current_steps": 10670, "total_steps": 12869, "loss": 0.5586, "learning_rate": 8.633930435539023e-07, "epoch": 0.8291242520786386, "percentage": 82.91, "elapsed_time": "8:20:08", "remaining_time": "1:43:04"} -{"current_steps": 10680, "total_steps": 12869, "loss": 0.5397, "learning_rate": 8.557898830604239e-07, "epoch": 0.8299013132333515, "percentage": 82.99, "elapsed_time": "8:20:41", "remaining_time": "1:42:37"} -{"current_steps": 10690, "total_steps": 12869, "loss": 0.5706, "learning_rate": 8.48217213739414e-07, "epoch": 0.8306783743880644, "percentage": 83.07, "elapsed_time": "8:21:09", "remaining_time": "1:42:09"} -{"current_steps": 10700, "total_steps": 12869, "loss": 0.5758, "learning_rate": 8.406750913070582e-07, "epoch": 0.8314554355427772, "percentage": 83.15, "elapsed_time": "8:21:41", "remaining_time": "1:41:41"} -{"current_steps": 10710, "total_steps": 12869, "loss": 0.574, "learning_rate": 8.33163571254787e-07, "epoch": 0.8322324966974901, "percentage": 83.22, "elapsed_time": "8:22:10", "remaining_time": "1:41:14"} -{"current_steps": 10720, "total_steps": 12869, "loss": 0.5704, "learning_rate": 8.256827088488756e-07, "epoch": 0.833009557852203, "percentage": 83.3, "elapsed_time": "8:22:36", "remaining_time": "1:40:45"} -{"current_steps": 10730, "total_steps": 12869, "loss": 0.5487, "learning_rate": 8.182325591300333e-07, "epoch": 0.8337866190069159, "percentage": 83.38, "elapsed_time": "8:23:04", "remaining_time": "1:40:17"} -{"current_steps": 10740, "total_steps": 12869, "loss": 0.5769, "learning_rate": 8.10813176912999e-07, "epoch": 0.8345636801616287, "percentage": 83.46, "elapsed_time": "8:23:36", "remaining_time": "1:39:49"} -{"current_steps": 10750, "total_steps": 12869, "loss": 0.5812, "learning_rate": 8.03424616786142e-07, "epoch": 0.8353407413163416, "percentage": 83.53, "elapsed_time": "8:24:07", "remaining_time": "1:39:22"} -{"current_steps": 10760, "total_steps": 12869, "loss": 0.5644, "learning_rate": 7.960669331110521e-07, "epoch": 0.8361178024710545, "percentage": 83.61, "elapsed_time": "8:24:37", "remaining_time": "1:38:54"} -{"current_steps": 10770, "total_steps": 12869, "loss": 0.6006, "learning_rate": 7.887401800221495e-07, "epoch": 0.8368948636257674, "percentage": 83.69, "elapsed_time": "8:25:05", "remaining_time": "1:38:26"} -{"current_steps": 10780, "total_steps": 12869, "loss": 0.5692, "learning_rate": 7.814444114262786e-07, "epoch": 0.8376719247804802, "percentage": 83.77, "elapsed_time": "8:25:28", "remaining_time": "1:37:57"} -{"current_steps": 10790, "total_steps": 12869, "loss": 0.5699, "learning_rate": 7.741796810023139e-07, "epoch": 0.8384489859351931, "percentage": 83.84, "elapsed_time": "8:25:57", "remaining_time": "1:37:29"} -{"current_steps": 10800, "total_steps": 12869, "loss": 0.5219, "learning_rate": 7.669460422007657e-07, "epoch": 0.839226047089906, "percentage": 83.92, "elapsed_time": "8:26:29", "remaining_time": "1:37:01"} -{"current_steps": 10810, "total_steps": 12869, "loss": 0.5612, "learning_rate": 7.597435482433896e-07, "epoch": 0.8400031082446189, "percentage": 84.0, "elapsed_time": "8:26:52", "remaining_time": "1:36:32"} -{"current_steps": 10820, "total_steps": 12869, "loss": 0.5733, "learning_rate": 7.525722521227885e-07, "epoch": 0.8407801693993318, "percentage": 84.08, "elapsed_time": "8:27:17", "remaining_time": "1:36:03"} -{"current_steps": 10830, "total_steps": 12869, "loss": 0.5657, "learning_rate": 7.45432206602027e-07, "epoch": 0.8415572305540446, "percentage": 84.16, "elapsed_time": "8:27:47", "remaining_time": "1:35:36"} -{"current_steps": 10840, "total_steps": 12869, "loss": 0.5516, "learning_rate": 7.383234642142422e-07, "epoch": 0.8423342917087575, "percentage": 84.23, "elapsed_time": "8:28:17", "remaining_time": "1:35:08"} -{"current_steps": 10850, "total_steps": 12869, "loss": 0.5902, "learning_rate": 7.312460772622565e-07, "epoch": 0.8431113528634704, "percentage": 84.31, "elapsed_time": "8:28:43", "remaining_time": "1:34:39"} -{"current_steps": 10860, "total_steps": 12869, "loss": 0.5885, "learning_rate": 7.242000978181963e-07, "epoch": 0.8438884140181833, "percentage": 84.39, "elapsed_time": "8:29:14", "remaining_time": "1:34:12"} -{"current_steps": 10870, "total_steps": 12869, "loss": 0.5396, "learning_rate": 7.171855777231058e-07, "epoch": 0.8446654751728961, "percentage": 84.47, "elapsed_time": "8:29:48", "remaining_time": "1:33:45"} -{"current_steps": 10880, "total_steps": 12869, "loss": 0.5635, "learning_rate": 7.102025685865622e-07, "epoch": 0.845442536327609, "percentage": 84.54, "elapsed_time": "8:30:15", "remaining_time": "1:33:16"} -{"current_steps": 10890, "total_steps": 12869, "loss": 0.5248, "learning_rate": 7.032511217863031e-07, "epoch": 0.8462195974823219, "percentage": 84.62, "elapsed_time": "8:30:47", "remaining_time": "1:32:49"} -{"current_steps": 10900, "total_steps": 12869, "loss": 0.5625, "learning_rate": 6.963312884678441e-07, "epoch": 0.8469966586370348, "percentage": 84.7, "elapsed_time": "8:31:17", "remaining_time": "1:32:21"} -{"current_steps": 10910, "total_steps": 12869, "loss": 0.607, "learning_rate": 6.894431195441037e-07, "epoch": 0.8477737197917476, "percentage": 84.78, "elapsed_time": "8:31:39", "remaining_time": "1:31:52"} -{"current_steps": 10920, "total_steps": 12869, "loss": 0.5137, "learning_rate": 6.825866656950264e-07, "epoch": 0.8485507809464605, "percentage": 84.86, "elapsed_time": "8:32:08", "remaining_time": "1:31:24"} -{"current_steps": 10930, "total_steps": 12869, "loss": 0.5836, "learning_rate": 6.757619773672169e-07, "epoch": 0.8493278421011734, "percentage": 84.93, "elapsed_time": "8:32:35", "remaining_time": "1:30:55"} -{"current_steps": 10940, "total_steps": 12869, "loss": 0.5944, "learning_rate": 6.689691047735597e-07, "epoch": 0.8501049032558863, "percentage": 85.01, "elapsed_time": "8:33:03", "remaining_time": "1:30:27"} -{"current_steps": 10950, "total_steps": 12869, "loss": 0.5424, "learning_rate": 6.62208097892853e-07, "epoch": 0.8508819644105992, "percentage": 85.09, "elapsed_time": "8:33:36", "remaining_time": "1:30:00"} -{"current_steps": 10960, "total_steps": 12869, "loss": 0.561, "learning_rate": 6.554790064694471e-07, "epoch": 0.851659025565312, "percentage": 85.17, "elapsed_time": "8:34:04", "remaining_time": "1:29:32"} -{"current_steps": 10970, "total_steps": 12869, "loss": 0.5432, "learning_rate": 6.487818800128692e-07, "epoch": 0.8524360867200249, "percentage": 85.24, "elapsed_time": "8:34:33", "remaining_time": "1:29:04"} -{"current_steps": 10980, "total_steps": 12869, "loss": 0.5691, "learning_rate": 6.421167677974622e-07, "epoch": 0.8532131478747378, "percentage": 85.32, "elapsed_time": "8:35:01", "remaining_time": "1:28:36"} -{"current_steps": 10990, "total_steps": 12869, "loss": 0.5618, "learning_rate": 6.354837188620278e-07, "epoch": 0.8539902090294507, "percentage": 85.4, "elapsed_time": "8:35:32", "remaining_time": "1:28:08"} -{"current_steps": 11000, "total_steps": 12869, "loss": 0.5593, "learning_rate": 6.288827820094562e-07, "epoch": 0.8547672701841635, "percentage": 85.48, "elapsed_time": "8:35:56", "remaining_time": "1:27:39"} -{"current_steps": 11010, "total_steps": 12869, "loss": 0.5452, "learning_rate": 6.223140058063737e-07, "epoch": 0.8555443313388764, "percentage": 85.55, "elapsed_time": "8:36:21", "remaining_time": "1:27:11"} -{"current_steps": 11020, "total_steps": 12869, "loss": 0.4936, "learning_rate": 6.157774385827847e-07, "epoch": 0.8563213924935893, "percentage": 85.63, "elapsed_time": "8:36:51", "remaining_time": "1:26:43"} -{"current_steps": 11030, "total_steps": 12869, "loss": 0.5547, "learning_rate": 6.092731284317111e-07, "epoch": 0.8570984536483022, "percentage": 85.71, "elapsed_time": "8:37:22", "remaining_time": "1:26:15"} -{"current_steps": 11040, "total_steps": 12869, "loss": 0.5382, "learning_rate": 6.028011232088471e-07, "epoch": 0.857875514803015, "percentage": 85.79, "elapsed_time": "8:37:49", "remaining_time": "1:25:47"} -{"current_steps": 11050, "total_steps": 12869, "loss": 0.5317, "learning_rate": 5.963614705321996e-07, "epoch": 0.8586525759577279, "percentage": 85.87, "elapsed_time": "8:38:15", "remaining_time": "1:25:18"} -{"current_steps": 11060, "total_steps": 12869, "loss": 0.5394, "learning_rate": 5.899542177817413e-07, "epoch": 0.8594296371124408, "percentage": 85.94, "elapsed_time": "8:38:42", "remaining_time": "1:24:50"} -{"current_steps": 11070, "total_steps": 12869, "loss": 0.6175, "learning_rate": 5.835794120990607e-07, "epoch": 0.8602066982671537, "percentage": 86.02, "elapsed_time": "8:39:08", "remaining_time": "1:24:21"} -{"current_steps": 11080, "total_steps": 12869, "loss": 0.5879, "learning_rate": 5.772371003870147e-07, "epoch": 0.8609837594218664, "percentage": 86.1, "elapsed_time": "8:39:30", "remaining_time": "1:23:52"} -{"current_steps": 11090, "total_steps": 12869, "loss": 0.5242, "learning_rate": 5.709273293093865e-07, "epoch": 0.8617608205765793, "percentage": 86.18, "elapsed_time": "8:39:58", "remaining_time": "1:23:24"} -{"current_steps": 11100, "total_steps": 12869, "loss": 0.5298, "learning_rate": 5.646501452905406e-07, "epoch": 0.8625378817312922, "percentage": 86.25, "elapsed_time": "8:40:27", "remaining_time": "1:22:56"} -{"current_steps": 11110, "total_steps": 12869, "loss": 0.5323, "learning_rate": 5.584055945150807e-07, "epoch": 0.8633149428860051, "percentage": 86.33, "elapsed_time": "8:40:56", "remaining_time": "1:22:28"} -{"current_steps": 11120, "total_steps": 12869, "loss": 0.5408, "learning_rate": 5.521937229275087e-07, "epoch": 0.864092004040718, "percentage": 86.41, "elapsed_time": "8:41:23", "remaining_time": "1:22:00"} -{"current_steps": 11130, "total_steps": 12869, "loss": 0.5702, "learning_rate": 5.460145762318903e-07, "epoch": 0.8648690651954308, "percentage": 86.49, "elapsed_time": "8:41:52", "remaining_time": "1:21:32"} -{"current_steps": 11140, "total_steps": 12869, "loss": 0.5227, "learning_rate": 5.398681998915145e-07, "epoch": 0.8656461263501437, "percentage": 86.56, "elapsed_time": "8:42:15", "remaining_time": "1:21:03"} -{"current_steps": 11150, "total_steps": 12869, "loss": 0.5395, "learning_rate": 5.337546391285647e-07, "epoch": 0.8664231875048566, "percentage": 86.64, "elapsed_time": "8:42:44", "remaining_time": "1:20:35"} -{"current_steps": 11160, "total_steps": 12869, "loss": 0.5237, "learning_rate": 5.276739389237778e-07, "epoch": 0.8672002486595695, "percentage": 86.72, "elapsed_time": "8:43:11", "remaining_time": "1:20:07"} -{"current_steps": 11170, "total_steps": 12869, "loss": 0.5785, "learning_rate": 5.216261440161236e-07, "epoch": 0.8679773098142823, "percentage": 86.8, "elapsed_time": "8:43:38", "remaining_time": "1:19:38"} -{"current_steps": 11180, "total_steps": 12869, "loss": 0.5379, "learning_rate": 5.156112989024653e-07, "epoch": 0.8687543709689952, "percentage": 86.88, "elapsed_time": "8:44:06", "remaining_time": "1:19:10"} -{"current_steps": 11190, "total_steps": 12869, "loss": 0.5164, "learning_rate": 5.096294478372382e-07, "epoch": 0.8695314321237081, "percentage": 86.95, "elapsed_time": "8:44:39", "remaining_time": "1:18:43"} -{"current_steps": 11200, "total_steps": 12869, "loss": 0.5589, "learning_rate": 5.036806348321238e-07, "epoch": 0.870308493278421, "percentage": 87.03, "elapsed_time": "8:45:07", "remaining_time": "1:18:15"} -{"current_steps": 11210, "total_steps": 12869, "loss": 0.587, "learning_rate": 4.977649036557225e-07, "epoch": 0.8710855544331338, "percentage": 87.11, "elapsed_time": "8:45:35", "remaining_time": "1:17:47"} -{"current_steps": 11220, "total_steps": 12869, "loss": 0.5298, "learning_rate": 4.918822978332377e-07, "epoch": 0.8718626155878467, "percentage": 87.19, "elapsed_time": "8:46:01", "remaining_time": "1:17:18"} -{"current_steps": 11230, "total_steps": 12869, "loss": 0.5164, "learning_rate": 4.860328606461485e-07, "epoch": 0.8726396767425596, "percentage": 87.26, "elapsed_time": "8:46:31", "remaining_time": "1:16:50"} -{"current_steps": 11240, "total_steps": 12869, "loss": 0.5743, "learning_rate": 4.802166351318965e-07, "epoch": 0.8734167378972725, "percentage": 87.34, "elapsed_time": "8:46:53", "remaining_time": "1:16:21"} -{"current_steps": 11250, "total_steps": 12869, "loss": 0.5397, "learning_rate": 4.7443366408356673e-07, "epoch": 0.8741937990519854, "percentage": 87.42, "elapsed_time": "8:47:19", "remaining_time": "1:15:53"} -{"current_steps": 11260, "total_steps": 12869, "loss": 0.5601, "learning_rate": 4.6868399004957266e-07, "epoch": 0.8749708602066982, "percentage": 87.5, "elapsed_time": "8:47:52", "remaining_time": "1:15:25"} -{"current_steps": 11270, "total_steps": 12869, "loss": 0.5908, "learning_rate": 4.6296765533334345e-07, "epoch": 0.8757479213614111, "percentage": 87.57, "elapsed_time": "8:48:19", "remaining_time": "1:14:57"} -{"current_steps": 11280, "total_steps": 12869, "loss": 0.5459, "learning_rate": 4.57284701993016e-07, "epoch": 0.876524982516124, "percentage": 87.65, "elapsed_time": "8:48:48", "remaining_time": "1:14:29"} -{"current_steps": 11290, "total_steps": 12869, "loss": 0.554, "learning_rate": 4.5163517184111885e-07, "epoch": 0.8773020436708369, "percentage": 87.73, "elapsed_time": "8:49:14", "remaining_time": "1:14:01"} -{"current_steps": 11300, "total_steps": 12869, "loss": 0.5616, "learning_rate": 4.460191064442704e-07, "epoch": 0.8780791048255497, "percentage": 87.81, "elapsed_time": "8:49:43", "remaining_time": "1:13:33"} -{"current_steps": 11310, "total_steps": 12869, "loss": 0.5623, "learning_rate": 4.4043654712287e-07, "epoch": 0.8788561659802626, "percentage": 87.89, "elapsed_time": "8:50:16", "remaining_time": "1:13:05"} -{"current_steps": 11320, "total_steps": 12869, "loss": 0.5566, "learning_rate": 4.348875349507953e-07, "epoch": 0.8796332271349755, "percentage": 87.96, "elapsed_time": "8:50:38", "remaining_time": "1:12:36"} -{"current_steps": 11330, "total_steps": 12869, "loss": 0.5711, "learning_rate": 4.293721107551002e-07, "epoch": 0.8804102882896884, "percentage": 88.04, "elapsed_time": "8:51:13", "remaining_time": "1:12:09"} -{"current_steps": 11340, "total_steps": 12869, "loss": 0.5483, "learning_rate": 4.23890315115712e-07, "epoch": 0.8811873494444012, "percentage": 88.12, "elapsed_time": "8:51:40", "remaining_time": "1:11:41"} -{"current_steps": 11350, "total_steps": 12869, "loss": 0.5473, "learning_rate": 4.184421883651374e-07, "epoch": 0.8819644105991141, "percentage": 88.2, "elapsed_time": "8:52:08", "remaining_time": "1:11:13"} -{"current_steps": 11360, "total_steps": 12869, "loss": 0.5805, "learning_rate": 4.1302777058816136e-07, "epoch": 0.882741471753827, "percentage": 88.27, "elapsed_time": "8:52:37", "remaining_time": "1:10:45"} -{"current_steps": 11370, "total_steps": 12869, "loss": 0.5258, "learning_rate": 4.076471016215533e-07, "epoch": 0.8835185329085399, "percentage": 88.35, "elapsed_time": "8:53:02", "remaining_time": "1:10:16"} -{"current_steps": 11380, "total_steps": 12869, "loss": 0.5394, "learning_rate": 4.023002210537763e-07, "epoch": 0.8842955940632528, "percentage": 88.43, "elapsed_time": "8:53:28", "remaining_time": "1:09:48"} -{"current_steps": 11390, "total_steps": 12869, "loss": 0.531, "learning_rate": 3.9698716822469175e-07, "epoch": 0.8850726552179656, "percentage": 88.51, "elapsed_time": "8:53:57", "remaining_time": "1:09:20"} -{"current_steps": 11400, "total_steps": 12869, "loss": 0.5522, "learning_rate": 3.917079822252756e-07, "epoch": 0.8858497163726785, "percentage": 88.58, "elapsed_time": "8:54:21", "remaining_time": "1:08:51"} -{"current_steps": 11410, "total_steps": 12869, "loss": 0.5433, "learning_rate": 3.864627018973244e-07, "epoch": 0.8866267775273914, "percentage": 88.66, "elapsed_time": "8:54:53", "remaining_time": "1:08:23"} -{"current_steps": 11420, "total_steps": 12869, "loss": 0.5286, "learning_rate": 3.8125136583317404e-07, "epoch": 0.8874038386821043, "percentage": 88.74, "elapsed_time": "8:55:21", "remaining_time": "1:07:55"} -{"current_steps": 11430, "total_steps": 12869, "loss": 0.5765, "learning_rate": 3.760740123754125e-07, "epoch": 0.8881808998368171, "percentage": 88.82, "elapsed_time": "8:55:53", "remaining_time": "1:07:27"} -{"current_steps": 11440, "total_steps": 12869, "loss": 0.5503, "learning_rate": 3.709306796166029e-07, "epoch": 0.88895796099153, "percentage": 88.9, "elapsed_time": "8:56:19", "remaining_time": "1:06:59"} -{"current_steps": 11450, "total_steps": 12869, "loss": 0.5126, "learning_rate": 3.658214053989967e-07, "epoch": 0.8897350221462429, "percentage": 88.97, "elapsed_time": "8:56:47", "remaining_time": "1:06:31"} -{"current_steps": 11460, "total_steps": 12869, "loss": 0.5406, "learning_rate": 3.6074622731426036e-07, "epoch": 0.8905120833009558, "percentage": 89.05, "elapsed_time": "8:57:13", "remaining_time": "1:06:03"} -{"current_steps": 11470, "total_steps": 12869, "loss": 0.5611, "learning_rate": 3.557051827031954e-07, "epoch": 0.8912891444556686, "percentage": 89.13, "elapsed_time": "8:57:44", "remaining_time": "1:05:35"} -{"current_steps": 11480, "total_steps": 12869, "loss": 0.5441, "learning_rate": 3.506983086554666e-07, "epoch": 0.8920662056103815, "percentage": 89.21, "elapsed_time": "8:58:12", "remaining_time": "1:05:07"} -{"current_steps": 11490, "total_steps": 12869, "loss": 0.5953, "learning_rate": 3.4572564200932634e-07, "epoch": 0.8928432667650944, "percentage": 89.28, "elapsed_time": "8:58:40", "remaining_time": "1:04:39"} -{"current_steps": 11500, "total_steps": 12869, "loss": 0.5759, "learning_rate": 3.4078721935134397e-07, "epoch": 0.8936203279198073, "percentage": 89.36, "elapsed_time": "8:59:05", "remaining_time": "1:04:10"} -{"current_steps": 11510, "total_steps": 12869, "loss": 0.5325, "learning_rate": 3.3588307701614144e-07, "epoch": 0.8943973890745202, "percentage": 89.44, "elapsed_time": "8:59:27", "remaining_time": "1:03:41"} -{"current_steps": 11520, "total_steps": 12869, "loss": 0.558, "learning_rate": 3.310132510861169e-07, "epoch": 0.895174450229233, "percentage": 89.52, "elapsed_time": "8:59:48", "remaining_time": "1:03:12"} -{"current_steps": 11530, "total_steps": 12869, "loss": 0.5174, "learning_rate": 3.2617777739118894e-07, "epoch": 0.8959515113839459, "percentage": 89.6, "elapsed_time": "9:00:22", "remaining_time": "1:02:45"} -{"current_steps": 11540, "total_steps": 12869, "loss": 0.5334, "learning_rate": 3.213766915085248e-07, "epoch": 0.8967285725386588, "percentage": 89.67, "elapsed_time": "9:00:49", "remaining_time": "1:02:17"} -{"current_steps": 11550, "total_steps": 12869, "loss": 0.4918, "learning_rate": 3.1661002876228473e-07, "epoch": 0.8975056336933717, "percentage": 89.75, "elapsed_time": "9:01:15", "remaining_time": "1:01:48"} -{"current_steps": 11560, "total_steps": 12869, "loss": 0.5167, "learning_rate": 3.118778242233572e-07, "epoch": 0.8982826948480845, "percentage": 89.83, "elapsed_time": "9:01:46", "remaining_time": "1:01:20"} -{"current_steps": 11570, "total_steps": 12869, "loss": 0.5614, "learning_rate": 3.0718011270910455e-07, "epoch": 0.8990597560027974, "percentage": 89.91, "elapsed_time": "9:02:12", "remaining_time": "1:00:52"} -{"current_steps": 11580, "total_steps": 12869, "loss": 0.5278, "learning_rate": 3.02516928783107e-07, "epoch": 0.8998368171575103, "percentage": 89.98, "elapsed_time": "9:02:40", "remaining_time": "1:00:24"} -{"current_steps": 11590, "total_steps": 12869, "loss": 0.5425, "learning_rate": 2.978883067549032e-07, "epoch": 0.9006138783122232, "percentage": 90.06, "elapsed_time": "9:03:05", "remaining_time": "0:59:55"} -{"current_steps": 11600, "total_steps": 12869, "loss": 0.5355, "learning_rate": 2.9329428067974454e-07, "epoch": 0.901390939466936, "percentage": 90.14, "elapsed_time": "9:03:36", "remaining_time": "0:59:28"} -{"current_steps": 11610, "total_steps": 12869, "loss": 0.5036, "learning_rate": 2.8873488435833983e-07, "epoch": 0.9021680006216489, "percentage": 90.22, "elapsed_time": "9:04:04", "remaining_time": "0:58:59"} -{"current_steps": 11620, "total_steps": 12869, "loss": 0.5042, "learning_rate": 2.8421015133660856e-07, "epoch": 0.9029450617763618, "percentage": 90.29, "elapsed_time": "9:04:32", "remaining_time": "0:58:31"} -{"current_steps": 11630, "total_steps": 12869, "loss": 0.5229, "learning_rate": 2.797201149054335e-07, "epoch": 0.9037221229310747, "percentage": 90.37, "elapsed_time": "9:05:02", "remaining_time": "0:58:03"} -{"current_steps": 11640, "total_steps": 12869, "loss": 0.5478, "learning_rate": 2.752648081004183e-07, "epoch": 0.9044991840857876, "percentage": 90.45, "elapsed_time": "9:05:27", "remaining_time": "0:57:35"} -{"current_steps": 11650, "total_steps": 12869, "loss": 0.5433, "learning_rate": 2.7084426370163954e-07, "epoch": 0.9052762452405004, "percentage": 90.53, "elapsed_time": "9:05:53", "remaining_time": "0:57:07"} -{"current_steps": 11660, "total_steps": 12869, "loss": 0.526, "learning_rate": 2.6645851423340806e-07, "epoch": 0.9060533063952133, "percentage": 90.61, "elapsed_time": "9:06:24", "remaining_time": "0:56:39"} -{"current_steps": 11670, "total_steps": 12869, "loss": 0.5496, "learning_rate": 2.621075919640309e-07, "epoch": 0.9068303675499262, "percentage": 90.68, "elapsed_time": "9:06:48", "remaining_time": "0:56:10"} -{"current_steps": 11680, "total_steps": 12869, "loss": 0.5333, "learning_rate": 2.577915289055727e-07, "epoch": 0.9076074287046391, "percentage": 90.76, "elapsed_time": "9:07:20", "remaining_time": "0:55:43"} -{"current_steps": 11690, "total_steps": 12869, "loss": 0.5379, "learning_rate": 2.535103568136205e-07, "epoch": 0.9083844898593519, "percentage": 90.84, "elapsed_time": "9:07:46", "remaining_time": "0:55:14"} -{"current_steps": 11700, "total_steps": 12869, "loss": 0.5556, "learning_rate": 2.492641071870489e-07, "epoch": 0.9091615510140648, "percentage": 90.92, "elapsed_time": "9:08:14", "remaining_time": "0:54:46"} -{"current_steps": 11710, "total_steps": 12869, "loss": 0.5647, "learning_rate": 2.450528112677886e-07, "epoch": 0.9099386121687777, "percentage": 90.99, "elapsed_time": "9:08:41", "remaining_time": "0:54:18"} -{"current_steps": 11720, "total_steps": 12869, "loss": 0.543, "learning_rate": 2.408765000406005e-07, "epoch": 0.9107156733234906, "percentage": 91.07, "elapsed_time": "9:09:12", "remaining_time": "0:53:50"} -{"current_steps": 11730, "total_steps": 12869, "loss": 0.534, "learning_rate": 2.367352042328408e-07, "epoch": 0.9114927344782034, "percentage": 91.15, "elapsed_time": "9:09:37", "remaining_time": "0:53:22"} -{"current_steps": 11740, "total_steps": 12869, "loss": 0.5817, "learning_rate": 2.3262895431424015e-07, "epoch": 0.9122697956329163, "percentage": 91.23, "elapsed_time": "9:10:01", "remaining_time": "0:52:53"} -{"current_steps": 11750, "total_steps": 12869, "loss": 0.5364, "learning_rate": 2.2855778049667653e-07, "epoch": 0.9130468567876292, "percentage": 91.3, "elapsed_time": "9:10:29", "remaining_time": "0:52:25"} -{"current_steps": 11760, "total_steps": 12869, "loss": 0.5532, "learning_rate": 2.2452171273395716e-07, "epoch": 0.9138239179423421, "percentage": 91.38, "elapsed_time": "9:10:59", "remaining_time": "0:51:57"} -{"current_steps": 11770, "total_steps": 12869, "loss": 0.5383, "learning_rate": 2.2052078072159143e-07, "epoch": 0.914600979097055, "percentage": 91.46, "elapsed_time": "9:11:25", "remaining_time": "0:51:29"} -{"current_steps": 11780, "total_steps": 12869, "loss": 0.5559, "learning_rate": 2.1655501389657941e-07, "epoch": 0.9153780402517678, "percentage": 91.54, "elapsed_time": "9:11:54", "remaining_time": "0:51:01"} -{"current_steps": 11790, "total_steps": 12869, "loss": 0.562, "learning_rate": 2.126244414371903e-07, "epoch": 0.9161551014064807, "percentage": 91.62, "elapsed_time": "9:12:21", "remaining_time": "0:50:33"} -{"current_steps": 11800, "total_steps": 12869, "loss": 0.5128, "learning_rate": 2.087290922627494e-07, "epoch": 0.9169321625611936, "percentage": 91.69, "elapsed_time": "9:12:50", "remaining_time": "0:50:05"} -{"current_steps": 11810, "total_steps": 12869, "loss": 0.5527, "learning_rate": 2.0486899503342595e-07, "epoch": 0.9177092237159065, "percentage": 91.77, "elapsed_time": "9:13:29", "remaining_time": "0:49:37"} -{"current_steps": 11820, "total_steps": 12869, "loss": 0.5317, "learning_rate": 2.010441781500233e-07, "epoch": 0.9184862848706193, "percentage": 91.85, "elapsed_time": "9:14:00", "remaining_time": "0:49:09"} -{"current_steps": 11830, "total_steps": 12869, "loss": 0.5277, "learning_rate": 1.9725466975376585e-07, "epoch": 0.9192633460253322, "percentage": 91.93, "elapsed_time": "9:14:28", "remaining_time": "0:48:41"} -{"current_steps": 11840, "total_steps": 12869, "loss": 0.5608, "learning_rate": 1.9350049772609568e-07, "epoch": 0.9200404071800451, "percentage": 92.0, "elapsed_time": "9:14:56", "remaining_time": "0:48:13"} -{"current_steps": 11850, "total_steps": 12869, "loss": 0.5208, "learning_rate": 1.8978168968846632e-07, "epoch": 0.920817468334758, "percentage": 92.08, "elapsed_time": "9:15:19", "remaining_time": "0:47:45"} -{"current_steps": 11860, "total_steps": 12869, "loss": 0.5277, "learning_rate": 1.8609827300213877e-07, "epoch": 0.9215945294894708, "percentage": 92.16, "elapsed_time": "9:15:51", "remaining_time": "0:47:17"} -{"current_steps": 11870, "total_steps": 12869, "loss": 0.489, "learning_rate": 1.8245027476798295e-07, "epoch": 0.9223715906441837, "percentage": 92.24, "elapsed_time": "9:16:20", "remaining_time": "0:46:49"} -{"current_steps": 11880, "total_steps": 12869, "loss": 0.5445, "learning_rate": 1.7883772182627378e-07, "epoch": 0.9231486517988966, "percentage": 92.31, "elapsed_time": "9:16:51", "remaining_time": "0:46:21"} -{"current_steps": 11890, "total_steps": 12869, "loss": 0.5042, "learning_rate": 1.7526064075649718e-07, "epoch": 0.9239257129536095, "percentage": 92.39, "elapsed_time": "9:17:19", "remaining_time": "0:45:53"} -{"current_steps": 11900, "total_steps": 12869, "loss": 0.5306, "learning_rate": 1.7171905787715436e-07, "epoch": 0.9247027741083224, "percentage": 92.47, "elapsed_time": "9:17:46", "remaining_time": "0:45:25"} -{"current_steps": 11910, "total_steps": 12869, "loss": 0.5481, "learning_rate": 1.6821299924556557e-07, "epoch": 0.9254798352630352, "percentage": 92.55, "elapsed_time": "9:18:12", "remaining_time": "0:44:56"} -{"current_steps": 11920, "total_steps": 12869, "loss": 0.5177, "learning_rate": 1.647424906576811e-07, "epoch": 0.9262568964177481, "percentage": 92.63, "elapsed_time": "9:18:42", "remaining_time": "0:44:28"} -{"current_steps": 11930, "total_steps": 12869, "loss": 0.5467, "learning_rate": 1.613075576478923e-07, "epoch": 0.927033957572461, "percentage": 92.7, "elapsed_time": "9:19:08", "remaining_time": "0:44:00"} -{"current_steps": 11940, "total_steps": 12869, "loss": 0.539, "learning_rate": 1.5790822548883921e-07, "epoch": 0.9278110187271739, "percentage": 92.78, "elapsed_time": "9:19:30", "remaining_time": "0:43:31"} -{"current_steps": 11950, "total_steps": 12869, "loss": 0.5447, "learning_rate": 1.545445191912287e-07, "epoch": 0.9285880798818867, "percentage": 92.86, "elapsed_time": "9:19:57", "remaining_time": "0:43:03"} -{"current_steps": 11960, "total_steps": 12869, "loss": 0.5392, "learning_rate": 1.5121646350364784e-07, "epoch": 0.9293651410365996, "percentage": 92.94, "elapsed_time": "9:20:23", "remaining_time": "0:42:35"} -{"current_steps": 11970, "total_steps": 12869, "loss": 0.5632, "learning_rate": 1.4792408291238514e-07, "epoch": 0.9301422021913125, "percentage": 93.01, "elapsed_time": "9:20:52", "remaining_time": "0:42:07"} -{"current_steps": 11980, "total_steps": 12869, "loss": 0.524, "learning_rate": 1.4466740164124582e-07, "epoch": 0.9309192633460254, "percentage": 93.09, "elapsed_time": "9:21:22", "remaining_time": "0:41:39"} -{"current_steps": 11990, "total_steps": 12869, "loss": 0.5107, "learning_rate": 1.4144644365137906e-07, "epoch": 0.9316963245007382, "percentage": 93.17, "elapsed_time": "9:21:53", "remaining_time": "0:41:11"} -{"current_steps": 12000, "total_steps": 12869, "loss": 0.5258, "learning_rate": 1.382612326410959e-07, "epoch": 0.9324733856554511, "percentage": 93.25, "elapsed_time": "9:22:18", "remaining_time": "0:40:43"} -{"current_steps": 12010, "total_steps": 12869, "loss": 0.5376, "learning_rate": 1.3511179204570014e-07, "epoch": 0.933250446810164, "percentage": 93.33, "elapsed_time": "9:22:43", "remaining_time": "0:40:14"} -{"current_steps": 12020, "total_steps": 12869, "loss": 0.5825, "learning_rate": 1.3199814503731144e-07, "epoch": 0.9340275079648769, "percentage": 93.4, "elapsed_time": "9:23:13", "remaining_time": "0:39:46"} -{"current_steps": 12030, "total_steps": 12869, "loss": 0.5368, "learning_rate": 1.289203145246981e-07, "epoch": 0.9348045691195898, "percentage": 93.48, "elapsed_time": "9:23:42", "remaining_time": "0:39:18"} -{"current_steps": 12040, "total_steps": 12869, "loss": 0.5486, "learning_rate": 1.258783231531069e-07, "epoch": 0.9355816302743026, "percentage": 93.56, "elapsed_time": "9:24:09", "remaining_time": "0:38:50"} -{"current_steps": 12050, "total_steps": 12869, "loss": 0.5315, "learning_rate": 1.2287219330409716e-07, "epoch": 0.9363586914290155, "percentage": 93.64, "elapsed_time": "9:24:31", "remaining_time": "0:38:22"} -{"current_steps": 12060, "total_steps": 12869, "loss": 0.5396, "learning_rate": 1.1990194709537496e-07, "epoch": 0.9371357525837284, "percentage": 93.71, "elapsed_time": "9:24:57", "remaining_time": "0:37:53"} -{"current_steps": 12070, "total_steps": 12869, "loss": 0.5324, "learning_rate": 1.1696760638063243e-07, "epoch": 0.9379128137384413, "percentage": 93.79, "elapsed_time": "9:25:24", "remaining_time": "0:37:25"} -{"current_steps": 12080, "total_steps": 12869, "loss": 0.5767, "learning_rate": 1.1406919274938477e-07, "epoch": 0.9386898748931541, "percentage": 93.87, "elapsed_time": "9:25:49", "remaining_time": "0:36:57"} -{"current_steps": 12090, "total_steps": 12869, "loss": 0.5282, "learning_rate": 1.112067275268125e-07, "epoch": 0.939466936047867, "percentage": 93.95, "elapsed_time": "9:26:13", "remaining_time": "0:36:29"} -{"current_steps": 12100, "total_steps": 12869, "loss": 0.5586, "learning_rate": 1.083802317736049e-07, "epoch": 0.9402439972025799, "percentage": 94.02, "elapsed_time": "9:26:47", "remaining_time": "0:36:01"} -{"current_steps": 12110, "total_steps": 12869, "loss": 0.5606, "learning_rate": 1.0558972628580522e-07, "epoch": 0.9410210583572928, "percentage": 94.1, "elapsed_time": "9:27:10", "remaining_time": "0:35:32"} -{"current_steps": 12120, "total_steps": 12869, "loss": 0.546, "learning_rate": 1.0283523159465514e-07, "epoch": 0.9417981195120056, "percentage": 94.18, "elapsed_time": "9:27:34", "remaining_time": "0:35:04"} -{"current_steps": 12130, "total_steps": 12869, "loss": 0.535, "learning_rate": 1.0011676796644776e-07, "epoch": 0.9425751806667185, "percentage": 94.26, "elapsed_time": "9:28:08", "remaining_time": "0:34:36"} -{"current_steps": 12140, "total_steps": 12869, "loss": 0.5125, "learning_rate": 9.743435540237433e-08, "epoch": 0.9433522418214313, "percentage": 94.34, "elapsed_time": "9:28:33", "remaining_time": "0:34:08"} -{"current_steps": 12150, "total_steps": 12869, "loss": 0.5126, "learning_rate": 9.478801363838052e-08, "epoch": 0.9441293029761442, "percentage": 94.41, "elapsed_time": "9:29:01", "remaining_time": "0:33:40"} -{"current_steps": 12160, "total_steps": 12869, "loss": 0.552, "learning_rate": 9.217776214501984e-08, "epoch": 0.944906364130857, "percentage": 94.49, "elapsed_time": "9:29:25", "remaining_time": "0:33:12"} -{"current_steps": 12170, "total_steps": 12869, "loss": 0.5337, "learning_rate": 8.960362012730983e-08, "epoch": 0.9456834252855699, "percentage": 94.57, "elapsed_time": "9:29:54", "remaining_time": "0:32:44"} -{"current_steps": 12180, "total_steps": 12869, "loss": 0.5197, "learning_rate": 8.706560652459062e-08, "epoch": 0.9464604864402828, "percentage": 94.65, "elapsed_time": "9:30:20", "remaining_time": "0:32:15"} -{"current_steps": 12190, "total_steps": 12869, "loss": 0.539, "learning_rate": 8.456374001038769e-08, "epoch": 0.9472375475949957, "percentage": 94.72, "elapsed_time": "9:30:47", "remaining_time": "0:31:47"} -{"current_steps": 12200, "total_steps": 12869, "loss": 0.5541, "learning_rate": 8.209803899227209e-08, "epoch": 0.9480146087497086, "percentage": 94.8, "elapsed_time": "9:31:17", "remaining_time": "0:31:19"} -{"current_steps": 12210, "total_steps": 12869, "loss": 0.5095, "learning_rate": 7.966852161172711e-08, "epoch": 0.9487916699044214, "percentage": 94.88, "elapsed_time": "9:31:47", "remaining_time": "0:30:51"} -{"current_steps": 12220, "total_steps": 12869, "loss": 0.494, "learning_rate": 7.727520574401127e-08, "epoch": 0.9495687310591343, "percentage": 94.96, "elapsed_time": "9:32:15", "remaining_time": "0:30:23"} -{"current_steps": 12230, "total_steps": 12869, "loss": 0.5499, "learning_rate": 7.49181089980322e-08, "epoch": 0.9503457922138472, "percentage": 95.03, "elapsed_time": "9:32:38", "remaining_time": "0:29:55"} -{"current_steps": 12240, "total_steps": 12869, "loss": 0.5824, "learning_rate": 7.259724871621188e-08, "epoch": 0.9511228533685601, "percentage": 95.11, "elapsed_time": "9:33:05", "remaining_time": "0:29:27"} -{"current_steps": 12250, "total_steps": 12869, "loss": 0.5114, "learning_rate": 7.031264197436161e-08, "epoch": 0.9518999145232729, "percentage": 95.19, "elapsed_time": "9:33:32", "remaining_time": "0:28:58"} -{"current_steps": 12260, "total_steps": 12869, "loss": 0.5555, "learning_rate": 6.806430558155719e-08, "epoch": 0.9526769756779858, "percentage": 95.27, "elapsed_time": "9:34:00", "remaining_time": "0:28:30"} -{"current_steps": 12270, "total_steps": 12869, "loss": 0.5106, "learning_rate": 6.585225608001178e-08, "epoch": 0.9534540368326987, "percentage": 95.35, "elapsed_time": "9:34:31", "remaining_time": "0:28:02"} -{"current_steps": 12280, "total_steps": 12869, "loss": 0.5035, "learning_rate": 6.367650974495875e-08, "epoch": 0.9542310979874116, "percentage": 95.42, "elapsed_time": "9:35:01", "remaining_time": "0:27:34"} -{"current_steps": 12290, "total_steps": 12869, "loss": 0.5293, "learning_rate": 6.153708258452851e-08, "epoch": 0.9550081591421244, "percentage": 95.5, "elapsed_time": "9:35:28", "remaining_time": "0:27:06"} -{"current_steps": 12300, "total_steps": 12869, "loss": 0.5218, "learning_rate": 5.943399033963182e-08, "epoch": 0.9557852202968373, "percentage": 95.58, "elapsed_time": "9:35:52", "remaining_time": "0:26:38"} -{"current_steps": 12310, "total_steps": 12869, "loss": 0.5745, "learning_rate": 5.7367248483845005e-08, "epoch": 0.9565622814515502, "percentage": 95.66, "elapsed_time": "9:36:19", "remaining_time": "0:26:10"} -{"current_steps": 12320, "total_steps": 12869, "loss": 0.4909, "learning_rate": 5.533687222329332e-08, "epoch": 0.9573393426062631, "percentage": 95.73, "elapsed_time": "9:36:54", "remaining_time": "0:25:42"} -{"current_steps": 12330, "total_steps": 12869, "loss": 0.5526, "learning_rate": 5.3342876496542126e-08, "epoch": 0.958116403760976, "percentage": 95.81, "elapsed_time": "9:37:26", "remaining_time": "0:25:14"} -{"current_steps": 12340, "total_steps": 12869, "loss": 0.5468, "learning_rate": 5.138527597448595e-08, "epoch": 0.9588934649156888, "percentage": 95.89, "elapsed_time": "9:37:54", "remaining_time": "0:24:46"} -{"current_steps": 12350, "total_steps": 12869, "loss": 0.5315, "learning_rate": 4.946408506023958e-08, "epoch": 0.9596705260704017, "percentage": 95.97, "elapsed_time": "9:38:18", "remaining_time": "0:24:18"} -{"current_steps": 12360, "total_steps": 12869, "loss": 0.4936, "learning_rate": 4.757931788903325e-08, "epoch": 0.9604475872251146, "percentage": 96.04, "elapsed_time": "9:38:48", "remaining_time": "0:23:50"} -{"current_steps": 12370, "total_steps": 12869, "loss": 0.5289, "learning_rate": 4.573098832810818e-08, "epoch": 0.9612246483798275, "percentage": 96.12, "elapsed_time": "9:39:11", "remaining_time": "0:23:21"} -{"current_steps": 12380, "total_steps": 12869, "loss": 0.5353, "learning_rate": 4.391910997661397e-08, "epoch": 0.9620017095345403, "percentage": 96.2, "elapsed_time": "9:39:36", "remaining_time": "0:22:53"} -{"current_steps": 12390, "total_steps": 12869, "loss": 0.4954, "learning_rate": 4.214369616550973e-08, "epoch": 0.9627787706892532, "percentage": 96.28, "elapsed_time": "9:40:04", "remaining_time": "0:22:25"} -{"current_steps": 12400, "total_steps": 12869, "loss": 0.5085, "learning_rate": 4.040475995746529e-08, "epoch": 0.9635558318439661, "percentage": 96.36, "elapsed_time": "9:40:35", "remaining_time": "0:21:57"} -{"current_steps": 12410, "total_steps": 12869, "loss": 0.5609, "learning_rate": 3.8702314146766284e-08, "epoch": 0.964332892998679, "percentage": 96.43, "elapsed_time": "9:41:06", "remaining_time": "0:21:29"} -{"current_steps": 12420, "total_steps": 12869, "loss": 0.5442, "learning_rate": 3.7036371259216994e-08, "epoch": 0.9651099541533918, "percentage": 96.51, "elapsed_time": "9:41:40", "remaining_time": "0:21:01"} -{"current_steps": 12430, "total_steps": 12869, "loss": 0.5355, "learning_rate": 3.540694355205099e-08, "epoch": 0.9658870153081047, "percentage": 96.59, "elapsed_time": "9:42:02", "remaining_time": "0:20:33"} -{"current_steps": 12440, "total_steps": 12869, "loss": 0.5302, "learning_rate": 3.381404301384117e-08, "epoch": 0.9666640764628176, "percentage": 96.67, "elapsed_time": "9:42:28", "remaining_time": "0:20:05"} -{"current_steps": 12450, "total_steps": 12869, "loss": 0.543, "learning_rate": 3.225768136440821e-08, "epoch": 0.9674411376175305, "percentage": 96.74, "elapsed_time": "9:42:52", "remaining_time": "0:19:36"} -{"current_steps": 12460, "total_steps": 12869, "loss": 0.5407, "learning_rate": 3.0737870054739496e-08, "epoch": 0.9682181987722434, "percentage": 96.82, "elapsed_time": "9:43:21", "remaining_time": "0:19:08"} -{"current_steps": 12470, "total_steps": 12869, "loss": 0.5219, "learning_rate": 2.925462026689918e-08, "epoch": 0.9689952599269562, "percentage": 96.9, "elapsed_time": "9:43:46", "remaining_time": "0:18:40"} -{"current_steps": 12480, "total_steps": 12869, "loss": 0.5549, "learning_rate": 2.7807942913950504e-08, "epoch": 0.9697723210816691, "percentage": 96.98, "elapsed_time": "9:44:18", "remaining_time": "0:18:12"} -{"current_steps": 12490, "total_steps": 12869, "loss": 0.5498, "learning_rate": 2.6397848639874156e-08, "epoch": 0.970549382236382, "percentage": 97.05, "elapsed_time": "9:44:48", "remaining_time": "0:17:44"} -{"current_steps": 12500, "total_steps": 12869, "loss": 0.5551, "learning_rate": 2.502434781948726e-08, "epoch": 0.9713264433910949, "percentage": 97.13, "elapsed_time": "9:45:13", "remaining_time": "0:17:16"} -{"current_steps": 12510, "total_steps": 12869, "loss": 0.5231, "learning_rate": 2.3687450558370627e-08, "epoch": 0.9721035045458077, "percentage": 97.21, "elapsed_time": "9:45:38", "remaining_time": "0:16:48"} -{"current_steps": 12520, "total_steps": 12869, "loss": 0.5408, "learning_rate": 2.2387166692794392e-08, "epoch": 0.9728805657005206, "percentage": 97.29, "elapsed_time": "9:46:08", "remaining_time": "0:16:20"} -{"current_steps": 12530, "total_steps": 12869, "loss": 0.545, "learning_rate": 2.1123505789642507e-08, "epoch": 0.9736576268552335, "percentage": 97.37, "elapsed_time": "9:46:32", "remaining_time": "0:15:52"} -{"current_steps": 12540, "total_steps": 12869, "loss": 0.5542, "learning_rate": 1.989647714634446e-08, "epoch": 0.9744346880099464, "percentage": 97.44, "elapsed_time": "9:47:02", "remaining_time": "0:15:24"} -{"current_steps": 12550, "total_steps": 12869, "loss": 0.5666, "learning_rate": 1.8706089790807014e-08, "epoch": 0.9752117491646592, "percentage": 97.52, "elapsed_time": "9:47:31", "remaining_time": "0:14:56"} -{"current_steps": 12560, "total_steps": 12869, "loss": 0.5602, "learning_rate": 1.7552352481347013e-08, "epoch": 0.9759888103193721, "percentage": 97.6, "elapsed_time": "9:48:00", "remaining_time": "0:14:27"} -{"current_steps": 12570, "total_steps": 12869, "loss": 0.5255, "learning_rate": 1.6435273706627564e-08, "epoch": 0.976765871474085, "percentage": 97.68, "elapsed_time": "9:48:29", "remaining_time": "0:13:59"} -{"current_steps": 12580, "total_steps": 12869, "loss": 0.5552, "learning_rate": 1.5354861685595855e-08, "epoch": 0.9775429326287979, "percentage": 97.75, "elapsed_time": "9:48:58", "remaining_time": "0:13:31"} -{"current_steps": 12590, "total_steps": 12869, "loss": 0.5107, "learning_rate": 1.4311124367420992e-08, "epoch": 0.9783199937835108, "percentage": 97.83, "elapsed_time": "9:49:22", "remaining_time": "0:13:03"} -{"current_steps": 12600, "total_steps": 12869, "loss": 0.5297, "learning_rate": 1.3304069431437362e-08, "epoch": 0.9790970549382236, "percentage": 97.91, "elapsed_time": "9:49:50", "remaining_time": "0:12:35"} -{"current_steps": 12610, "total_steps": 12869, "loss": 0.5528, "learning_rate": 1.2333704287087467e-08, "epoch": 0.9798741160929365, "percentage": 97.99, "elapsed_time": "9:50:15", "remaining_time": "0:12:07"} -{"current_steps": 12620, "total_steps": 12869, "loss": 0.5394, "learning_rate": 1.1400036073866416e-08, "epoch": 0.9806511772476494, "percentage": 98.07, "elapsed_time": "9:50:37", "remaining_time": "0:11:39"} -{"current_steps": 12630, "total_steps": 12869, "loss": 0.509, "learning_rate": 1.0503071661271957e-08, "epoch": 0.9814282384023623, "percentage": 98.14, "elapsed_time": "9:51:03", "remaining_time": "0:11:11"} -{"current_steps": 12640, "total_steps": 12869, "loss": 0.5333, "learning_rate": 9.642817648750636e-09, "epoch": 0.9822052995570751, "percentage": 98.22, "elapsed_time": "9:51:28", "remaining_time": "0:10:42"} -{"current_steps": 12650, "total_steps": 12869, "loss": 0.5132, "learning_rate": 8.819280365652827e-09, "epoch": 0.982982360711788, "percentage": 98.3, "elapsed_time": "9:51:52", "remaining_time": "0:10:14"} -{"current_steps": 12660, "total_steps": 12869, "loss": 0.5319, "learning_rate": 8.032465871182227e-09, "epoch": 0.9837594218665009, "percentage": 98.38, "elapsed_time": "9:52:26", "remaining_time": "0:09:46"} -{"current_steps": 12670, "total_steps": 12869, "loss": 0.5329, "learning_rate": 7.282379954354768e-09, "epoch": 0.9845364830212138, "percentage": 98.45, "elapsed_time": "9:52:49", "remaining_time": "0:09:18"} -{"current_steps": 12680, "total_steps": 12869, "loss": 0.5199, "learning_rate": 6.569028133954214e-09, "epoch": 0.9853135441759266, "percentage": 98.53, "elapsed_time": "9:53:15", "remaining_time": "0:08:50"} -{"current_steps": 12690, "total_steps": 12869, "loss": 0.5422, "learning_rate": 5.892415658491634e-09, "epoch": 0.9860906053306395, "percentage": 98.61, "elapsed_time": "9:53:46", "remaining_time": "0:08:22"} -{"current_steps": 12700, "total_steps": 12869, "loss": 0.5205, "learning_rate": 5.252547506167105e-09, "epoch": 0.9868676664853524, "percentage": 98.69, "elapsed_time": "9:54:19", "remaining_time": "0:07:54"} -{"current_steps": 12710, "total_steps": 12869, "loss": 0.5446, "learning_rate": 4.649428384833065e-09, "epoch": 0.9876447276400653, "percentage": 98.76, "elapsed_time": "9:54:50", "remaining_time": "0:07:26"} -{"current_steps": 12720, "total_steps": 12869, "loss": 0.5538, "learning_rate": 4.083062731960463e-09, "epoch": 0.9884217887947782, "percentage": 98.84, "elapsed_time": "9:55:19", "remaining_time": "0:06:58"} -{"current_steps": 12730, "total_steps": 12869, "loss": 0.5387, "learning_rate": 3.5534547146043318e-09, "epoch": 0.989198849949491, "percentage": 98.92, "elapsed_time": "9:55:52", "remaining_time": "0:06:30"} -{"current_steps": 12740, "total_steps": 12869, "loss": 0.552, "learning_rate": 3.060608229373818e-09, "epoch": 0.9899759111042039, "percentage": 99.0, "elapsed_time": "9:56:18", "remaining_time": "0:06:02"} -{"current_steps": 12750, "total_steps": 12869, "loss": 0.5246, "learning_rate": 2.6045269024049802e-09, "epoch": 0.9907529722589168, "percentage": 99.08, "elapsed_time": "9:56:48", "remaining_time": "0:05:34"} -{"current_steps": 12760, "total_steps": 12869, "loss": 0.5016, "learning_rate": 2.1852140893319218e-09, "epoch": 0.9915300334136297, "percentage": 99.15, "elapsed_time": "9:57:16", "remaining_time": "0:05:06"} -{"current_steps": 12770, "total_steps": 12869, "loss": 0.535, "learning_rate": 1.8026728752634781e-09, "epoch": 0.9923070945683425, "percentage": 99.23, "elapsed_time": "9:57:45", "remaining_time": "0:04:38"} -{"current_steps": 12780, "total_steps": 12869, "loss": 0.5365, "learning_rate": 1.4569060747610109e-09, "epoch": 0.9930841557230554, "percentage": 99.31, "elapsed_time": "9:58:17", "remaining_time": "0:04:09"} -{"current_steps": 12790, "total_steps": 12869, "loss": 0.489, "learning_rate": 1.1479162318150939e-09, "epoch": 0.9938612168777683, "percentage": 99.39, "elapsed_time": "9:58:50", "remaining_time": "0:03:41"} -{"current_steps": 12800, "total_steps": 12869, "loss": 0.5621, "learning_rate": 8.757056198294145e-10, "epoch": 0.9946382780324812, "percentage": 99.46, "elapsed_time": "9:59:14", "remaining_time": "0:03:13"} -{"current_steps": 12810, "total_steps": 12869, "loss": 0.4978, "learning_rate": 6.402762416035657e-10, "epoch": 0.995415339187194, "percentage": 99.54, "elapsed_time": "9:59:40", "remaining_time": "0:02:45"} -{"current_steps": 12820, "total_steps": 12869, "loss": 0.5215, "learning_rate": 4.4162982931750255e-10, "epoch": 0.9961924003419069, "percentage": 99.62, "elapsed_time": "10:00:09", "remaining_time": "0:02:17"} -{"current_steps": 12830, "total_steps": 12869, "loss": 0.592, "learning_rate": 2.7976784451877457e-10, "epoch": 0.9969694614966198, "percentage": 99.7, "elapsed_time": "10:00:37", "remaining_time": "0:01:49"} -{"current_steps": 12840, "total_steps": 12869, "loss": 0.5254, "learning_rate": 1.5469147811308926e-10, "epoch": 0.9977465226513327, "percentage": 99.77, "elapsed_time": "10:01:03", "remaining_time": "0:01:21"} -{"current_steps": 12850, "total_steps": 12869, "loss": 0.5393, "learning_rate": 6.640165035431967e-11, "epoch": 0.9985235838060456, "percentage": 99.85, "elapsed_time": "10:01:31", "remaining_time": "0:00:53"} -{"current_steps": 12860, "total_steps": 12869, "loss": 0.5343, "learning_rate": 1.4899010837288174e-11, "epoch": 0.9993006449607584, "percentage": 99.93, "elapsed_time": "10:01:56", "remaining_time": "0:00:25"} -{"current_steps": 12869, "total_steps": 12869, "epoch": 1.0, "percentage": 100.0, "elapsed_time": "10:03:56", "remaining_time": "0:00:00"} +{"current_steps": 10, "total_steps": 12869, "loss": 1.9304, "learning_rate": 7.770007770007771e-08, "epoch": 0.0007770611547128759, "percentage": 0.08, "elapsed_time": "0:00:38", "remaining_time": "13:50:13"} +{"current_steps": 20, "total_steps": 12869, "loss": 1.7731, "learning_rate": 1.5540015540015542e-07, "epoch": 0.0015541223094257517, "percentage": 0.16, "elapsed_time": "0:01:12", "remaining_time": "12:57:13"} +{"current_steps": 30, "total_steps": 12869, "loss": 1.8856, "learning_rate": 2.3310023310023313e-07, "epoch": 0.002331183464138628, "percentage": 0.23, "elapsed_time": "0:01:38", "remaining_time": "11:44:08"} +{"current_steps": 40, "total_steps": 12869, "loss": 1.7444, "learning_rate": 3.1080031080031084e-07, "epoch": 0.0031082446188515035, "percentage": 0.31, "elapsed_time": "0:02:10", "remaining_time": "11:38:04"} +{"current_steps": 50, "total_steps": 12869, "loss": 1.8265, "learning_rate": 3.885003885003885e-07, "epoch": 0.0038853057735643796, "percentage": 0.39, "elapsed_time": "0:02:38", "remaining_time": "11:16:13"} +{"current_steps": 60, "total_steps": 12869, "loss": 1.6188, "learning_rate": 4.6620046620046626e-07, "epoch": 0.004662366928277256, "percentage": 0.47, "elapsed_time": "0:03:10", "remaining_time": "11:19:28"} +{"current_steps": 70, "total_steps": 12869, "loss": 1.4275, "learning_rate": 5.43900543900544e-07, "epoch": 0.005439428082990132, "percentage": 0.54, "elapsed_time": "0:03:44", "remaining_time": "11:24:34"} +{"current_steps": 80, "total_steps": 12869, "loss": 1.2748, "learning_rate": 6.216006216006217e-07, "epoch": 0.006216489237703007, "percentage": 0.62, "elapsed_time": "0:04:19", "remaining_time": "11:31:50"} +{"current_steps": 90, "total_steps": 12869, "loss": 1.3117, "learning_rate": 6.993006993006994e-07, "epoch": 0.006993550392415883, "percentage": 0.7, "elapsed_time": "0:04:57", "remaining_time": "11:43:36"} +{"current_steps": 100, "total_steps": 12869, "loss": 1.3679, "learning_rate": 7.77000777000777e-07, "epoch": 0.007770611547128759, "percentage": 0.78, "elapsed_time": "0:05:29", "remaining_time": "11:41:54"} +{"current_steps": 110, "total_steps": 12869, "loss": 1.2847, "learning_rate": 8.547008547008548e-07, "epoch": 0.008547672701841634, "percentage": 0.85, "elapsed_time": "0:05:57", "remaining_time": "11:31:34"} +{"current_steps": 120, "total_steps": 12869, "loss": 1.4199, "learning_rate": 9.324009324009325e-07, "epoch": 0.009324733856554511, "percentage": 0.93, "elapsed_time": "0:06:30", "remaining_time": "11:31:43"} +{"current_steps": 130, "total_steps": 12869, "loss": 1.2416, "learning_rate": 1.01010101010101e-06, "epoch": 0.010101795011267387, "percentage": 1.01, "elapsed_time": "0:07:03", "remaining_time": "11:31:43"} +{"current_steps": 140, "total_steps": 12869, "loss": 1.2386, "learning_rate": 1.087801087801088e-06, "epoch": 0.010878856165980264, "percentage": 1.09, "elapsed_time": "0:07:39", "remaining_time": "11:36:04"} +{"current_steps": 150, "total_steps": 12869, "loss": 1.1683, "learning_rate": 1.1655011655011655e-06, "epoch": 0.011655917320693139, "percentage": 1.17, "elapsed_time": "0:08:12", "remaining_time": "11:36:09"} +{"current_steps": 160, "total_steps": 12869, "loss": 1.3331, "learning_rate": 1.2432012432012434e-06, "epoch": 0.012432978475406014, "percentage": 1.24, "elapsed_time": "0:08:45", "remaining_time": "11:36:03"} +{"current_steps": 170, "total_steps": 12869, "loss": 1.3022, "learning_rate": 1.320901320901321e-06, "epoch": 0.013210039630118891, "percentage": 1.32, "elapsed_time": "0:09:18", "remaining_time": "11:34:49"} +{"current_steps": 180, "total_steps": 12869, "loss": 1.2078, "learning_rate": 1.3986013986013987e-06, "epoch": 0.013987100784831766, "percentage": 1.4, "elapsed_time": "0:09:51", "remaining_time": "11:35:15"} +{"current_steps": 190, "total_steps": 12869, "loss": 1.2883, "learning_rate": 1.4763014763014764e-06, "epoch": 0.014764161939544641, "percentage": 1.48, "elapsed_time": "0:10:19", "remaining_time": "11:29:06"} +{"current_steps": 200, "total_steps": 12869, "loss": 1.2041, "learning_rate": 1.554001554001554e-06, "epoch": 0.015541223094257518, "percentage": 1.55, "elapsed_time": "0:10:51", "remaining_time": "11:27:18"} +{"current_steps": 210, "total_steps": 12869, "loss": 1.2505, "learning_rate": 1.6317016317016318e-06, "epoch": 0.016318284248970395, "percentage": 1.63, "elapsed_time": "0:11:21", "remaining_time": "11:24:36"} +{"current_steps": 220, "total_steps": 12869, "loss": 1.2012, "learning_rate": 1.7094017094017097e-06, "epoch": 0.01709534540368327, "percentage": 1.71, "elapsed_time": "0:11:49", "remaining_time": "11:20:13"} +{"current_steps": 230, "total_steps": 12869, "loss": 1.3179, "learning_rate": 1.7871017871017873e-06, "epoch": 0.017872406558396146, "percentage": 1.79, "elapsed_time": "0:12:21", "remaining_time": "11:18:57"} +{"current_steps": 240, "total_steps": 12869, "loss": 1.2437, "learning_rate": 1.864801864801865e-06, "epoch": 0.018649467713109023, "percentage": 1.86, "elapsed_time": "0:12:55", "remaining_time": "11:19:44"} +{"current_steps": 250, "total_steps": 12869, "loss": 1.1645, "learning_rate": 1.9425019425019425e-06, "epoch": 0.019426528867821896, "percentage": 1.94, "elapsed_time": "0:13:24", "remaining_time": "11:17:05"} +{"current_steps": 260, "total_steps": 12869, "loss": 1.1369, "learning_rate": 2.02020202020202e-06, "epoch": 0.020203590022534773, "percentage": 2.02, "elapsed_time": "0:13:59", "remaining_time": "11:18:13"} +{"current_steps": 270, "total_steps": 12869, "loss": 1.1846, "learning_rate": 2.0979020979020983e-06, "epoch": 0.02098065117724765, "percentage": 2.1, "elapsed_time": "0:14:28", "remaining_time": "11:15:07"} +{"current_steps": 280, "total_steps": 12869, "loss": 1.2122, "learning_rate": 2.175602175602176e-06, "epoch": 0.021757712331960527, "percentage": 2.18, "elapsed_time": "0:14:59", "remaining_time": "11:14:05"} +{"current_steps": 290, "total_steps": 12869, "loss": 1.1927, "learning_rate": 2.2533022533022537e-06, "epoch": 0.0225347734866734, "percentage": 2.25, "elapsed_time": "0:15:31", "remaining_time": "11:13:18"} +{"current_steps": 300, "total_steps": 12869, "loss": 1.258, "learning_rate": 2.331002331002331e-06, "epoch": 0.023311834641386277, "percentage": 2.33, "elapsed_time": "0:16:03", "remaining_time": "11:12:44"} +{"current_steps": 310, "total_steps": 12869, "loss": 1.1477, "learning_rate": 2.408702408702409e-06, "epoch": 0.024088895796099154, "percentage": 2.41, "elapsed_time": "0:16:36", "remaining_time": "11:13:07"} +{"current_steps": 320, "total_steps": 12869, "loss": 1.1715, "learning_rate": 2.4864024864024867e-06, "epoch": 0.024865956950812028, "percentage": 2.49, "elapsed_time": "0:17:06", "remaining_time": "11:10:45"} +{"current_steps": 330, "total_steps": 12869, "loss": 1.1353, "learning_rate": 2.564102564102564e-06, "epoch": 0.025643018105524905, "percentage": 2.56, "elapsed_time": "0:17:44", "remaining_time": "11:14:16"} +{"current_steps": 340, "total_steps": 12869, "loss": 1.1992, "learning_rate": 2.641802641802642e-06, "epoch": 0.026420079260237782, "percentage": 2.64, "elapsed_time": "0:18:17", "remaining_time": "11:14:11"} +{"current_steps": 350, "total_steps": 12869, "loss": 1.1782, "learning_rate": 2.7195027195027198e-06, "epoch": 0.027197140414950655, "percentage": 2.72, "elapsed_time": "0:18:50", "remaining_time": "11:13:39"} +{"current_steps": 360, "total_steps": 12869, "loss": 1.2762, "learning_rate": 2.7972027972027974e-06, "epoch": 0.027974201569663532, "percentage": 2.8, "elapsed_time": "0:19:19", "remaining_time": "11:11:20"} +{"current_steps": 370, "total_steps": 12869, "loss": 1.2687, "learning_rate": 2.874902874902875e-06, "epoch": 0.02875126272437641, "percentage": 2.88, "elapsed_time": "0:19:44", "remaining_time": "11:06:48"} +{"current_steps": 380, "total_steps": 12869, "loss": 1.207, "learning_rate": 2.952602952602953e-06, "epoch": 0.029528323879089283, "percentage": 2.95, "elapsed_time": "0:20:13", "remaining_time": "11:04:52"} +{"current_steps": 390, "total_steps": 12869, "loss": 1.2037, "learning_rate": 3.0303030303030305e-06, "epoch": 0.03030538503380216, "percentage": 3.03, "elapsed_time": "0:20:47", "remaining_time": "11:05:21"} +{"current_steps": 400, "total_steps": 12869, "loss": 1.163, "learning_rate": 3.108003108003108e-06, "epoch": 0.031082446188515037, "percentage": 3.11, "elapsed_time": "0:21:24", "remaining_time": "11:07:26"} +{"current_steps": 410, "total_steps": 12869, "loss": 1.1592, "learning_rate": 3.1857031857031863e-06, "epoch": 0.031859507343227914, "percentage": 3.19, "elapsed_time": "0:21:59", "remaining_time": "11:08:17"} +{"current_steps": 420, "total_steps": 12869, "loss": 1.0411, "learning_rate": 3.2634032634032635e-06, "epoch": 0.03263656849794079, "percentage": 3.26, "elapsed_time": "0:22:30", "remaining_time": "11:07:22"} +{"current_steps": 430, "total_steps": 12869, "loss": 1.1438, "learning_rate": 3.3411033411033412e-06, "epoch": 0.03341362965265366, "percentage": 3.34, "elapsed_time": "0:22:58", "remaining_time": "11:04:40"} +{"current_steps": 440, "total_steps": 12869, "loss": 1.1713, "learning_rate": 3.4188034188034193e-06, "epoch": 0.03419069080736654, "percentage": 3.42, "elapsed_time": "0:23:32", "remaining_time": "11:04:55"} +{"current_steps": 450, "total_steps": 12869, "loss": 1.2358, "learning_rate": 3.4965034965034966e-06, "epoch": 0.034967751962079414, "percentage": 3.5, "elapsed_time": "0:23:58", "remaining_time": "11:01:50"} +{"current_steps": 460, "total_steps": 12869, "loss": 1.1325, "learning_rate": 3.5742035742035747e-06, "epoch": 0.03574481311679229, "percentage": 3.57, "elapsed_time": "0:24:28", "remaining_time": "11:00:22"} +{"current_steps": 470, "total_steps": 12869, "loss": 1.1979, "learning_rate": 3.651903651903652e-06, "epoch": 0.03652187427150517, "percentage": 3.65, "elapsed_time": "0:24:59", "remaining_time": "10:59:15"} +{"current_steps": 480, "total_steps": 12869, "loss": 1.1605, "learning_rate": 3.72960372960373e-06, "epoch": 0.037298935426218045, "percentage": 3.73, "elapsed_time": "0:25:30", "remaining_time": "10:58:25"} +{"current_steps": 490, "total_steps": 12869, "loss": 1.2299, "learning_rate": 3.8073038073038077e-06, "epoch": 0.03807599658093092, "percentage": 3.81, "elapsed_time": "0:25:58", "remaining_time": "10:56:24"} +{"current_steps": 500, "total_steps": 12869, "loss": 1.2634, "learning_rate": 3.885003885003885e-06, "epoch": 0.03885305773564379, "percentage": 3.89, "elapsed_time": "0:26:28", "remaining_time": "10:54:59"} +{"current_steps": 510, "total_steps": 12869, "loss": 1.1137, "learning_rate": 3.962703962703963e-06, "epoch": 0.03963011889035667, "percentage": 3.96, "elapsed_time": "0:27:05", "remaining_time": "10:56:24"} +{"current_steps": 520, "total_steps": 12869, "loss": 1.2407, "learning_rate": 4.04040404040404e-06, "epoch": 0.040407180045069546, "percentage": 4.04, "elapsed_time": "0:27:35", "remaining_time": "10:55:19"} +{"current_steps": 530, "total_steps": 12869, "loss": 1.1239, "learning_rate": 4.1181041181041185e-06, "epoch": 0.04118424119978242, "percentage": 4.12, "elapsed_time": "0:28:07", "remaining_time": "10:54:55"} +{"current_steps": 540, "total_steps": 12869, "loss": 1.1746, "learning_rate": 4.195804195804197e-06, "epoch": 0.0419613023544953, "percentage": 4.2, "elapsed_time": "0:28:42", "remaining_time": "10:55:15"} +{"current_steps": 550, "total_steps": 12869, "loss": 1.1105, "learning_rate": 4.273504273504274e-06, "epoch": 0.04273836350920818, "percentage": 4.27, "elapsed_time": "0:29:18", "remaining_time": "10:56:37"} +{"current_steps": 560, "total_steps": 12869, "loss": 1.1258, "learning_rate": 4.351204351204352e-06, "epoch": 0.043515424663921054, "percentage": 4.35, "elapsed_time": "0:29:56", "remaining_time": "10:58:14"} +{"current_steps": 570, "total_steps": 12869, "loss": 1.0962, "learning_rate": 4.428904428904429e-06, "epoch": 0.044292485818633924, "percentage": 4.43, "elapsed_time": "0:30:28", "remaining_time": "10:57:24"} +{"current_steps": 580, "total_steps": 12869, "loss": 1.1085, "learning_rate": 4.506604506604507e-06, "epoch": 0.0450695469733468, "percentage": 4.51, "elapsed_time": "0:30:56", "remaining_time": "10:55:26"} +{"current_steps": 590, "total_steps": 12869, "loss": 1.1391, "learning_rate": 4.5843045843045846e-06, "epoch": 0.04584660812805968, "percentage": 4.58, "elapsed_time": "0:31:25", "remaining_time": "10:54:01"} +{"current_steps": 600, "total_steps": 12869, "loss": 1.1387, "learning_rate": 4.662004662004662e-06, "epoch": 0.046623669282772555, "percentage": 4.66, "elapsed_time": "0:31:56", "remaining_time": "10:53:15"} +{"current_steps": 610, "total_steps": 12869, "loss": 1.1499, "learning_rate": 4.73970473970474e-06, "epoch": 0.04740073043748543, "percentage": 4.74, "elapsed_time": "0:32:25", "remaining_time": "10:51:40"} +{"current_steps": 620, "total_steps": 12869, "loss": 1.1007, "learning_rate": 4.817404817404818e-06, "epoch": 0.04817779159219831, "percentage": 4.82, "elapsed_time": "0:32:54", "remaining_time": "10:50:15"} +{"current_steps": 630, "total_steps": 12869, "loss": 1.2201, "learning_rate": 4.895104895104895e-06, "epoch": 0.04895485274691118, "percentage": 4.9, "elapsed_time": "0:33:23", "remaining_time": "10:48:41"} +{"current_steps": 640, "total_steps": 12869, "loss": 1.2219, "learning_rate": 4.972804972804973e-06, "epoch": 0.049731913901624056, "percentage": 4.97, "elapsed_time": "0:33:57", "remaining_time": "10:48:48"} +{"current_steps": 650, "total_steps": 12869, "loss": 1.1288, "learning_rate": 5.0505050505050515e-06, "epoch": 0.05050897505633693, "percentage": 5.05, "elapsed_time": "0:34:28", "remaining_time": "10:48:12"} +{"current_steps": 660, "total_steps": 12869, "loss": 1.1989, "learning_rate": 5.128205128205128e-06, "epoch": 0.05128603621104981, "percentage": 5.13, "elapsed_time": "0:35:07", "remaining_time": "10:49:44"} +{"current_steps": 670, "total_steps": 12869, "loss": 1.1165, "learning_rate": 5.205905205905206e-06, "epoch": 0.05206309736576269, "percentage": 5.21, "elapsed_time": "0:35:36", "remaining_time": "10:48:27"} +{"current_steps": 680, "total_steps": 12869, "loss": 1.1954, "learning_rate": 5.283605283605284e-06, "epoch": 0.052840158520475564, "percentage": 5.28, "elapsed_time": "0:36:03", "remaining_time": "10:46:12"} +{"current_steps": 690, "total_steps": 12869, "loss": 1.1219, "learning_rate": 5.361305361305362e-06, "epoch": 0.05361721967518844, "percentage": 5.36, "elapsed_time": "0:36:32", "remaining_time": "10:44:52"} +{"current_steps": 700, "total_steps": 12869, "loss": 1.2285, "learning_rate": 5.4390054390054395e-06, "epoch": 0.05439428082990131, "percentage": 5.44, "elapsed_time": "0:36:59", "remaining_time": "10:43:00"} +{"current_steps": 710, "total_steps": 12869, "loss": 1.074, "learning_rate": 5.516705516705518e-06, "epoch": 0.05517134198461419, "percentage": 5.52, "elapsed_time": "0:37:35", "remaining_time": "10:43:47"} +{"current_steps": 720, "total_steps": 12869, "loss": 1.1395, "learning_rate": 5.594405594405595e-06, "epoch": 0.055948403139327064, "percentage": 5.59, "elapsed_time": "0:38:05", "remaining_time": "10:42:51"} +{"current_steps": 730, "total_steps": 12869, "loss": 1.0813, "learning_rate": 5.672105672105672e-06, "epoch": 0.05672546429403994, "percentage": 5.67, "elapsed_time": "0:38:38", "remaining_time": "10:42:32"} +{"current_steps": 740, "total_steps": 12869, "loss": 1.117, "learning_rate": 5.74980574980575e-06, "epoch": 0.05750252544875282, "percentage": 5.75, "elapsed_time": "0:39:09", "remaining_time": "10:41:45"} +{"current_steps": 750, "total_steps": 12869, "loss": 1.0868, "learning_rate": 5.827505827505828e-06, "epoch": 0.058279586603465695, "percentage": 5.83, "elapsed_time": "0:39:41", "remaining_time": "10:41:24"} +{"current_steps": 760, "total_steps": 12869, "loss": 1.0985, "learning_rate": 5.905205905205906e-06, "epoch": 0.059056647758178565, "percentage": 5.91, "elapsed_time": "0:40:10", "remaining_time": "10:40:06"} +{"current_steps": 770, "total_steps": 12869, "loss": 1.1303, "learning_rate": 5.982905982905983e-06, "epoch": 0.05983370891289144, "percentage": 5.98, "elapsed_time": "0:40:40", "remaining_time": "10:39:09"} +{"current_steps": 780, "total_steps": 12869, "loss": 1.056, "learning_rate": 6.060606060606061e-06, "epoch": 0.06061077006760432, "percentage": 6.06, "elapsed_time": "0:41:09", "remaining_time": "10:37:49"} +{"current_steps": 790, "total_steps": 12869, "loss": 1.1511, "learning_rate": 6.138306138306139e-06, "epoch": 0.061387831222317196, "percentage": 6.14, "elapsed_time": "0:41:32", "remaining_time": "10:35:16"} +{"current_steps": 800, "total_steps": 12869, "loss": 1.0976, "learning_rate": 6.216006216006216e-06, "epoch": 0.06216489237703007, "percentage": 6.22, "elapsed_time": "0:42:06", "remaining_time": "10:35:20"} +{"current_steps": 810, "total_steps": 12869, "loss": 1.1263, "learning_rate": 6.2937062937062944e-06, "epoch": 0.06294195353174295, "percentage": 6.29, "elapsed_time": "0:42:34", "remaining_time": "10:33:43"} +{"current_steps": 820, "total_steps": 12869, "loss": 1.0923, "learning_rate": 6.3714063714063726e-06, "epoch": 0.06371901468645583, "percentage": 6.37, "elapsed_time": "0:43:05", "remaining_time": "10:33:09"} +{"current_steps": 830, "total_steps": 12869, "loss": 1.0821, "learning_rate": 6.449106449106449e-06, "epoch": 0.0644960758411687, "percentage": 6.45, "elapsed_time": "0:43:40", "remaining_time": "10:33:30"} +{"current_steps": 840, "total_steps": 12869, "loss": 1.0614, "learning_rate": 6.526806526806527e-06, "epoch": 0.06527313699588158, "percentage": 6.53, "elapsed_time": "0:44:09", "remaining_time": "10:32:15"} +{"current_steps": 850, "total_steps": 12869, "loss": 1.1021, "learning_rate": 6.604506604506605e-06, "epoch": 0.06605019815059446, "percentage": 6.61, "elapsed_time": "0:44:37", "remaining_time": "10:30:54"} +{"current_steps": 860, "total_steps": 12869, "loss": 1.1501, "learning_rate": 6.6822066822066824e-06, "epoch": 0.06682725930530732, "percentage": 6.68, "elapsed_time": "0:45:04", "remaining_time": "10:29:23"} +{"current_steps": 870, "total_steps": 12869, "loss": 1.1742, "learning_rate": 6.7599067599067605e-06, "epoch": 0.0676043204600202, "percentage": 6.76, "elapsed_time": "0:45:36", "remaining_time": "10:29:04"} +{"current_steps": 880, "total_steps": 12869, "loss": 1.1163, "learning_rate": 6.837606837606839e-06, "epoch": 0.06838138161473307, "percentage": 6.84, "elapsed_time": "0:46:13", "remaining_time": "10:29:49"} +{"current_steps": 890, "total_steps": 12869, "loss": 1.1725, "learning_rate": 6.915306915306917e-06, "epoch": 0.06915844276944595, "percentage": 6.92, "elapsed_time": "0:46:45", "remaining_time": "10:29:18"} +{"current_steps": 900, "total_steps": 12869, "loss": 1.1418, "learning_rate": 6.993006993006993e-06, "epoch": 0.06993550392415883, "percentage": 6.99, "elapsed_time": "0:47:19", "remaining_time": "10:29:17"} +{"current_steps": 910, "total_steps": 12869, "loss": 1.1369, "learning_rate": 7.070707070707071e-06, "epoch": 0.0707125650788717, "percentage": 7.07, "elapsed_time": "0:47:54", "remaining_time": "10:29:30"} +{"current_steps": 920, "total_steps": 12869, "loss": 1.1719, "learning_rate": 7.148407148407149e-06, "epoch": 0.07148962623358458, "percentage": 7.15, "elapsed_time": "0:48:23", "remaining_time": "10:28:32"} +{"current_steps": 930, "total_steps": 12869, "loss": 1.1642, "learning_rate": 7.226107226107227e-06, "epoch": 0.07226668738829746, "percentage": 7.23, "elapsed_time": "0:48:58", "remaining_time": "10:28:45"} +{"current_steps": 940, "total_steps": 12869, "loss": 1.1609, "learning_rate": 7.303807303807304e-06, "epoch": 0.07304374854301034, "percentage": 7.3, "elapsed_time": "0:49:27", "remaining_time": "10:27:34"} +{"current_steps": 950, "total_steps": 12869, "loss": 1.0715, "learning_rate": 7.381507381507382e-06, "epoch": 0.07382080969772321, "percentage": 7.38, "elapsed_time": "0:49:58", "remaining_time": "10:27:02"} +{"current_steps": 960, "total_steps": 12869, "loss": 1.0836, "learning_rate": 7.45920745920746e-06, "epoch": 0.07459787085243609, "percentage": 7.46, "elapsed_time": "0:50:35", "remaining_time": "10:27:31"} +{"current_steps": 970, "total_steps": 12869, "loss": 1.1298, "learning_rate": 7.536907536907537e-06, "epoch": 0.07537493200714897, "percentage": 7.54, "elapsed_time": "0:51:02", "remaining_time": "10:26:09"} +{"current_steps": 980, "total_steps": 12869, "loss": 1.1375, "learning_rate": 7.6146076146076155e-06, "epoch": 0.07615199316186184, "percentage": 7.62, "elapsed_time": "0:51:30", "remaining_time": "10:24:55"} +{"current_steps": 990, "total_steps": 12869, "loss": 1.1501, "learning_rate": 7.692307692307694e-06, "epoch": 0.07692905431657471, "percentage": 7.69, "elapsed_time": "0:51:57", "remaining_time": "10:23:29"} +{"current_steps": 1000, "total_steps": 12869, "loss": 1.1237, "learning_rate": 7.77000777000777e-06, "epoch": 0.07770611547128758, "percentage": 7.77, "elapsed_time": "0:52:24", "remaining_time": "10:22:05"} +{"current_steps": 1010, "total_steps": 12869, "loss": 1.0918, "learning_rate": 7.847707847707848e-06, "epoch": 0.07848317662600046, "percentage": 7.85, "elapsed_time": "0:52:55", "remaining_time": "10:21:28"} +{"current_steps": 1020, "total_steps": 12869, "loss": 1.0848, "learning_rate": 7.925407925407926e-06, "epoch": 0.07926023778071334, "percentage": 7.93, "elapsed_time": "0:53:18", "remaining_time": "10:19:17"} +{"current_steps": 1030, "total_steps": 12869, "loss": 1.1209, "learning_rate": 8.003108003108003e-06, "epoch": 0.08003729893542622, "percentage": 8.0, "elapsed_time": "0:53:52", "remaining_time": "10:19:14"} +{"current_steps": 1040, "total_steps": 12869, "loss": 1.0866, "learning_rate": 8.08080808080808e-06, "epoch": 0.08081436009013909, "percentage": 8.08, "elapsed_time": "0:54:24", "remaining_time": "10:18:52"} +{"current_steps": 1050, "total_steps": 12869, "loss": 1.0934, "learning_rate": 8.158508158508159e-06, "epoch": 0.08159142124485197, "percentage": 8.16, "elapsed_time": "0:54:54", "remaining_time": "10:18:03"} +{"current_steps": 1060, "total_steps": 12869, "loss": 1.1081, "learning_rate": 8.236208236208237e-06, "epoch": 0.08236848239956485, "percentage": 8.24, "elapsed_time": "0:55:25", "remaining_time": "10:17:24"} +{"current_steps": 1070, "total_steps": 12869, "loss": 1.1366, "learning_rate": 8.313908313908315e-06, "epoch": 0.08314554355427772, "percentage": 8.31, "elapsed_time": "0:56:00", "remaining_time": "10:17:37"} +{"current_steps": 1080, "total_steps": 12869, "loss": 1.0907, "learning_rate": 8.391608391608393e-06, "epoch": 0.0839226047089906, "percentage": 8.39, "elapsed_time": "0:56:32", "remaining_time": "10:17:13"} +{"current_steps": 1090, "total_steps": 12869, "loss": 1.1396, "learning_rate": 8.46930846930847e-06, "epoch": 0.08469966586370348, "percentage": 8.47, "elapsed_time": "0:57:05", "remaining_time": "10:16:57"} +{"current_steps": 1100, "total_steps": 12869, "loss": 1.1204, "learning_rate": 8.547008547008548e-06, "epoch": 0.08547672701841635, "percentage": 8.55, "elapsed_time": "0:57:34", "remaining_time": "10:15:58"} +{"current_steps": 1110, "total_steps": 12869, "loss": 1.1067, "learning_rate": 8.624708624708626e-06, "epoch": 0.08625378817312923, "percentage": 8.63, "elapsed_time": "0:58:03", "remaining_time": "10:15:03"} +{"current_steps": 1120, "total_steps": 12869, "loss": 1.0186, "learning_rate": 8.702408702408704e-06, "epoch": 0.08703084932784211, "percentage": 8.7, "elapsed_time": "0:58:37", "remaining_time": "10:14:59"} +{"current_steps": 1130, "total_steps": 12869, "loss": 1.0534, "learning_rate": 8.78010878010878e-06, "epoch": 0.08780791048255497, "percentage": 8.78, "elapsed_time": "0:59:11", "remaining_time": "10:14:57"} +{"current_steps": 1140, "total_steps": 12869, "loss": 1.1259, "learning_rate": 8.857808857808858e-06, "epoch": 0.08858497163726785, "percentage": 8.86, "elapsed_time": "0:59:50", "remaining_time": "10:15:39"} +{"current_steps": 1150, "total_steps": 12869, "loss": 1.1357, "learning_rate": 8.935508935508937e-06, "epoch": 0.08936203279198073, "percentage": 8.94, "elapsed_time": "1:00:21", "remaining_time": "10:15:01"} +{"current_steps": 1160, "total_steps": 12869, "loss": 1.1451, "learning_rate": 9.013209013209015e-06, "epoch": 0.0901390939466936, "percentage": 9.01, "elapsed_time": "1:00:52", "remaining_time": "10:14:24"} +{"current_steps": 1170, "total_steps": 12869, "loss": 1.1304, "learning_rate": 9.090909090909091e-06, "epoch": 0.09091615510140648, "percentage": 9.09, "elapsed_time": "1:01:23", "remaining_time": "10:13:50"} +{"current_steps": 1180, "total_steps": 12869, "loss": 1.1289, "learning_rate": 9.168609168609169e-06, "epoch": 0.09169321625611936, "percentage": 9.17, "elapsed_time": "1:01:56", "remaining_time": "10:13:35"} +{"current_steps": 1190, "total_steps": 12869, "loss": 1.0705, "learning_rate": 9.246309246309247e-06, "epoch": 0.09247027741083223, "percentage": 9.25, "elapsed_time": "1:02:26", "remaining_time": "10:12:44"} +{"current_steps": 1200, "total_steps": 12869, "loss": 1.0006, "learning_rate": 9.324009324009324e-06, "epoch": 0.09324733856554511, "percentage": 9.32, "elapsed_time": "1:02:56", "remaining_time": "10:12:03"} +{"current_steps": 1210, "total_steps": 12869, "loss": 1.0642, "learning_rate": 9.401709401709402e-06, "epoch": 0.09402439972025799, "percentage": 9.4, "elapsed_time": "1:03:32", "remaining_time": "10:12:16"} +{"current_steps": 1220, "total_steps": 12869, "loss": 1.1099, "learning_rate": 9.47940947940948e-06, "epoch": 0.09480146087497086, "percentage": 9.48, "elapsed_time": "1:04:07", "remaining_time": "10:12:14"} +{"current_steps": 1230, "total_steps": 12869, "loss": 1.1046, "learning_rate": 9.557109557109558e-06, "epoch": 0.09557852202968374, "percentage": 9.56, "elapsed_time": "1:04:39", "remaining_time": "10:11:48"} +{"current_steps": 1240, "total_steps": 12869, "loss": 1.1388, "learning_rate": 9.634809634809636e-06, "epoch": 0.09635558318439662, "percentage": 9.64, "elapsed_time": "1:05:12", "remaining_time": "10:11:35"} +{"current_steps": 1250, "total_steps": 12869, "loss": 1.1093, "learning_rate": 9.712509712509714e-06, "epoch": 0.0971326443391095, "percentage": 9.71, "elapsed_time": "1:05:38", "remaining_time": "10:10:13"} +{"current_steps": 1260, "total_steps": 12869, "loss": 1.0973, "learning_rate": 9.79020979020979e-06, "epoch": 0.09790970549382236, "percentage": 9.79, "elapsed_time": "1:06:09", "remaining_time": "10:09:31"} +{"current_steps": 1270, "total_steps": 12869, "loss": 1.1074, "learning_rate": 9.867909867909869e-06, "epoch": 0.09868676664853523, "percentage": 9.87, "elapsed_time": "1:06:39", "remaining_time": "10:08:50"} +{"current_steps": 1280, "total_steps": 12869, "loss": 1.1111, "learning_rate": 9.945609945609947e-06, "epoch": 0.09946382780324811, "percentage": 9.95, "elapsed_time": "1:07:11", "remaining_time": "10:08:17"} +{"current_steps": 1290, "total_steps": 12869, "loss": 1.0539, "learning_rate": 9.999998344553621e-06, "epoch": 0.10024088895796099, "percentage": 10.02, "elapsed_time": "1:07:41", "remaining_time": "10:07:34"} +{"current_steps": 1300, "total_steps": 12869, "loss": 1.1277, "learning_rate": 9.99996891442626e-06, "epoch": 0.10101795011267387, "percentage": 10.1, "elapsed_time": "1:08:13", "remaining_time": "10:07:05"} +{"current_steps": 1310, "total_steps": 12869, "loss": 1.1028, "learning_rate": 9.999902696850819e-06, "epoch": 0.10179501126738674, "percentage": 10.18, "elapsed_time": "1:08:46", "remaining_time": "10:06:50"} +{"current_steps": 1320, "total_steps": 12869, "loss": 1.0799, "learning_rate": 9.999799692314491e-06, "epoch": 0.10257207242209962, "percentage": 10.26, "elapsed_time": "1:09:14", "remaining_time": "10:05:48"} +{"current_steps": 1330, "total_steps": 12869, "loss": 1.0387, "learning_rate": 9.999659901575142e-06, "epoch": 0.1033491335768125, "percentage": 10.33, "elapsed_time": "1:09:47", "remaining_time": "10:05:28"} +{"current_steps": 1340, "total_steps": 12869, "loss": 1.0982, "learning_rate": 9.999483325661283e-06, "epoch": 0.10412619473152537, "percentage": 10.41, "elapsed_time": "1:10:17", "remaining_time": "10:04:46"} +{"current_steps": 1350, "total_steps": 12869, "loss": 1.1873, "learning_rate": 9.999269965872081e-06, "epoch": 0.10490325588623825, "percentage": 10.49, "elapsed_time": "1:10:47", "remaining_time": "10:04:03"} +{"current_steps": 1360, "total_steps": 12869, "loss": 1.1121, "learning_rate": 9.999019823777335e-06, "epoch": 0.10568031704095113, "percentage": 10.57, "elapsed_time": "1:11:19", "remaining_time": "10:03:39"} +{"current_steps": 1370, "total_steps": 12869, "loss": 1.1057, "learning_rate": 9.998732901217474e-06, "epoch": 0.106457378195664, "percentage": 10.65, "elapsed_time": "1:11:49", "remaining_time": "10:02:54"} +{"current_steps": 1380, "total_steps": 12869, "loss": 1.0796, "learning_rate": 9.998409200303543e-06, "epoch": 0.10723443935037688, "percentage": 10.72, "elapsed_time": "1:12:27", "remaining_time": "10:03:10"} +{"current_steps": 1390, "total_steps": 12869, "loss": 1.0911, "learning_rate": 9.998048723417184e-06, "epoch": 0.10801150050508974, "percentage": 10.8, "elapsed_time": "1:12:54", "remaining_time": "10:02:05"} +{"current_steps": 1400, "total_steps": 12869, "loss": 1.1027, "learning_rate": 9.997651473210614e-06, "epoch": 0.10878856165980262, "percentage": 10.88, "elapsed_time": "1:13:29", "remaining_time": "10:02:04"} +{"current_steps": 1410, "total_steps": 12869, "loss": 0.9892, "learning_rate": 9.99721745260662e-06, "epoch": 0.1095656228145155, "percentage": 10.96, "elapsed_time": "1:14:05", "remaining_time": "10:02:10"} +{"current_steps": 1420, "total_steps": 12869, "loss": 1.0714, "learning_rate": 9.996746664798523e-06, "epoch": 0.11034268396922838, "percentage": 11.03, "elapsed_time": "1:14:41", "remaining_time": "10:02:14"} +{"current_steps": 1430, "total_steps": 12869, "loss": 1.1627, "learning_rate": 9.996239113250158e-06, "epoch": 0.11111974512394125, "percentage": 11.11, "elapsed_time": "1:15:18", "remaining_time": "10:02:26"} +{"current_steps": 1440, "total_steps": 12869, "loss": 1.1338, "learning_rate": 9.995694801695856e-06, "epoch": 0.11189680627865413, "percentage": 11.19, "elapsed_time": "1:15:52", "remaining_time": "10:02:15"} +{"current_steps": 1450, "total_steps": 12869, "loss": 1.0527, "learning_rate": 9.995113734140409e-06, "epoch": 0.112673867433367, "percentage": 11.27, "elapsed_time": "1:16:25", "remaining_time": "10:01:53"} +{"current_steps": 1460, "total_steps": 12869, "loss": 1.1463, "learning_rate": 9.99449591485904e-06, "epoch": 0.11345092858807988, "percentage": 11.35, "elapsed_time": "1:17:00", "remaining_time": "10:01:42"} +{"current_steps": 1470, "total_steps": 12869, "loss": 1.0993, "learning_rate": 9.993841348397377e-06, "epoch": 0.11422798974279276, "percentage": 11.42, "elapsed_time": "1:17:30", "remaining_time": "10:00:59"} +{"current_steps": 1480, "total_steps": 12869, "loss": 1.1, "learning_rate": 9.993150039571417e-06, "epoch": 0.11500505089750564, "percentage": 11.5, "elapsed_time": "1:18:04", "remaining_time": "10:00:49"} +{"current_steps": 1490, "total_steps": 12869, "loss": 1.1223, "learning_rate": 9.992421993467488e-06, "epoch": 0.11578211205221851, "percentage": 11.58, "elapsed_time": "1:18:31", "remaining_time": "9:59:41"} +{"current_steps": 1500, "total_steps": 12869, "loss": 1.1016, "learning_rate": 9.991657215442215e-06, "epoch": 0.11655917320693139, "percentage": 11.66, "elapsed_time": "1:19:08", "remaining_time": "9:59:50"} +{"current_steps": 1510, "total_steps": 12869, "loss": 1.102, "learning_rate": 9.99085571112248e-06, "epoch": 0.11733623436164427, "percentage": 11.73, "elapsed_time": "1:19:39", "remaining_time": "9:59:11"} +{"current_steps": 1520, "total_steps": 12869, "loss": 1.0691, "learning_rate": 9.990017486405379e-06, "epoch": 0.11811329551635713, "percentage": 11.81, "elapsed_time": "1:20:08", "remaining_time": "9:58:20"} +{"current_steps": 1530, "total_steps": 12869, "loss": 1.0902, "learning_rate": 9.989142547458182e-06, "epoch": 0.11889035667107001, "percentage": 11.89, "elapsed_time": "1:20:40", "remaining_time": "9:57:53"} +{"current_steps": 1540, "total_steps": 12869, "loss": 1.0755, "learning_rate": 9.988230900718279e-06, "epoch": 0.11966741782578288, "percentage": 11.97, "elapsed_time": "1:21:17", "remaining_time": "9:58:01"} +{"current_steps": 1550, "total_steps": 12869, "loss": 1.0557, "learning_rate": 9.987282552893146e-06, "epoch": 0.12044447898049576, "percentage": 12.04, "elapsed_time": "1:21:47", "remaining_time": "9:57:14"} +{"current_steps": 1560, "total_steps": 12869, "loss": 1.0472, "learning_rate": 9.986297510960284e-06, "epoch": 0.12122154013520864, "percentage": 12.12, "elapsed_time": "1:22:23", "remaining_time": "9:57:17"} +{"current_steps": 1570, "total_steps": 12869, "loss": 1.0249, "learning_rate": 9.985275782167175e-06, "epoch": 0.12199860128992152, "percentage": 12.2, "elapsed_time": "1:22:53", "remaining_time": "9:56:31"} +{"current_steps": 1580, "total_steps": 12869, "loss": 1.0816, "learning_rate": 9.984217374031225e-06, "epoch": 0.12277566244463439, "percentage": 12.28, "elapsed_time": "1:23:23", "remaining_time": "9:55:50"} +{"current_steps": 1590, "total_steps": 12869, "loss": 1.078, "learning_rate": 9.983122294339708e-06, "epoch": 0.12355272359934727, "percentage": 12.36, "elapsed_time": "1:23:57", "remaining_time": "9:55:31"} +{"current_steps": 1600, "total_steps": 12869, "loss": 1.0913, "learning_rate": 9.981990551149714e-06, "epoch": 0.12432978475406015, "percentage": 12.43, "elapsed_time": "1:24:32", "remaining_time": "9:55:25"} +{"current_steps": 1610, "total_steps": 12869, "loss": 1.1034, "learning_rate": 9.980822152788082e-06, "epoch": 0.12510684590877302, "percentage": 12.51, "elapsed_time": "1:25:06", "remaining_time": "9:55:11"} +{"current_steps": 1620, "total_steps": 12869, "loss": 1.114, "learning_rate": 9.979617107851343e-06, "epoch": 0.1258839070634859, "percentage": 12.59, "elapsed_time": "1:25:36", "remaining_time": "9:54:23"} +{"current_steps": 1630, "total_steps": 12869, "loss": 1.0558, "learning_rate": 9.97837542520566e-06, "epoch": 0.12666096821819878, "percentage": 12.67, "elapsed_time": "1:26:04", "remaining_time": "9:53:30"} +{"current_steps": 1640, "total_steps": 12869, "loss": 1.1429, "learning_rate": 9.977097113986755e-06, "epoch": 0.12743802937291165, "percentage": 12.74, "elapsed_time": "1:26:33", "remaining_time": "9:52:42"} +{"current_steps": 1650, "total_steps": 12869, "loss": 1.0643, "learning_rate": 9.97578218359985e-06, "epoch": 0.12821509052762453, "percentage": 12.82, "elapsed_time": "1:27:07", "remaining_time": "9:52:24"} +{"current_steps": 1660, "total_steps": 12869, "loss": 1.0671, "learning_rate": 9.974430643719591e-06, "epoch": 0.1289921516823374, "percentage": 12.9, "elapsed_time": "1:27:38", "remaining_time": "9:51:47"} +{"current_steps": 1670, "total_steps": 12869, "loss": 0.9926, "learning_rate": 9.973042504289978e-06, "epoch": 0.12976921283705029, "percentage": 12.98, "elapsed_time": "1:28:13", "remaining_time": "9:51:39"} +{"current_steps": 1680, "total_steps": 12869, "loss": 1.0825, "learning_rate": 9.971617775524301e-06, "epoch": 0.13054627399176316, "percentage": 13.05, "elapsed_time": "1:28:47", "remaining_time": "9:51:23"} +{"current_steps": 1690, "total_steps": 12869, "loss": 1.0673, "learning_rate": 9.970156467905048e-06, "epoch": 0.13132333514647604, "percentage": 13.13, "elapsed_time": "1:29:19", "remaining_time": "9:50:49"} +{"current_steps": 1700, "total_steps": 12869, "loss": 1.1994, "learning_rate": 9.968658592183842e-06, "epoch": 0.13210039630118892, "percentage": 13.21, "elapsed_time": "1:29:48", "remaining_time": "9:50:03"} +{"current_steps": 1710, "total_steps": 12869, "loss": 1.1162, "learning_rate": 9.967124159381359e-06, "epoch": 0.1328774574559018, "percentage": 13.29, "elapsed_time": "1:30:24", "remaining_time": "9:49:57"} +{"current_steps": 1720, "total_steps": 12869, "loss": 1.0263, "learning_rate": 9.965553180787239e-06, "epoch": 0.13365451861061464, "percentage": 13.37, "elapsed_time": "1:31:01", "remaining_time": "9:49:58"} +{"current_steps": 1730, "total_steps": 12869, "loss": 0.9662, "learning_rate": 9.963945667960017e-06, "epoch": 0.13443157976532752, "percentage": 13.44, "elapsed_time": "1:31:33", "remaining_time": "9:49:33"} +{"current_steps": 1740, "total_steps": 12869, "loss": 1.0806, "learning_rate": 9.962301632727022e-06, "epoch": 0.1352086409200404, "percentage": 13.52, "elapsed_time": "1:32:03", "remaining_time": "9:48:47"} +{"current_steps": 1750, "total_steps": 12869, "loss": 1.0801, "learning_rate": 9.960621087184303e-06, "epoch": 0.13598570207475327, "percentage": 13.6, "elapsed_time": "1:32:32", "remaining_time": "9:47:57"} +{"current_steps": 1760, "total_steps": 12869, "loss": 1.1432, "learning_rate": 9.95890404369653e-06, "epoch": 0.13676276322946615, "percentage": 13.68, "elapsed_time": "1:33:02", "remaining_time": "9:47:17"} +{"current_steps": 1770, "total_steps": 12869, "loss": 1.152, "learning_rate": 9.957150514896919e-06, "epoch": 0.13753982438417903, "percentage": 13.75, "elapsed_time": "1:33:29", "remaining_time": "9:46:16"} +{"current_steps": 1780, "total_steps": 12869, "loss": 1.0658, "learning_rate": 9.95536051368711e-06, "epoch": 0.1383168855388919, "percentage": 13.83, "elapsed_time": "1:33:55", "remaining_time": "9:45:09"} +{"current_steps": 1790, "total_steps": 12869, "loss": 1.0604, "learning_rate": 9.953534053237108e-06, "epoch": 0.13909394669360478, "percentage": 13.91, "elapsed_time": "1:34:27", "remaining_time": "9:44:41"} +{"current_steps": 1800, "total_steps": 12869, "loss": 0.9911, "learning_rate": 9.951671146985159e-06, "epoch": 0.13987100784831766, "percentage": 13.99, "elapsed_time": "1:34:57", "remaining_time": "9:43:59"} +{"current_steps": 1810, "total_steps": 12869, "loss": 1.0849, "learning_rate": 9.949771808637657e-06, "epoch": 0.14064806900303053, "percentage": 14.06, "elapsed_time": "1:35:30", "remaining_time": "9:43:35"} +{"current_steps": 1820, "total_steps": 12869, "loss": 0.9919, "learning_rate": 9.947836052169056e-06, "epoch": 0.1414251301577434, "percentage": 14.14, "elapsed_time": "1:36:03", "remaining_time": "9:43:08"} +{"current_steps": 1830, "total_steps": 12869, "loss": 0.9996, "learning_rate": 9.945863891821749e-06, "epoch": 0.1422021913124563, "percentage": 14.22, "elapsed_time": "1:36:29", "remaining_time": "9:42:03"} +{"current_steps": 1840, "total_steps": 12869, "loss": 1.0394, "learning_rate": 9.943855342105979e-06, "epoch": 0.14297925246716917, "percentage": 14.3, "elapsed_time": "1:36:59", "remaining_time": "9:41:23"} +{"current_steps": 1850, "total_steps": 12869, "loss": 0.9964, "learning_rate": 9.941810417799719e-06, "epoch": 0.14375631362188204, "percentage": 14.38, "elapsed_time": "1:37:33", "remaining_time": "9:41:05"} +{"current_steps": 1860, "total_steps": 12869, "loss": 1.0521, "learning_rate": 9.939729133948572e-06, "epoch": 0.14453337477659492, "percentage": 14.45, "elapsed_time": "1:38:04", "remaining_time": "9:40:28"} +{"current_steps": 1870, "total_steps": 12869, "loss": 1.1685, "learning_rate": 9.93761150586566e-06, "epoch": 0.1453104359313078, "percentage": 14.53, "elapsed_time": "1:38:37", "remaining_time": "9:40:08"} +{"current_steps": 1880, "total_steps": 12869, "loss": 1.0859, "learning_rate": 9.935457549131504e-06, "epoch": 0.14608749708602067, "percentage": 14.61, "elapsed_time": "1:39:08", "remaining_time": "9:39:30"} +{"current_steps": 1890, "total_steps": 12869, "loss": 1.037, "learning_rate": 9.933267279593919e-06, "epoch": 0.14686455824073355, "percentage": 14.69, "elapsed_time": "1:39:37", "remaining_time": "9:38:43"} +{"current_steps": 1900, "total_steps": 12869, "loss": 1.0816, "learning_rate": 9.931040713367888e-06, "epoch": 0.14764161939544643, "percentage": 14.76, "elapsed_time": "1:40:09", "remaining_time": "9:38:13"} +{"current_steps": 1910, "total_steps": 12869, "loss": 1.0843, "learning_rate": 9.928777866835454e-06, "epoch": 0.1484186805501593, "percentage": 14.84, "elapsed_time": "1:40:40", "remaining_time": "9:37:40"} +{"current_steps": 1920, "total_steps": 12869, "loss": 1.0286, "learning_rate": 9.926478756645586e-06, "epoch": 0.14919574170487218, "percentage": 14.92, "elapsed_time": "1:41:17", "remaining_time": "9:37:36"} +{"current_steps": 1930, "total_steps": 12869, "loss": 1.0627, "learning_rate": 9.924143399714072e-06, "epoch": 0.14997280285958506, "percentage": 15.0, "elapsed_time": "1:41:47", "remaining_time": "9:36:56"} +{"current_steps": 1940, "total_steps": 12869, "loss": 1.0116, "learning_rate": 9.92177181322338e-06, "epoch": 0.15074986401429794, "percentage": 15.07, "elapsed_time": "1:42:23", "remaining_time": "9:36:48"} +{"current_steps": 1950, "total_steps": 12869, "loss": 1.0606, "learning_rate": 9.919364014622545e-06, "epoch": 0.1515269251690108, "percentage": 15.15, "elapsed_time": "1:42:51", "remaining_time": "9:35:59"} +{"current_steps": 1960, "total_steps": 12869, "loss": 1.0623, "learning_rate": 9.91692002162703e-06, "epoch": 0.1523039863237237, "percentage": 15.23, "elapsed_time": "1:43:24", "remaining_time": "9:35:33"} +{"current_steps": 1970, "total_steps": 12869, "loss": 1.036, "learning_rate": 9.914439852218598e-06, "epoch": 0.15308104747843657, "percentage": 15.31, "elapsed_time": "1:43:58", "remaining_time": "9:35:14"} +{"current_steps": 1980, "total_steps": 12869, "loss": 1.0592, "learning_rate": 9.911923524645184e-06, "epoch": 0.15385810863314942, "percentage": 15.39, "elapsed_time": "1:44:32", "remaining_time": "9:34:55"} +{"current_steps": 1990, "total_steps": 12869, "loss": 1.1009, "learning_rate": 9.909371057420756e-06, "epoch": 0.1546351697878623, "percentage": 15.46, "elapsed_time": "1:45:05", "remaining_time": "9:34:29"} +{"current_steps": 2000, "total_steps": 12869, "loss": 1.0584, "learning_rate": 9.906782469325183e-06, "epoch": 0.15541223094257517, "percentage": 15.54, "elapsed_time": "1:45:46", "remaining_time": "9:34:50"} +{"current_steps": 2010, "total_steps": 12869, "loss": 1.027, "learning_rate": 9.904157779404095e-06, "epoch": 0.15618929209728805, "percentage": 15.62, "elapsed_time": "1:46:18", "remaining_time": "9:34:17"} +{"current_steps": 2020, "total_steps": 12869, "loss": 1.0366, "learning_rate": 9.901497006968737e-06, "epoch": 0.15696635325200092, "percentage": 15.7, "elapsed_time": "1:46:50", "remaining_time": "9:33:47"} +{"current_steps": 2030, "total_steps": 12869, "loss": 1.0253, "learning_rate": 9.89880017159584e-06, "epoch": 0.1577434144067138, "percentage": 15.77, "elapsed_time": "1:47:19", "remaining_time": "9:33:02"} +{"current_steps": 2040, "total_steps": 12869, "loss": 1.0809, "learning_rate": 9.896067293127462e-06, "epoch": 0.15852047556142668, "percentage": 15.85, "elapsed_time": "1:47:50", "remaining_time": "9:32:25"} +{"current_steps": 2050, "total_steps": 12869, "loss": 1.0288, "learning_rate": 9.893298391670857e-06, "epoch": 0.15929753671613955, "percentage": 15.93, "elapsed_time": "1:48:14", "remaining_time": "9:31:16"} +{"current_steps": 2060, "total_steps": 12869, "loss": 1.062, "learning_rate": 9.890493487598315e-06, "epoch": 0.16007459787085243, "percentage": 16.01, "elapsed_time": "1:48:46", "remaining_time": "9:30:43"} +{"current_steps": 2070, "total_steps": 12869, "loss": 1.029, "learning_rate": 9.887652601547011e-06, "epoch": 0.1608516590255653, "percentage": 16.09, "elapsed_time": "1:49:13", "remaining_time": "9:29:47"} +{"current_steps": 2080, "total_steps": 12869, "loss": 1.0978, "learning_rate": 9.884775754418872e-06, "epoch": 0.16162872018027818, "percentage": 16.16, "elapsed_time": "1:49:45", "remaining_time": "9:29:16"} +{"current_steps": 2090, "total_steps": 12869, "loss": 1.0499, "learning_rate": 9.881862967380398e-06, "epoch": 0.16240578133499106, "percentage": 16.24, "elapsed_time": "1:50:14", "remaining_time": "9:28:34"} +{"current_steps": 2100, "total_steps": 12869, "loss": 1.0964, "learning_rate": 9.878914261862524e-06, "epoch": 0.16318284248970394, "percentage": 16.32, "elapsed_time": "1:50:46", "remaining_time": "9:28:04"} +{"current_steps": 2110, "total_steps": 12869, "loss": 1.0277, "learning_rate": 9.875929659560455e-06, "epoch": 0.16395990364441682, "percentage": 16.4, "elapsed_time": "1:51:18", "remaining_time": "9:27:33"} +{"current_steps": 2120, "total_steps": 12869, "loss": 1.1237, "learning_rate": 9.872909182433509e-06, "epoch": 0.1647369647991297, "percentage": 16.47, "elapsed_time": "1:51:52", "remaining_time": "9:27:13"} +{"current_steps": 2130, "total_steps": 12869, "loss": 1.069, "learning_rate": 9.869852852704951e-06, "epoch": 0.16551402595384257, "percentage": 16.55, "elapsed_time": "1:52:20", "remaining_time": "9:26:23"} +{"current_steps": 2140, "total_steps": 12869, "loss": 1.0432, "learning_rate": 9.866760692861837e-06, "epoch": 0.16629108710855545, "percentage": 16.63, "elapsed_time": "1:52:50", "remaining_time": "9:25:44"} +{"current_steps": 2150, "total_steps": 12869, "loss": 1.0966, "learning_rate": 9.863632725654841e-06, "epoch": 0.16706814826326832, "percentage": 16.71, "elapsed_time": "1:53:19", "remaining_time": "9:24:59"} +{"current_steps": 2160, "total_steps": 12869, "loss": 0.9731, "learning_rate": 9.860468974098093e-06, "epoch": 0.1678452094179812, "percentage": 16.78, "elapsed_time": "1:53:57", "remaining_time": "9:24:58"} +{"current_steps": 2170, "total_steps": 12869, "loss": 1.075, "learning_rate": 9.85726946146901e-06, "epoch": 0.16862227057269408, "percentage": 16.86, "elapsed_time": "1:54:26", "remaining_time": "9:24:14"} +{"current_steps": 2180, "total_steps": 12869, "loss": 1.0237, "learning_rate": 9.854034211308114e-06, "epoch": 0.16939933172740695, "percentage": 16.94, "elapsed_time": "1:54:54", "remaining_time": "9:23:22"} +{"current_steps": 2190, "total_steps": 12869, "loss": 1.0245, "learning_rate": 9.850763247418876e-06, "epoch": 0.17017639288211983, "percentage": 17.02, "elapsed_time": "1:55:27", "remaining_time": "9:23:01"} +{"current_steps": 2200, "total_steps": 12869, "loss": 1.0026, "learning_rate": 9.847456593867525e-06, "epoch": 0.1709534540368327, "percentage": 17.1, "elapsed_time": "1:56:01", "remaining_time": "9:22:40"} +{"current_steps": 2210, "total_steps": 12869, "loss": 1.0431, "learning_rate": 9.844114274982885e-06, "epoch": 0.17173051519154559, "percentage": 17.17, "elapsed_time": "1:56:35", "remaining_time": "9:22:17"} +{"current_steps": 2220, "total_steps": 12869, "loss": 1.0943, "learning_rate": 9.840736315356183e-06, "epoch": 0.17250757634625846, "percentage": 17.25, "elapsed_time": "1:57:04", "remaining_time": "9:21:36"} +{"current_steps": 2230, "total_steps": 12869, "loss": 1.0007, "learning_rate": 9.837322739840877e-06, "epoch": 0.17328463750097134, "percentage": 17.33, "elapsed_time": "1:57:35", "remaining_time": "9:20:58"} +{"current_steps": 2240, "total_steps": 12869, "loss": 1.0301, "learning_rate": 9.833873573552472e-06, "epoch": 0.17406169865568422, "percentage": 17.41, "elapsed_time": "1:58:09", "remaining_time": "9:20:39"} +{"current_steps": 2250, "total_steps": 12869, "loss": 1.0919, "learning_rate": 9.830388841868329e-06, "epoch": 0.17483875981039707, "percentage": 17.48, "elapsed_time": "1:58:41", "remaining_time": "9:20:11"} +{"current_steps": 2260, "total_steps": 12869, "loss": 1.0933, "learning_rate": 9.826868570427484e-06, "epoch": 0.17561582096510994, "percentage": 17.56, "elapsed_time": "1:59:10", "remaining_time": "9:19:26"} +{"current_steps": 2270, "total_steps": 12869, "loss": 1.0556, "learning_rate": 9.823312785130457e-06, "epoch": 0.17639288211982282, "percentage": 17.64, "elapsed_time": "1:59:48", "remaining_time": "9:19:23"} +{"current_steps": 2280, "total_steps": 12869, "loss": 1.0136, "learning_rate": 9.819721512139069e-06, "epoch": 0.1771699432745357, "percentage": 17.72, "elapsed_time": "2:00:20", "remaining_time": "9:18:55"} +{"current_steps": 2290, "total_steps": 12869, "loss": 1.0609, "learning_rate": 9.816094777876233e-06, "epoch": 0.17794700442924857, "percentage": 17.79, "elapsed_time": "2:00:54", "remaining_time": "9:18:34"} +{"current_steps": 2300, "total_steps": 12869, "loss": 1.1066, "learning_rate": 9.812432609025778e-06, "epoch": 0.17872406558396145, "percentage": 17.87, "elapsed_time": "2:01:24", "remaining_time": "9:17:52"} +{"current_steps": 2310, "total_steps": 12869, "loss": 1.0461, "learning_rate": 9.808735032532239e-06, "epoch": 0.17950112673867433, "percentage": 17.95, "elapsed_time": "2:01:52", "remaining_time": "9:17:07"} +{"current_steps": 2320, "total_steps": 12869, "loss": 0.9875, "learning_rate": 9.805002075600668e-06, "epoch": 0.1802781878933872, "percentage": 18.03, "elapsed_time": "2:02:21", "remaining_time": "9:16:21"} +{"current_steps": 2330, "total_steps": 12869, "loss": 1.0032, "learning_rate": 9.801233765696423e-06, "epoch": 0.18105524904810008, "percentage": 18.11, "elapsed_time": "2:02:53", "remaining_time": "9:15:50"} +{"current_steps": 2340, "total_steps": 12869, "loss": 1.0092, "learning_rate": 9.797430130544983e-06, "epoch": 0.18183231020281296, "percentage": 18.18, "elapsed_time": "2:03:32", "remaining_time": "9:15:54"} +{"current_steps": 2350, "total_steps": 12869, "loss": 0.9708, "learning_rate": 9.793591198131724e-06, "epoch": 0.18260937135752583, "percentage": 18.26, "elapsed_time": "2:04:00", "remaining_time": "9:15:05"} +{"current_steps": 2360, "total_steps": 12869, "loss": 1.0716, "learning_rate": 9.789716996701729e-06, "epoch": 0.1833864325122387, "percentage": 18.34, "elapsed_time": "2:04:30", "remaining_time": "9:14:27"} +{"current_steps": 2370, "total_steps": 12869, "loss": 1.0184, "learning_rate": 9.78580755475957e-06, "epoch": 0.1841634936669516, "percentage": 18.42, "elapsed_time": "2:05:02", "remaining_time": "9:13:55"} +{"current_steps": 2380, "total_steps": 12869, "loss": 0.988, "learning_rate": 9.781862901069105e-06, "epoch": 0.18494055482166447, "percentage": 18.49, "elapsed_time": "2:05:36", "remaining_time": "9:13:35"} +{"current_steps": 2390, "total_steps": 12869, "loss": 1.0113, "learning_rate": 9.777883064653266e-06, "epoch": 0.18571761597637734, "percentage": 18.57, "elapsed_time": "2:06:06", "remaining_time": "9:12:56"} +{"current_steps": 2400, "total_steps": 12869, "loss": 1.0423, "learning_rate": 9.773868074793838e-06, "epoch": 0.18649467713109022, "percentage": 18.65, "elapsed_time": "2:06:32", "remaining_time": "9:11:58"} +{"current_steps": 2410, "total_steps": 12869, "loss": 1.0398, "learning_rate": 9.76981796103125e-06, "epoch": 0.1872717382858031, "percentage": 18.73, "elapsed_time": "2:07:03", "remaining_time": "9:11:25"} +{"current_steps": 2420, "total_steps": 12869, "loss": 1.0045, "learning_rate": 9.76573275316436e-06, "epoch": 0.18804879944051597, "percentage": 18.8, "elapsed_time": "2:07:37", "remaining_time": "9:11:05"} +{"current_steps": 2430, "total_steps": 12869, "loss": 1.0224, "learning_rate": 9.761612481250225e-06, "epoch": 0.18882586059522885, "percentage": 18.88, "elapsed_time": "2:08:06", "remaining_time": "9:10:22"} +{"current_steps": 2440, "total_steps": 12869, "loss": 1.0773, "learning_rate": 9.757457175603893e-06, "epoch": 0.18960292174994173, "percentage": 18.96, "elapsed_time": "2:08:35", "remaining_time": "9:09:38"} +{"current_steps": 2450, "total_steps": 12869, "loss": 1.0526, "learning_rate": 9.753266866798174e-06, "epoch": 0.1903799829046546, "percentage": 19.04, "elapsed_time": "2:09:04", "remaining_time": "9:08:54"} +{"current_steps": 2460, "total_steps": 12869, "loss": 1.1138, "learning_rate": 9.749041585663411e-06, "epoch": 0.19115704405936748, "percentage": 19.12, "elapsed_time": "2:09:32", "remaining_time": "9:08:05"} +{"current_steps": 2470, "total_steps": 12869, "loss": 1.0884, "learning_rate": 9.74478136328726e-06, "epoch": 0.19193410521408036, "percentage": 19.19, "elapsed_time": "2:09:58", "remaining_time": "9:07:12"} +{"current_steps": 2480, "total_steps": 12869, "loss": 1.0099, "learning_rate": 9.740486231014461e-06, "epoch": 0.19271116636879324, "percentage": 19.27, "elapsed_time": "2:10:34", "remaining_time": "9:06:57"} +{"current_steps": 2490, "total_steps": 12869, "loss": 1.0461, "learning_rate": 9.736156220446597e-06, "epoch": 0.1934882275235061, "percentage": 19.35, "elapsed_time": "2:11:04", "remaining_time": "9:06:21"} +{"current_steps": 2500, "total_steps": 12869, "loss": 0.9655, "learning_rate": 9.731791363441876e-06, "epoch": 0.194265288678219, "percentage": 19.43, "elapsed_time": "2:11:39", "remaining_time": "9:06:03"} +{"current_steps": 2510, "total_steps": 12869, "loss": 1.0542, "learning_rate": 9.727391692114887e-06, "epoch": 0.19504234983293184, "percentage": 19.5, "elapsed_time": "2:12:12", "remaining_time": "9:05:39"} +{"current_steps": 2520, "total_steps": 12869, "loss": 1.0331, "learning_rate": 9.722957238836366e-06, "epoch": 0.19581941098764472, "percentage": 19.58, "elapsed_time": "2:12:43", "remaining_time": "9:05:03"} +{"current_steps": 2530, "total_steps": 12869, "loss": 1.0926, "learning_rate": 9.718488036232963e-06, "epoch": 0.1965964721423576, "percentage": 19.66, "elapsed_time": "2:13:14", "remaining_time": "9:04:31"} +{"current_steps": 2540, "total_steps": 12869, "loss": 1.0121, "learning_rate": 9.713984117186993e-06, "epoch": 0.19737353329707047, "percentage": 19.74, "elapsed_time": "2:13:42", "remaining_time": "9:03:44"} +{"current_steps": 2550, "total_steps": 12869, "loss": 1.0475, "learning_rate": 9.7094455148362e-06, "epoch": 0.19815059445178335, "percentage": 19.82, "elapsed_time": "2:14:15", "remaining_time": "9:03:17"} +{"current_steps": 2560, "total_steps": 12869, "loss": 1.0105, "learning_rate": 9.704872262573508e-06, "epoch": 0.19892765560649622, "percentage": 19.89, "elapsed_time": "2:14:43", "remaining_time": "9:02:31"} +{"current_steps": 2570, "total_steps": 12869, "loss": 0.948, "learning_rate": 9.700264394046787e-06, "epoch": 0.1997047167612091, "percentage": 19.97, "elapsed_time": "2:15:15", "remaining_time": "9:02:02"} +{"current_steps": 2580, "total_steps": 12869, "loss": 1.0458, "learning_rate": 9.69562194315859e-06, "epoch": 0.20048177791592198, "percentage": 20.05, "elapsed_time": "2:15:46", "remaining_time": "9:01:28"} +{"current_steps": 2590, "total_steps": 12869, "loss": 1.0476, "learning_rate": 9.690944944065914e-06, "epoch": 0.20125883907063485, "percentage": 20.13, "elapsed_time": "2:16:16", "remaining_time": "9:00:50"} +{"current_steps": 2600, "total_steps": 12869, "loss": 1.0115, "learning_rate": 9.686233431179944e-06, "epoch": 0.20203590022534773, "percentage": 20.2, "elapsed_time": "2:16:47", "remaining_time": "9:00:16"} +{"current_steps": 2610, "total_steps": 12869, "loss": 1.0733, "learning_rate": 9.681487439165804e-06, "epoch": 0.2028129613800606, "percentage": 20.28, "elapsed_time": "2:17:20", "remaining_time": "8:59:49"} +{"current_steps": 2620, "total_steps": 12869, "loss": 1.1202, "learning_rate": 9.676707002942299e-06, "epoch": 0.20359002253477348, "percentage": 20.36, "elapsed_time": "2:17:45", "remaining_time": "8:58:54"} +{"current_steps": 2630, "total_steps": 12869, "loss": 0.9892, "learning_rate": 9.671892157681656e-06, "epoch": 0.20436708368948636, "percentage": 20.44, "elapsed_time": "2:18:17", "remaining_time": "8:58:24"} +{"current_steps": 2640, "total_steps": 12869, "loss": 1.0913, "learning_rate": 9.66704293880927e-06, "epoch": 0.20514414484419924, "percentage": 20.51, "elapsed_time": "2:18:44", "remaining_time": "8:57:35"} +{"current_steps": 2650, "total_steps": 12869, "loss": 0.9739, "learning_rate": 9.662159382003438e-06, "epoch": 0.20592120599891212, "percentage": 20.59, "elapsed_time": "2:19:23", "remaining_time": "8:57:29"} +{"current_steps": 2660, "total_steps": 12869, "loss": 1.0062, "learning_rate": 9.657241523195106e-06, "epoch": 0.206698267153625, "percentage": 20.67, "elapsed_time": "2:19:52", "remaining_time": "8:56:48"} +{"current_steps": 2670, "total_steps": 12869, "loss": 0.9645, "learning_rate": 9.652289398567591e-06, "epoch": 0.20747532830833787, "percentage": 20.75, "elapsed_time": "2:20:23", "remaining_time": "8:56:16"} +{"current_steps": 2680, "total_steps": 12869, "loss": 1.0691, "learning_rate": 9.647303044556327e-06, "epoch": 0.20825238946305075, "percentage": 20.83, "elapsed_time": "2:20:51", "remaining_time": "8:55:30"} +{"current_steps": 2690, "total_steps": 12869, "loss": 1.0046, "learning_rate": 9.642282497848587e-06, "epoch": 0.20902945061776362, "percentage": 20.9, "elapsed_time": "2:21:23", "remaining_time": "8:55:00"} +{"current_steps": 2700, "total_steps": 12869, "loss": 1.0334, "learning_rate": 9.637227795383223e-06, "epoch": 0.2098065117724765, "percentage": 20.98, "elapsed_time": "2:21:55", "remaining_time": "8:54:31"} +{"current_steps": 2710, "total_steps": 12869, "loss": 1.0092, "learning_rate": 9.63213897435039e-06, "epoch": 0.21058357292718938, "percentage": 21.06, "elapsed_time": "2:22:23", "remaining_time": "8:53:45"} +{"current_steps": 2720, "total_steps": 12869, "loss": 1.0601, "learning_rate": 9.627016072191263e-06, "epoch": 0.21136063408190225, "percentage": 21.14, "elapsed_time": "2:22:49", "remaining_time": "8:52:54"} +{"current_steps": 2730, "total_steps": 12869, "loss": 1.0089, "learning_rate": 9.62185912659778e-06, "epoch": 0.21213769523661513, "percentage": 21.21, "elapsed_time": "2:23:21", "remaining_time": "8:52:24"} +{"current_steps": 2740, "total_steps": 12869, "loss": 1.0996, "learning_rate": 9.616668175512347e-06, "epoch": 0.212914756391328, "percentage": 21.29, "elapsed_time": "2:23:48", "remaining_time": "8:51:37"} +{"current_steps": 2750, "total_steps": 12869, "loss": 0.995, "learning_rate": 9.611443257127573e-06, "epoch": 0.21369181754604089, "percentage": 21.37, "elapsed_time": "2:24:18", "remaining_time": "8:50:59"} +{"current_steps": 2760, "total_steps": 12869, "loss": 1.0588, "learning_rate": 9.60618440988598e-06, "epoch": 0.21446887870075376, "percentage": 21.45, "elapsed_time": "2:24:51", "remaining_time": "8:50:33"} +{"current_steps": 2770, "total_steps": 12869, "loss": 1.0677, "learning_rate": 9.60089167247972e-06, "epoch": 0.2152459398554666, "percentage": 21.52, "elapsed_time": "2:25:18", "remaining_time": "8:49:46"} +{"current_steps": 2780, "total_steps": 12869, "loss": 0.9761, "learning_rate": 9.595565083850298e-06, "epoch": 0.2160230010101795, "percentage": 21.6, "elapsed_time": "2:25:48", "remaining_time": "8:49:09"} +{"current_steps": 2790, "total_steps": 12869, "loss": 1.0485, "learning_rate": 9.590204683188275e-06, "epoch": 0.21680006216489237, "percentage": 21.68, "elapsed_time": "2:26:14", "remaining_time": "8:48:16"} +{"current_steps": 2800, "total_steps": 12869, "loss": 1.0935, "learning_rate": 9.584810509932993e-06, "epoch": 0.21757712331960524, "percentage": 21.76, "elapsed_time": "2:26:45", "remaining_time": "8:47:44"} +{"current_steps": 2810, "total_steps": 12869, "loss": 1.0242, "learning_rate": 9.579382603772269e-06, "epoch": 0.21835418447431812, "percentage": 21.84, "elapsed_time": "2:27:15", "remaining_time": "8:47:09"} +{"current_steps": 2820, "total_steps": 12869, "loss": 1.0066, "learning_rate": 9.573921004642117e-06, "epoch": 0.219131245629031, "percentage": 21.91, "elapsed_time": "2:27:50", "remaining_time": "8:46:50"} +{"current_steps": 2830, "total_steps": 12869, "loss": 0.9617, "learning_rate": 9.568425752726442e-06, "epoch": 0.21990830678374387, "percentage": 21.99, "elapsed_time": "2:28:24", "remaining_time": "8:46:27"} +{"current_steps": 2840, "total_steps": 12869, "loss": 1.0298, "learning_rate": 9.562896888456758e-06, "epoch": 0.22068536793845675, "percentage": 22.07, "elapsed_time": "2:28:50", "remaining_time": "8:45:37"} +{"current_steps": 2850, "total_steps": 12869, "loss": 0.9536, "learning_rate": 9.557334452511879e-06, "epoch": 0.22146242909316963, "percentage": 22.15, "elapsed_time": "2:29:23", "remaining_time": "8:45:09"} +{"current_steps": 2860, "total_steps": 12869, "loss": 0.951, "learning_rate": 9.551738485817622e-06, "epoch": 0.2222394902478825, "percentage": 22.22, "elapsed_time": "2:29:58", "remaining_time": "8:44:51"} +{"current_steps": 2870, "total_steps": 12869, "loss": 0.9987, "learning_rate": 9.546109029546511e-06, "epoch": 0.22301655140259538, "percentage": 22.3, "elapsed_time": "2:30:29", "remaining_time": "8:44:16"} +{"current_steps": 2880, "total_steps": 12869, "loss": 0.969, "learning_rate": 9.540446125117468e-06, "epoch": 0.22379361255730826, "percentage": 22.38, "elapsed_time": "2:30:58", "remaining_time": "8:43:37"} +{"current_steps": 2890, "total_steps": 12869, "loss": 1.0039, "learning_rate": 9.534749814195516e-06, "epoch": 0.22457067371202113, "percentage": 22.46, "elapsed_time": "2:31:27", "remaining_time": "8:42:57"} +{"current_steps": 2900, "total_steps": 12869, "loss": 0.9743, "learning_rate": 9.529020138691463e-06, "epoch": 0.225347734866734, "percentage": 22.53, "elapsed_time": "2:31:54", "remaining_time": "8:42:10"} +{"current_steps": 2910, "total_steps": 12869, "loss": 0.9396, "learning_rate": 9.523257140761595e-06, "epoch": 0.2261247960214469, "percentage": 22.61, "elapsed_time": "2:32:31", "remaining_time": "8:42:00"} +{"current_steps": 2920, "total_steps": 12869, "loss": 1.0413, "learning_rate": 9.517460862807378e-06, "epoch": 0.22690185717615977, "percentage": 22.69, "elapsed_time": "2:33:02", "remaining_time": "8:41:27"} +{"current_steps": 2930, "total_steps": 12869, "loss": 0.9895, "learning_rate": 9.51163134747513e-06, "epoch": 0.22767891833087264, "percentage": 22.77, "elapsed_time": "2:33:32", "remaining_time": "8:40:49"} +{"current_steps": 2940, "total_steps": 12869, "loss": 1.026, "learning_rate": 9.505768637655717e-06, "epoch": 0.22845597948558552, "percentage": 22.85, "elapsed_time": "2:34:00", "remaining_time": "8:40:07"} +{"current_steps": 2950, "total_steps": 12869, "loss": 0.9389, "learning_rate": 9.499872776484234e-06, "epoch": 0.2292330406402984, "percentage": 22.92, "elapsed_time": "2:34:31", "remaining_time": "8:39:33"} +{"current_steps": 2960, "total_steps": 12869, "loss": 1.0177, "learning_rate": 9.493943807339686e-06, "epoch": 0.23001010179501127, "percentage": 23.0, "elapsed_time": "2:34:58", "remaining_time": "8:38:46"} +{"current_steps": 2970, "total_steps": 12869, "loss": 1.0865, "learning_rate": 9.487981773844673e-06, "epoch": 0.23078716294972415, "percentage": 23.08, "elapsed_time": "2:35:29", "remaining_time": "8:38:15"} +{"current_steps": 2980, "total_steps": 12869, "loss": 1.1025, "learning_rate": 9.48198671986507e-06, "epoch": 0.23156422410443703, "percentage": 23.16, "elapsed_time": "2:36:02", "remaining_time": "8:37:48"} +{"current_steps": 2990, "total_steps": 12869, "loss": 1.0401, "learning_rate": 9.475958689509697e-06, "epoch": 0.2323412852591499, "percentage": 23.23, "elapsed_time": "2:36:40", "remaining_time": "8:37:40"} +{"current_steps": 3000, "total_steps": 12869, "loss": 1.026, "learning_rate": 9.469897727130001e-06, "epoch": 0.23311834641386278, "percentage": 23.31, "elapsed_time": "2:37:14", "remaining_time": "8:37:15"} +{"current_steps": 3010, "total_steps": 12869, "loss": 1.045, "learning_rate": 9.463803877319727e-06, "epoch": 0.23389540756857566, "percentage": 23.39, "elapsed_time": "2:37:45", "remaining_time": "8:36:42"} +{"current_steps": 3020, "total_steps": 12869, "loss": 0.9873, "learning_rate": 9.45767718491459e-06, "epoch": 0.23467246872328854, "percentage": 23.47, "elapsed_time": "2:38:14", "remaining_time": "8:36:03"} +{"current_steps": 3030, "total_steps": 12869, "loss": 0.9935, "learning_rate": 9.451517694991947e-06, "epoch": 0.2354495298780014, "percentage": 23.54, "elapsed_time": "2:38:45", "remaining_time": "8:35:30"} +{"current_steps": 3040, "total_steps": 12869, "loss": 0.9837, "learning_rate": 9.445325452870459e-06, "epoch": 0.23622659103271426, "percentage": 23.62, "elapsed_time": "2:39:17", "remaining_time": "8:35:02"} +{"current_steps": 3050, "total_steps": 12869, "loss": 1.0975, "learning_rate": 9.439100504109772e-06, "epoch": 0.23700365218742714, "percentage": 23.7, "elapsed_time": "2:39:45", "remaining_time": "8:34:18"} +{"current_steps": 3060, "total_steps": 12869, "loss": 0.975, "learning_rate": 9.432842894510164e-06, "epoch": 0.23778071334214002, "percentage": 23.78, "elapsed_time": "2:40:14", "remaining_time": "8:33:39"} +{"current_steps": 3070, "total_steps": 12869, "loss": 0.8966, "learning_rate": 9.42655267011222e-06, "epoch": 0.2385577744968529, "percentage": 23.86, "elapsed_time": "2:40:51", "remaining_time": "8:33:25"} +{"current_steps": 3080, "total_steps": 12869, "loss": 0.899, "learning_rate": 9.420229877196484e-06, "epoch": 0.23933483565156577, "percentage": 23.93, "elapsed_time": "2:41:25", "remaining_time": "8:33:02"} +{"current_steps": 3090, "total_steps": 12869, "loss": 1.0154, "learning_rate": 9.413874562283136e-06, "epoch": 0.24011189680627865, "percentage": 24.01, "elapsed_time": "2:41:53", "remaining_time": "8:32:21"} +{"current_steps": 3100, "total_steps": 12869, "loss": 0.9767, "learning_rate": 9.407486772131624e-06, "epoch": 0.24088895796099152, "percentage": 24.09, "elapsed_time": "2:42:19", "remaining_time": "8:31:31"} +{"current_steps": 3110, "total_steps": 12869, "loss": 0.9662, "learning_rate": 9.401066553740343e-06, "epoch": 0.2416660191157044, "percentage": 24.17, "elapsed_time": "2:42:49", "remaining_time": "8:30:56"} +{"current_steps": 3120, "total_steps": 12869, "loss": 0.9713, "learning_rate": 9.394613954346274e-06, "epoch": 0.24244308027041728, "percentage": 24.24, "elapsed_time": "2:43:20", "remaining_time": "8:30:24"} +{"current_steps": 3130, "total_steps": 12869, "loss": 0.9555, "learning_rate": 9.388129021424648e-06, "epoch": 0.24322014142513015, "percentage": 24.32, "elapsed_time": "2:43:49", "remaining_time": "8:29:43"} +{"current_steps": 3140, "total_steps": 12869, "loss": 1.0036, "learning_rate": 9.381611802688586e-06, "epoch": 0.24399720257984303, "percentage": 24.4, "elapsed_time": "2:44:19", "remaining_time": "8:29:09"} +{"current_steps": 3150, "total_steps": 12869, "loss": 0.971, "learning_rate": 9.375062346088759e-06, "epoch": 0.2447742637345559, "percentage": 24.48, "elapsed_time": "2:44:56", "remaining_time": "8:28:55"} +{"current_steps": 3160, "total_steps": 12869, "loss": 0.9176, "learning_rate": 9.368480699813021e-06, "epoch": 0.24555132488926878, "percentage": 24.56, "elapsed_time": "2:45:33", "remaining_time": "8:28:41"} +{"current_steps": 3170, "total_steps": 12869, "loss": 0.8972, "learning_rate": 9.36186691228607e-06, "epoch": 0.24632838604398166, "percentage": 24.63, "elapsed_time": "2:46:05", "remaining_time": "8:28:10"} +{"current_steps": 3180, "total_steps": 12869, "loss": 0.9154, "learning_rate": 9.35522103216908e-06, "epoch": 0.24710544719869454, "percentage": 24.71, "elapsed_time": "2:46:44", "remaining_time": "8:28:02"} +{"current_steps": 3190, "total_steps": 12869, "loss": 1.036, "learning_rate": 9.34854310835935e-06, "epoch": 0.24788250835340742, "percentage": 24.79, "elapsed_time": "2:47:15", "remaining_time": "8:27:30"} +{"current_steps": 3200, "total_steps": 12869, "loss": 0.8603, "learning_rate": 9.341833189989942e-06, "epoch": 0.2486595695081203, "percentage": 24.87, "elapsed_time": "2:47:43", "remaining_time": "8:26:47"} +{"current_steps": 3210, "total_steps": 12869, "loss": 0.9924, "learning_rate": 9.335091326429313e-06, "epoch": 0.24943663066283317, "percentage": 24.94, "elapsed_time": "2:48:14", "remaining_time": "8:26:14"} +{"current_steps": 3220, "total_steps": 12869, "loss": 0.953, "learning_rate": 9.328317567280968e-06, "epoch": 0.25021369181754605, "percentage": 25.02, "elapsed_time": "2:48:46", "remaining_time": "8:25:43"} +{"current_steps": 3230, "total_steps": 12869, "loss": 0.9379, "learning_rate": 9.321511962383077e-06, "epoch": 0.2509907529722589, "percentage": 25.1, "elapsed_time": "2:49:15", "remaining_time": "8:25:06"} +{"current_steps": 3240, "total_steps": 12869, "loss": 0.986, "learning_rate": 9.314674561808117e-06, "epoch": 0.2517678141269718, "percentage": 25.18, "elapsed_time": "2:49:39", "remaining_time": "8:24:11"} +{"current_steps": 3250, "total_steps": 12869, "loss": 0.9541, "learning_rate": 9.307805415862507e-06, "epoch": 0.2525448752816847, "percentage": 25.25, "elapsed_time": "2:50:09", "remaining_time": "8:23:37"} +{"current_steps": 3260, "total_steps": 12869, "loss": 0.9203, "learning_rate": 9.300904575086232e-06, "epoch": 0.25332193643639755, "percentage": 25.33, "elapsed_time": "2:50:42", "remaining_time": "8:23:08"} +{"current_steps": 3270, "total_steps": 12869, "loss": 0.9679, "learning_rate": 9.293972090252468e-06, "epoch": 0.25409899759111043, "percentage": 25.41, "elapsed_time": "2:51:16", "remaining_time": "8:22:46"} +{"current_steps": 3280, "total_steps": 12869, "loss": 1.0023, "learning_rate": 9.287008012367221e-06, "epoch": 0.2548760587458233, "percentage": 25.49, "elapsed_time": "2:51:44", "remaining_time": "8:22:06"} +{"current_steps": 3290, "total_steps": 12869, "loss": 1.0326, "learning_rate": 9.280012392668938e-06, "epoch": 0.2556531199005362, "percentage": 25.57, "elapsed_time": "2:52:19", "remaining_time": "8:21:44"} +{"current_steps": 3300, "total_steps": 12869, "loss": 0.988, "learning_rate": 9.272985282628138e-06, "epoch": 0.25643018105524906, "percentage": 25.64, "elapsed_time": "2:52:51", "remaining_time": "8:21:14"} +{"current_steps": 3310, "total_steps": 12869, "loss": 0.9237, "learning_rate": 9.265926733947035e-06, "epoch": 0.25720724220996194, "percentage": 25.72, "elapsed_time": "2:53:19", "remaining_time": "8:20:33"} +{"current_steps": 3320, "total_steps": 12869, "loss": 0.8764, "learning_rate": 9.258836798559148e-06, "epoch": 0.2579843033646748, "percentage": 25.8, "elapsed_time": "2:53:53", "remaining_time": "8:20:10"} +{"current_steps": 3330, "total_steps": 12869, "loss": 0.9781, "learning_rate": 9.251715528628926e-06, "epoch": 0.2587613645193877, "percentage": 25.88, "elapsed_time": "2:54:28", "remaining_time": "8:19:46"} +{"current_steps": 3340, "total_steps": 12869, "loss": 0.9835, "learning_rate": 9.244562976551368e-06, "epoch": 0.25953842567410057, "percentage": 25.95, "elapsed_time": "2:54:57", "remaining_time": "8:19:08"} +{"current_steps": 3350, "total_steps": 12869, "loss": 0.9438, "learning_rate": 9.237379194951626e-06, "epoch": 0.26031548682881345, "percentage": 26.03, "elapsed_time": "2:55:27", "remaining_time": "8:18:32"} +{"current_steps": 3360, "total_steps": 12869, "loss": 0.9617, "learning_rate": 9.230164236684628e-06, "epoch": 0.2610925479835263, "percentage": 26.11, "elapsed_time": "2:56:03", "remaining_time": "8:18:15"} +{"current_steps": 3370, "total_steps": 12869, "loss": 1.0756, "learning_rate": 9.222918154834684e-06, "epoch": 0.2618696091382392, "percentage": 26.19, "elapsed_time": "2:56:32", "remaining_time": "8:17:36"} +{"current_steps": 3380, "total_steps": 12869, "loss": 1.0523, "learning_rate": 9.215641002715097e-06, "epoch": 0.2626466702929521, "percentage": 26.26, "elapsed_time": "2:57:05", "remaining_time": "8:17:09"} +{"current_steps": 3390, "total_steps": 12869, "loss": 0.8869, "learning_rate": 9.208332833867772e-06, "epoch": 0.26342373144766495, "percentage": 26.34, "elapsed_time": "2:57:41", "remaining_time": "8:16:51"} +{"current_steps": 3400, "total_steps": 12869, "loss": 0.9808, "learning_rate": 9.200993702062821e-06, "epoch": 0.26420079260237783, "percentage": 26.42, "elapsed_time": "2:58:09", "remaining_time": "8:16:11"} +{"current_steps": 3410, "total_steps": 12869, "loss": 0.9156, "learning_rate": 9.193623661298164e-06, "epoch": 0.2649778537570907, "percentage": 26.5, "elapsed_time": "2:58:43", "remaining_time": "8:15:46"} +{"current_steps": 3420, "total_steps": 12869, "loss": 0.9764, "learning_rate": 9.186222765799137e-06, "epoch": 0.2657549149118036, "percentage": 26.58, "elapsed_time": "2:59:16", "remaining_time": "8:15:19"} +{"current_steps": 3430, "total_steps": 12869, "loss": 0.9491, "learning_rate": 9.17879107001809e-06, "epoch": 0.2665319760665164, "percentage": 26.65, "elapsed_time": "2:59:45", "remaining_time": "8:14:40"} +{"current_steps": 3440, "total_steps": 12869, "loss": 0.9796, "learning_rate": 9.171328628633987e-06, "epoch": 0.2673090372212293, "percentage": 26.73, "elapsed_time": "3:00:16", "remaining_time": "8:14:06"} +{"current_steps": 3450, "total_steps": 12869, "loss": 0.9294, "learning_rate": 9.163835496552006e-06, "epoch": 0.26808609837594216, "percentage": 26.81, "elapsed_time": "3:00:46", "remaining_time": "8:13:31"} +{"current_steps": 3460, "total_steps": 12869, "loss": 0.9428, "learning_rate": 9.15631172890313e-06, "epoch": 0.26886315953065504, "percentage": 26.89, "elapsed_time": "3:01:18", "remaining_time": "8:13:02"} +{"current_steps": 3470, "total_steps": 12869, "loss": 0.9497, "learning_rate": 9.148757381043745e-06, "epoch": 0.2696402206853679, "percentage": 26.96, "elapsed_time": "3:01:49", "remaining_time": "8:12:29"} +{"current_steps": 3480, "total_steps": 12869, "loss": 0.9611, "learning_rate": 9.141172508555234e-06, "epoch": 0.2704172818400808, "percentage": 27.04, "elapsed_time": "3:02:20", "remaining_time": "8:11:57"} +{"current_steps": 3490, "total_steps": 12869, "loss": 0.9233, "learning_rate": 9.133557167243565e-06, "epoch": 0.27119434299479367, "percentage": 27.12, "elapsed_time": "3:02:51", "remaining_time": "8:11:23"} +{"current_steps": 3500, "total_steps": 12869, "loss": 0.9203, "learning_rate": 9.125911413138877e-06, "epoch": 0.27197140414950655, "percentage": 27.2, "elapsed_time": "3:03:23", "remaining_time": "8:10:54"} +{"current_steps": 3510, "total_steps": 12869, "loss": 0.8849, "learning_rate": 9.11823530249508e-06, "epoch": 0.2727484653042194, "percentage": 27.27, "elapsed_time": "3:03:58", "remaining_time": "8:10:32"} +{"current_steps": 3520, "total_steps": 12869, "loss": 0.875, "learning_rate": 9.11052889178943e-06, "epoch": 0.2735255264589323, "percentage": 27.35, "elapsed_time": "3:04:30", "remaining_time": "8:10:03"} +{"current_steps": 3530, "total_steps": 12869, "loss": 1.0095, "learning_rate": 9.102792237722114e-06, "epoch": 0.2743025876136452, "percentage": 27.43, "elapsed_time": "3:05:03", "remaining_time": "8:09:36"} +{"current_steps": 3540, "total_steps": 12869, "loss": 0.9276, "learning_rate": 9.095025397215838e-06, "epoch": 0.27507964876835805, "percentage": 27.51, "elapsed_time": "3:05:34", "remaining_time": "8:09:04"} +{"current_steps": 3550, "total_steps": 12869, "loss": 0.9235, "learning_rate": 9.087228427415405e-06, "epoch": 0.27585670992307093, "percentage": 27.59, "elapsed_time": "3:06:05", "remaining_time": "8:08:29"} +{"current_steps": 3560, "total_steps": 12869, "loss": 0.9491, "learning_rate": 9.079401385687299e-06, "epoch": 0.2766337710777838, "percentage": 27.66, "elapsed_time": "3:06:32", "remaining_time": "8:07:47"} +{"current_steps": 3570, "total_steps": 12869, "loss": 0.9458, "learning_rate": 9.071544329619253e-06, "epoch": 0.2774108322324967, "percentage": 27.74, "elapsed_time": "3:07:05", "remaining_time": "8:07:19"} +{"current_steps": 3580, "total_steps": 12869, "loss": 0.9137, "learning_rate": 9.063657317019838e-06, "epoch": 0.27818789338720956, "percentage": 27.82, "elapsed_time": "3:07:38", "remaining_time": "8:06:51"} +{"current_steps": 3590, "total_steps": 12869, "loss": 0.9567, "learning_rate": 9.055740405918026e-06, "epoch": 0.27896495454192244, "percentage": 27.9, "elapsed_time": "3:08:08", "remaining_time": "8:06:17"} +{"current_steps": 3600, "total_steps": 12869, "loss": 0.9689, "learning_rate": 9.04779365456277e-06, "epoch": 0.2797420156966353, "percentage": 27.97, "elapsed_time": "3:08:40", "remaining_time": "8:05:47"} +{"current_steps": 3610, "total_steps": 12869, "loss": 0.9177, "learning_rate": 9.039817121422575e-06, "epoch": 0.2805190768513482, "percentage": 28.05, "elapsed_time": "3:09:16", "remaining_time": "8:05:27"} +{"current_steps": 3620, "total_steps": 12869, "loss": 0.9407, "learning_rate": 9.031810865185066e-06, "epoch": 0.28129613800606107, "percentage": 28.13, "elapsed_time": "3:09:45", "remaining_time": "8:04:49"} +{"current_steps": 3630, "total_steps": 12869, "loss": 0.9863, "learning_rate": 9.023774944756555e-06, "epoch": 0.28207319916077395, "percentage": 28.21, "elapsed_time": "3:10:18", "remaining_time": "8:04:21"} +{"current_steps": 3640, "total_steps": 12869, "loss": 0.9869, "learning_rate": 9.015709419261612e-06, "epoch": 0.2828502603154868, "percentage": 28.29, "elapsed_time": "3:10:48", "remaining_time": "8:03:46"} +{"current_steps": 3650, "total_steps": 12869, "loss": 0.909, "learning_rate": 9.007614348042626e-06, "epoch": 0.2836273214701997, "percentage": 28.36, "elapsed_time": "3:11:17", "remaining_time": "8:03:10"} +{"current_steps": 3660, "total_steps": 12869, "loss": 0.8966, "learning_rate": 8.999489790659368e-06, "epoch": 0.2844043826249126, "percentage": 28.44, "elapsed_time": "3:11:48", "remaining_time": "8:02:37"} +{"current_steps": 3670, "total_steps": 12869, "loss": 0.9765, "learning_rate": 8.991335806888558e-06, "epoch": 0.28518144377962545, "percentage": 28.52, "elapsed_time": "3:12:26", "remaining_time": "8:02:20"} +{"current_steps": 3680, "total_steps": 12869, "loss": 0.9859, "learning_rate": 8.983152456723419e-06, "epoch": 0.28595850493433833, "percentage": 28.6, "elapsed_time": "3:12:56", "remaining_time": "8:01:45"} +{"current_steps": 3690, "total_steps": 12869, "loss": 0.9534, "learning_rate": 8.97493980037324e-06, "epoch": 0.2867355660890512, "percentage": 28.67, "elapsed_time": "3:13:31", "remaining_time": "8:01:24"} +{"current_steps": 3700, "total_steps": 12869, "loss": 0.9482, "learning_rate": 8.96669789826293e-06, "epoch": 0.2875126272437641, "percentage": 28.75, "elapsed_time": "3:14:10", "remaining_time": "8:01:11"} +{"current_steps": 3710, "total_steps": 12869, "loss": 0.8993, "learning_rate": 8.958426811032576e-06, "epoch": 0.28828968839847696, "percentage": 28.83, "elapsed_time": "3:14:40", "remaining_time": "8:00:37"} +{"current_steps": 3720, "total_steps": 12869, "loss": 0.9597, "learning_rate": 8.950126599536993e-06, "epoch": 0.28906674955318984, "percentage": 28.91, "elapsed_time": "3:15:10", "remaining_time": "8:00:00"} +{"current_steps": 3730, "total_steps": 12869, "loss": 0.9499, "learning_rate": 8.941797324845284e-06, "epoch": 0.2898438107079027, "percentage": 28.98, "elapsed_time": "3:15:36", "remaining_time": "7:59:17"} +{"current_steps": 3740, "total_steps": 12869, "loss": 0.8834, "learning_rate": 8.933439048240376e-06, "epoch": 0.2906208718626156, "percentage": 29.06, "elapsed_time": "3:16:08", "remaining_time": "7:58:46"} +{"current_steps": 3750, "total_steps": 12869, "loss": 0.9257, "learning_rate": 8.92505183121859e-06, "epoch": 0.29139793301732847, "percentage": 29.14, "elapsed_time": "3:16:39", "remaining_time": "7:58:13"} +{"current_steps": 3760, "total_steps": 12869, "loss": 0.9679, "learning_rate": 8.91663573548917e-06, "epoch": 0.29217499417204135, "percentage": 29.22, "elapsed_time": "3:17:11", "remaining_time": "7:57:44"} +{"current_steps": 3770, "total_steps": 12869, "loss": 0.8838, "learning_rate": 8.908190822973838e-06, "epoch": 0.2929520553267542, "percentage": 29.3, "elapsed_time": "3:17:47", "remaining_time": "7:57:21"} +{"current_steps": 3780, "total_steps": 12869, "loss": 0.8847, "learning_rate": 8.899717155806337e-06, "epoch": 0.2937291164814671, "percentage": 29.37, "elapsed_time": "3:18:20", "remaining_time": "7:56:53"} +{"current_steps": 3790, "total_steps": 12869, "loss": 0.9878, "learning_rate": 8.891214796331973e-06, "epoch": 0.29450617763618, "percentage": 29.45, "elapsed_time": "3:18:53", "remaining_time": "7:56:26"} +{"current_steps": 3800, "total_steps": 12869, "loss": 0.9536, "learning_rate": 8.882683807107154e-06, "epoch": 0.29528323879089285, "percentage": 29.53, "elapsed_time": "3:19:29", "remaining_time": "7:56:05"} +{"current_steps": 3810, "total_steps": 12869, "loss": 0.8787, "learning_rate": 8.874124250898937e-06, "epoch": 0.29606029994560573, "percentage": 29.61, "elapsed_time": "3:20:00", "remaining_time": "7:55:33"} +{"current_steps": 3820, "total_steps": 12869, "loss": 0.9384, "learning_rate": 8.865536190684559e-06, "epoch": 0.2968373611003186, "percentage": 29.68, "elapsed_time": "3:20:28", "remaining_time": "7:54:54"} +{"current_steps": 3830, "total_steps": 12869, "loss": 0.8934, "learning_rate": 8.856919689650977e-06, "epoch": 0.2976144222550315, "percentage": 29.76, "elapsed_time": "3:21:03", "remaining_time": "7:54:29"} +{"current_steps": 3840, "total_steps": 12869, "loss": 0.9733, "learning_rate": 8.848274811194402e-06, "epoch": 0.29839148340974436, "percentage": 29.84, "elapsed_time": "3:21:30", "remaining_time": "7:53:47"} +{"current_steps": 3850, "total_steps": 12869, "loss": 0.9018, "learning_rate": 8.839601618919833e-06, "epoch": 0.29916854456445724, "percentage": 29.92, "elapsed_time": "3:22:07", "remaining_time": "7:53:30"} +{"current_steps": 3860, "total_steps": 12869, "loss": 0.9858, "learning_rate": 8.830900176640587e-06, "epoch": 0.2999456057191701, "percentage": 29.99, "elapsed_time": "3:22:37", "remaining_time": "7:52:55"} +{"current_steps": 3870, "total_steps": 12869, "loss": 0.9769, "learning_rate": 8.822170548377835e-06, "epoch": 0.300722666873883, "percentage": 30.07, "elapsed_time": "3:23:13", "remaining_time": "7:52:33"} +{"current_steps": 3880, "total_steps": 12869, "loss": 0.8856, "learning_rate": 8.813412798360126e-06, "epoch": 0.30149972802859587, "percentage": 30.15, "elapsed_time": "3:23:43", "remaining_time": "7:51:59"} +{"current_steps": 3890, "total_steps": 12869, "loss": 0.9671, "learning_rate": 8.804626991022915e-06, "epoch": 0.30227678918330875, "percentage": 30.23, "elapsed_time": "3:24:18", "remaining_time": "7:51:34"} +{"current_steps": 3900, "total_steps": 12869, "loss": 0.8933, "learning_rate": 8.79581319100809e-06, "epoch": 0.3030538503380216, "percentage": 30.31, "elapsed_time": "3:24:46", "remaining_time": "7:50:56"} +{"current_steps": 3910, "total_steps": 12869, "loss": 0.9564, "learning_rate": 8.786971463163495e-06, "epoch": 0.3038309114927345, "percentage": 30.38, "elapsed_time": "3:25:20", "remaining_time": "7:50:29"} +{"current_steps": 3920, "total_steps": 12869, "loss": 0.9913, "learning_rate": 8.778101872542458e-06, "epoch": 0.3046079726474474, "percentage": 30.46, "elapsed_time": "3:25:49", "remaining_time": "7:49:53"} +{"current_steps": 3930, "total_steps": 12869, "loss": 0.8939, "learning_rate": 8.769204484403304e-06, "epoch": 0.30538503380216026, "percentage": 30.54, "elapsed_time": "3:26:25", "remaining_time": "7:49:30"} +{"current_steps": 3940, "total_steps": 12869, "loss": 0.8993, "learning_rate": 8.760279364208879e-06, "epoch": 0.30616209495687313, "percentage": 30.62, "elapsed_time": "3:26:54", "remaining_time": "7:48:54"} +{"current_steps": 3950, "total_steps": 12869, "loss": 0.9712, "learning_rate": 8.751326577626075e-06, "epoch": 0.306939156111586, "percentage": 30.69, "elapsed_time": "3:27:26", "remaining_time": "7:48:23"} +{"current_steps": 3960, "total_steps": 12869, "loss": 0.9545, "learning_rate": 8.742346190525332e-06, "epoch": 0.30771621726629883, "percentage": 30.77, "elapsed_time": "3:27:54", "remaining_time": "7:47:43"} +{"current_steps": 3970, "total_steps": 12869, "loss": 0.887, "learning_rate": 8.733338268980166e-06, "epoch": 0.3084932784210117, "percentage": 30.85, "elapsed_time": "3:28:28", "remaining_time": "7:47:19"} +{"current_steps": 3980, "total_steps": 12869, "loss": 0.8955, "learning_rate": 8.72430287926668e-06, "epoch": 0.3092703395757246, "percentage": 30.93, "elapsed_time": "3:28:59", "remaining_time": "7:46:45"} +{"current_steps": 3990, "total_steps": 12869, "loss": 0.8944, "learning_rate": 8.715240087863072e-06, "epoch": 0.31004740073043746, "percentage": 31.0, "elapsed_time": "3:29:33", "remaining_time": "7:46:19"} +{"current_steps": 4000, "total_steps": 12869, "loss": 0.8534, "learning_rate": 8.70614996144915e-06, "epoch": 0.31082446188515034, "percentage": 31.08, "elapsed_time": "3:30:01", "remaining_time": "7:45:41"} +{"current_steps": 4010, "total_steps": 12869, "loss": 0.8884, "learning_rate": 8.697032566905842e-06, "epoch": 0.3116015230398632, "percentage": 31.16, "elapsed_time": "3:30:37", "remaining_time": "7:45:20"} +{"current_steps": 4020, "total_steps": 12869, "loss": 0.9143, "learning_rate": 8.6878879713147e-06, "epoch": 0.3123785841945761, "percentage": 31.24, "elapsed_time": "3:31:10", "remaining_time": "7:44:50"} +{"current_steps": 4030, "total_steps": 12869, "loss": 0.8835, "learning_rate": 8.678716241957408e-06, "epoch": 0.31315564534928897, "percentage": 31.32, "elapsed_time": "3:31:38", "remaining_time": "7:44:11"} +{"current_steps": 4040, "total_steps": 12869, "loss": 0.9273, "learning_rate": 8.669517446315292e-06, "epoch": 0.31393270650400185, "percentage": 31.39, "elapsed_time": "3:32:11", "remaining_time": "7:43:42"} +{"current_steps": 4050, "total_steps": 12869, "loss": 0.9162, "learning_rate": 8.660291652068813e-06, "epoch": 0.3147097676587147, "percentage": 31.47, "elapsed_time": "3:32:40", "remaining_time": "7:43:07"} +{"current_steps": 4060, "total_steps": 12869, "loss": 0.9558, "learning_rate": 8.65103892709708e-06, "epoch": 0.3154868288134276, "percentage": 31.55, "elapsed_time": "3:33:18", "remaining_time": "7:42:47"} +{"current_steps": 4070, "total_steps": 12869, "loss": 0.9469, "learning_rate": 8.641759339477345e-06, "epoch": 0.3162638899681405, "percentage": 31.63, "elapsed_time": "3:33:46", "remaining_time": "7:42:09"} +{"current_steps": 4080, "total_steps": 12869, "loss": 0.8976, "learning_rate": 8.632452957484498e-06, "epoch": 0.31704095112285335, "percentage": 31.7, "elapsed_time": "3:34:21", "remaining_time": "7:41:45"} +{"current_steps": 4090, "total_steps": 12869, "loss": 0.8577, "learning_rate": 8.62311984959058e-06, "epoch": 0.31781801227756623, "percentage": 31.78, "elapsed_time": "3:34:58", "remaining_time": "7:41:25"} +{"current_steps": 4100, "total_steps": 12869, "loss": 0.8989, "learning_rate": 8.613760084464258e-06, "epoch": 0.3185950734322791, "percentage": 31.86, "elapsed_time": "3:35:34", "remaining_time": "7:41:03"} +{"current_steps": 4110, "total_steps": 12869, "loss": 0.9379, "learning_rate": 8.604373730970334e-06, "epoch": 0.319372134586992, "percentage": 31.94, "elapsed_time": "3:36:08", "remaining_time": "7:40:37"} +{"current_steps": 4120, "total_steps": 12869, "loss": 0.9307, "learning_rate": 8.59496085816924e-06, "epoch": 0.32014919574170486, "percentage": 32.01, "elapsed_time": "3:36:40", "remaining_time": "7:40:08"} +{"current_steps": 4130, "total_steps": 12869, "loss": 0.9789, "learning_rate": 8.585521535316517e-06, "epoch": 0.32092625689641774, "percentage": 32.09, "elapsed_time": "3:37:07", "remaining_time": "7:39:25"} +{"current_steps": 4140, "total_steps": 12869, "loss": 0.9632, "learning_rate": 8.576055831862317e-06, "epoch": 0.3217033180511306, "percentage": 32.17, "elapsed_time": "3:37:42", "remaining_time": "7:39:01"} +{"current_steps": 4150, "total_steps": 12869, "loss": 0.8607, "learning_rate": 8.56656381745089e-06, "epoch": 0.3224803792058435, "percentage": 32.25, "elapsed_time": "3:38:16", "remaining_time": "7:38:35"} +{"current_steps": 4160, "total_steps": 12869, "loss": 0.9062, "learning_rate": 8.557045561920066e-06, "epoch": 0.32325744036055637, "percentage": 32.33, "elapsed_time": "3:38:47", "remaining_time": "7:38:02"} +{"current_steps": 4170, "total_steps": 12869, "loss": 0.8982, "learning_rate": 8.547501135300747e-06, "epoch": 0.32403450151526925, "percentage": 32.4, "elapsed_time": "3:39:12", "remaining_time": "7:37:17"} +{"current_steps": 4180, "total_steps": 12869, "loss": 0.952, "learning_rate": 8.537930607816386e-06, "epoch": 0.3248115626699821, "percentage": 32.48, "elapsed_time": "3:39:39", "remaining_time": "7:36:35"} +{"current_steps": 4190, "total_steps": 12869, "loss": 0.9004, "learning_rate": 8.528334049882482e-06, "epoch": 0.325588623824695, "percentage": 32.56, "elapsed_time": "3:40:09", "remaining_time": "7:36:01"} +{"current_steps": 4200, "total_steps": 12869, "loss": 0.9109, "learning_rate": 8.51871153210605e-06, "epoch": 0.3263656849794079, "percentage": 32.64, "elapsed_time": "3:40:41", "remaining_time": "7:35:31"} +{"current_steps": 4210, "total_steps": 12869, "loss": 0.8622, "learning_rate": 8.5090631252851e-06, "epoch": 0.32714274613412075, "percentage": 32.71, "elapsed_time": "3:41:15", "remaining_time": "7:35:05"} +{"current_steps": 4220, "total_steps": 12869, "loss": 0.8932, "learning_rate": 8.499388900408131e-06, "epoch": 0.32791980728883363, "percentage": 32.79, "elapsed_time": "3:41:50", "remaining_time": "7:34:39"} +{"current_steps": 4230, "total_steps": 12869, "loss": 0.8921, "learning_rate": 8.489688928653593e-06, "epoch": 0.3286968684435465, "percentage": 32.87, "elapsed_time": "3:42:17", "remaining_time": "7:34:00"} +{"current_steps": 4240, "total_steps": 12869, "loss": 0.9178, "learning_rate": 8.479963281389369e-06, "epoch": 0.3294739295982594, "percentage": 32.95, "elapsed_time": "3:42:46", "remaining_time": "7:33:22"} +{"current_steps": 4250, "total_steps": 12869, "loss": 0.8541, "learning_rate": 8.470212030172254e-06, "epoch": 0.33025099075297226, "percentage": 33.03, "elapsed_time": "3:43:19", "remaining_time": "7:32:53"} +{"current_steps": 4260, "total_steps": 12869, "loss": 0.9081, "learning_rate": 8.460435246747425e-06, "epoch": 0.33102805190768514, "percentage": 33.1, "elapsed_time": "3:43:49", "remaining_time": "7:32:18"} +{"current_steps": 4270, "total_steps": 12869, "loss": 0.9563, "learning_rate": 8.45063300304791e-06, "epoch": 0.331805113062398, "percentage": 33.18, "elapsed_time": "3:44:21", "remaining_time": "7:31:49"} +{"current_steps": 4280, "total_steps": 12869, "loss": 0.8762, "learning_rate": 8.440805371194064e-06, "epoch": 0.3325821742171109, "percentage": 33.26, "elapsed_time": "3:44:52", "remaining_time": "7:31:15"} +{"current_steps": 4290, "total_steps": 12869, "loss": 0.89, "learning_rate": 8.430952423493038e-06, "epoch": 0.33335923537182377, "percentage": 33.34, "elapsed_time": "3:45:20", "remaining_time": "7:30:37"} +{"current_steps": 4300, "total_steps": 12869, "loss": 0.8998, "learning_rate": 8.42107423243824e-06, "epoch": 0.33413629652653665, "percentage": 33.41, "elapsed_time": "3:45:47", "remaining_time": "7:29:56"} +{"current_steps": 4310, "total_steps": 12869, "loss": 0.8602, "learning_rate": 8.41117087070881e-06, "epoch": 0.3349133576812495, "percentage": 33.49, "elapsed_time": "3:46:18", "remaining_time": "7:29:24"} +{"current_steps": 4320, "total_steps": 12869, "loss": 0.9091, "learning_rate": 8.401242411169085e-06, "epoch": 0.3356904188359624, "percentage": 33.57, "elapsed_time": "3:46:54", "remaining_time": "7:29:02"} +{"current_steps": 4330, "total_steps": 12869, "loss": 0.905, "learning_rate": 8.391288926868055e-06, "epoch": 0.3364674799906753, "percentage": 33.65, "elapsed_time": "3:47:22", "remaining_time": "7:28:23"} +{"current_steps": 4340, "total_steps": 12869, "loss": 0.8834, "learning_rate": 8.381310491038835e-06, "epoch": 0.33724454114538815, "percentage": 33.72, "elapsed_time": "3:47:53", "remaining_time": "7:27:51"} +{"current_steps": 4350, "total_steps": 12869, "loss": 0.9659, "learning_rate": 8.371307177098114e-06, "epoch": 0.33802160230010103, "percentage": 33.8, "elapsed_time": "3:48:27", "remaining_time": "7:27:24"} +{"current_steps": 4360, "total_steps": 12869, "loss": 0.8736, "learning_rate": 8.361279058645634e-06, "epoch": 0.3387986634548139, "percentage": 33.88, "elapsed_time": "3:49:03", "remaining_time": "7:27:02"} +{"current_steps": 4370, "total_steps": 12869, "loss": 0.8564, "learning_rate": 8.351226209463628e-06, "epoch": 0.3395757246095268, "percentage": 33.96, "elapsed_time": "3:49:37", "remaining_time": "7:26:35"} +{"current_steps": 4380, "total_steps": 12869, "loss": 0.929, "learning_rate": 8.341148703516291e-06, "epoch": 0.34035278576423966, "percentage": 34.04, "elapsed_time": "3:50:06", "remaining_time": "7:25:59"} +{"current_steps": 4390, "total_steps": 12869, "loss": 0.8663, "learning_rate": 8.331046614949228e-06, "epoch": 0.34112984691895254, "percentage": 34.11, "elapsed_time": "3:50:39", "remaining_time": "7:25:29"} +{"current_steps": 4400, "total_steps": 12869, "loss": 0.9137, "learning_rate": 8.320920018088912e-06, "epoch": 0.3419069080736654, "percentage": 34.19, "elapsed_time": "3:51:08", "remaining_time": "7:24:53"} +{"current_steps": 4410, "total_steps": 12869, "loss": 0.9368, "learning_rate": 8.310768987442139e-06, "epoch": 0.3426839692283783, "percentage": 34.27, "elapsed_time": "3:51:39", "remaining_time": "7:24:21"} +{"current_steps": 4420, "total_steps": 12869, "loss": 0.9299, "learning_rate": 8.300593597695476e-06, "epoch": 0.34346103038309117, "percentage": 34.35, "elapsed_time": "3:52:06", "remaining_time": "7:23:41"} +{"current_steps": 4430, "total_steps": 12869, "loss": 0.9587, "learning_rate": 8.290393923714713e-06, "epoch": 0.34423809153780405, "percentage": 34.42, "elapsed_time": "3:52:31", "remaining_time": "7:22:57"} +{"current_steps": 4440, "total_steps": 12869, "loss": 0.8605, "learning_rate": 8.280170040544312e-06, "epoch": 0.3450151526925169, "percentage": 34.5, "elapsed_time": "3:53:04", "remaining_time": "7:22:29"} +{"current_steps": 4450, "total_steps": 12869, "loss": 0.7918, "learning_rate": 8.269922023406851e-06, "epoch": 0.3457922138472298, "percentage": 34.58, "elapsed_time": "3:53:45", "remaining_time": "7:22:14"} +{"current_steps": 4460, "total_steps": 12869, "loss": 0.873, "learning_rate": 8.259649947702485e-06, "epoch": 0.3465692750019427, "percentage": 34.66, "elapsed_time": "3:54:12", "remaining_time": "7:21:35"} +{"current_steps": 4470, "total_steps": 12869, "loss": 0.8373, "learning_rate": 8.24935388900837e-06, "epoch": 0.34734633615665556, "percentage": 34.73, "elapsed_time": "3:54:40", "remaining_time": "7:20:57"} +{"current_steps": 4480, "total_steps": 12869, "loss": 0.9174, "learning_rate": 8.239033923078124e-06, "epoch": 0.34812339731136843, "percentage": 34.81, "elapsed_time": "3:55:05", "remaining_time": "7:20:12"} +{"current_steps": 4490, "total_steps": 12869, "loss": 0.8672, "learning_rate": 8.228690125841258e-06, "epoch": 0.34890045846608125, "percentage": 34.89, "elapsed_time": "3:55:38", "remaining_time": "7:19:44"} +{"current_steps": 4500, "total_steps": 12869, "loss": 0.8523, "learning_rate": 8.218322573402629e-06, "epoch": 0.34967751962079413, "percentage": 34.97, "elapsed_time": "3:56:09", "remaining_time": "7:19:12"} +{"current_steps": 4510, "total_steps": 12869, "loss": 0.8497, "learning_rate": 8.20793134204187e-06, "epoch": 0.350454580775507, "percentage": 35.05, "elapsed_time": "3:56:44", "remaining_time": "7:18:46"} +{"current_steps": 4520, "total_steps": 12869, "loss": 0.9144, "learning_rate": 8.197516508212832e-06, "epoch": 0.3512316419302199, "percentage": 35.12, "elapsed_time": "3:57:13", "remaining_time": "7:18:11"} +{"current_steps": 4530, "total_steps": 12869, "loss": 0.8521, "learning_rate": 8.187078148543026e-06, "epoch": 0.35200870308493276, "percentage": 35.2, "elapsed_time": "3:57:41", "remaining_time": "7:17:32"} +{"current_steps": 4540, "total_steps": 12869, "loss": 0.9834, "learning_rate": 8.176616339833048e-06, "epoch": 0.35278576423964564, "percentage": 35.28, "elapsed_time": "3:58:03", "remaining_time": "7:16:43"} +{"current_steps": 4550, "total_steps": 12869, "loss": 0.9291, "learning_rate": 8.166131159056028e-06, "epoch": 0.3535628253943585, "percentage": 35.36, "elapsed_time": "3:58:33", "remaining_time": "7:16:10"} +{"current_steps": 4560, "total_steps": 12869, "loss": 0.962, "learning_rate": 8.155622683357056e-06, "epoch": 0.3543398865490714, "percentage": 35.43, "elapsed_time": "3:59:02", "remaining_time": "7:15:34"} +{"current_steps": 4570, "total_steps": 12869, "loss": 0.9076, "learning_rate": 8.14509099005261e-06, "epoch": 0.35511694770378427, "percentage": 35.51, "elapsed_time": "3:59:39", "remaining_time": "7:15:12"} +{"current_steps": 4580, "total_steps": 12869, "loss": 0.9316, "learning_rate": 8.13453615663e-06, "epoch": 0.35589400885849715, "percentage": 35.59, "elapsed_time": "4:00:09", "remaining_time": "7:14:38"} +{"current_steps": 4590, "total_steps": 12869, "loss": 0.9202, "learning_rate": 8.123958260746781e-06, "epoch": 0.35667107001321, "percentage": 35.67, "elapsed_time": "4:00:41", "remaining_time": "7:14:07"} +{"current_steps": 4600, "total_steps": 12869, "loss": 0.8332, "learning_rate": 8.113357380230198e-06, "epoch": 0.3574481311679229, "percentage": 35.74, "elapsed_time": "4:01:08", "remaining_time": "7:13:29"} +{"current_steps": 4610, "total_steps": 12869, "loss": 0.907, "learning_rate": 8.102733593076608e-06, "epoch": 0.3582251923226358, "percentage": 35.82, "elapsed_time": "4:01:33", "remaining_time": "7:12:45"} +{"current_steps": 4620, "total_steps": 12869, "loss": 0.892, "learning_rate": 8.092086977450896e-06, "epoch": 0.35900225347734865, "percentage": 35.9, "elapsed_time": "4:02:04", "remaining_time": "7:12:13"} +{"current_steps": 4630, "total_steps": 12869, "loss": 0.8221, "learning_rate": 8.081417611685914e-06, "epoch": 0.35977931463206153, "percentage": 35.98, "elapsed_time": "4:02:40", "remaining_time": "7:11:49"} +{"current_steps": 4640, "total_steps": 12869, "loss": 0.8765, "learning_rate": 8.0707255742819e-06, "epoch": 0.3605563757867744, "percentage": 36.06, "elapsed_time": "4:03:09", "remaining_time": "7:11:13"} +{"current_steps": 4650, "total_steps": 12869, "loss": 0.8406, "learning_rate": 8.060010943905894e-06, "epoch": 0.3613334369414873, "percentage": 36.13, "elapsed_time": "4:03:43", "remaining_time": "7:10:48"} +{"current_steps": 4660, "total_steps": 12869, "loss": 0.8282, "learning_rate": 8.049273799391171e-06, "epoch": 0.36211049809620016, "percentage": 36.21, "elapsed_time": "4:04:11", "remaining_time": "7:10:09"} +{"current_steps": 4670, "total_steps": 12869, "loss": 0.9325, "learning_rate": 8.038514219736648e-06, "epoch": 0.36288755925091304, "percentage": 36.29, "elapsed_time": "4:04:40", "remaining_time": "7:09:34"} +{"current_steps": 4680, "total_steps": 12869, "loss": 0.8662, "learning_rate": 8.027732284106316e-06, "epoch": 0.3636646204056259, "percentage": 36.37, "elapsed_time": "4:05:11", "remaining_time": "7:09:02"} +{"current_steps": 4690, "total_steps": 12869, "loss": 0.876, "learning_rate": 8.016928071828644e-06, "epoch": 0.3644416815603388, "percentage": 36.44, "elapsed_time": "4:05:41", "remaining_time": "7:08:28"} +{"current_steps": 4700, "total_steps": 12869, "loss": 0.8752, "learning_rate": 8.006101662396011e-06, "epoch": 0.36521874271505167, "percentage": 36.52, "elapsed_time": "4:06:10", "remaining_time": "7:07:53"} +{"current_steps": 4710, "total_steps": 12869, "loss": 0.8211, "learning_rate": 7.995253135464103e-06, "epoch": 0.36599580386976455, "percentage": 36.6, "elapsed_time": "4:06:44", "remaining_time": "7:07:25"} +{"current_steps": 4720, "total_steps": 12869, "loss": 0.8963, "learning_rate": 7.984382570851341e-06, "epoch": 0.3667728650244774, "percentage": 36.68, "elapsed_time": "4:07:16", "remaining_time": "7:06:54"} +{"current_steps": 4730, "total_steps": 12869, "loss": 0.8135, "learning_rate": 7.973490048538291e-06, "epoch": 0.3675499261791903, "percentage": 36.75, "elapsed_time": "4:07:45", "remaining_time": "7:06:18"} +{"current_steps": 4740, "total_steps": 12869, "loss": 0.8394, "learning_rate": 7.962575648667068e-06, "epoch": 0.3683269873339032, "percentage": 36.83, "elapsed_time": "4:08:12", "remaining_time": "7:05:40"} +{"current_steps": 4750, "total_steps": 12869, "loss": 0.8373, "learning_rate": 7.951639451540759e-06, "epoch": 0.36910404848861605, "percentage": 36.91, "elapsed_time": "4:08:40", "remaining_time": "7:05:03"} +{"current_steps": 4760, "total_steps": 12869, "loss": 0.8717, "learning_rate": 7.940681537622816e-06, "epoch": 0.36988110964332893, "percentage": 36.99, "elapsed_time": "4:09:07", "remaining_time": "7:04:24"} +{"current_steps": 4770, "total_steps": 12869, "loss": 0.8353, "learning_rate": 7.92970198753648e-06, "epoch": 0.3706581707980418, "percentage": 37.07, "elapsed_time": "4:09:39", "remaining_time": "7:03:54"} +{"current_steps": 4780, "total_steps": 12869, "loss": 0.8747, "learning_rate": 7.918700882064181e-06, "epoch": 0.3714352319527547, "percentage": 37.14, "elapsed_time": "4:10:15", "remaining_time": "7:03:30"} +{"current_steps": 4790, "total_steps": 12869, "loss": 0.8997, "learning_rate": 7.907678302146939e-06, "epoch": 0.37221229310746756, "percentage": 37.22, "elapsed_time": "4:10:45", "remaining_time": "7:02:56"} +{"current_steps": 4800, "total_steps": 12869, "loss": 0.8189, "learning_rate": 7.896634328883777e-06, "epoch": 0.37298935426218044, "percentage": 37.3, "elapsed_time": "4:11:17", "remaining_time": "7:02:26"} +{"current_steps": 4810, "total_steps": 12869, "loss": 0.8454, "learning_rate": 7.885569043531118e-06, "epoch": 0.3737664154168933, "percentage": 37.38, "elapsed_time": "4:11:49", "remaining_time": "7:01:55"} +{"current_steps": 4820, "total_steps": 12869, "loss": 0.8213, "learning_rate": 7.874482527502192e-06, "epoch": 0.3745434765716062, "percentage": 37.45, "elapsed_time": "4:12:22", "remaining_time": "7:01:26"} +{"current_steps": 4830, "total_steps": 12869, "loss": 0.8113, "learning_rate": 7.863374862366428e-06, "epoch": 0.37532053772631907, "percentage": 37.53, "elapsed_time": "4:12:54", "remaining_time": "7:00:56"} +{"current_steps": 4840, "total_steps": 12869, "loss": 0.8064, "learning_rate": 7.85224612984887e-06, "epoch": 0.37609759888103195, "percentage": 37.61, "elapsed_time": "4:13:32", "remaining_time": "7:00:35"} +{"current_steps": 4850, "total_steps": 12869, "loss": 0.8683, "learning_rate": 7.841096411829561e-06, "epoch": 0.3768746600357448, "percentage": 37.69, "elapsed_time": "4:14:07", "remaining_time": "7:00:11"} +{"current_steps": 4860, "total_steps": 12869, "loss": 0.7812, "learning_rate": 7.829925790342942e-06, "epoch": 0.3776517211904577, "percentage": 37.77, "elapsed_time": "4:14:42", "remaining_time": "6:59:44"} +{"current_steps": 4870, "total_steps": 12869, "loss": 0.8119, "learning_rate": 7.818734347577258e-06, "epoch": 0.3784287823451706, "percentage": 37.84, "elapsed_time": "4:15:13", "remaining_time": "6:59:12"} +{"current_steps": 4880, "total_steps": 12869, "loss": 0.8764, "learning_rate": 7.807522165873945e-06, "epoch": 0.37920584349988345, "percentage": 37.92, "elapsed_time": "4:15:45", "remaining_time": "6:58:41"} +{"current_steps": 4890, "total_steps": 12869, "loss": 0.7978, "learning_rate": 7.796289327727022e-06, "epoch": 0.37998290465459633, "percentage": 38.0, "elapsed_time": "4:16:22", "remaining_time": "6:58:18"} +{"current_steps": 4900, "total_steps": 12869, "loss": 0.8412, "learning_rate": 7.7850359157825e-06, "epoch": 0.3807599658093092, "percentage": 38.08, "elapsed_time": "4:16:53", "remaining_time": "6:57:47"} +{"current_steps": 4910, "total_steps": 12869, "loss": 0.8779, "learning_rate": 7.773762012837751e-06, "epoch": 0.3815370269640221, "percentage": 38.15, "elapsed_time": "4:17:27", "remaining_time": "6:57:20"} +{"current_steps": 4920, "total_steps": 12869, "loss": 0.8813, "learning_rate": 7.762467701840914e-06, "epoch": 0.38231408811873496, "percentage": 38.23, "elapsed_time": "4:18:02", "remaining_time": "6:56:54"} +{"current_steps": 4930, "total_steps": 12869, "loss": 0.7915, "learning_rate": 7.751153065890284e-06, "epoch": 0.38309114927344784, "percentage": 38.31, "elapsed_time": "4:18:30", "remaining_time": "6:56:17"} +{"current_steps": 4940, "total_steps": 12869, "loss": 0.8698, "learning_rate": 7.739818188233693e-06, "epoch": 0.3838682104281607, "percentage": 38.39, "elapsed_time": "4:18:58", "remaining_time": "6:55:40"} +{"current_steps": 4950, "total_steps": 12869, "loss": 0.8986, "learning_rate": 7.728463152267905e-06, "epoch": 0.3846452715828736, "percentage": 38.46, "elapsed_time": "4:19:29", "remaining_time": "6:55:08"} +{"current_steps": 4960, "total_steps": 12869, "loss": 0.836, "learning_rate": 7.717088041538e-06, "epoch": 0.38542233273758647, "percentage": 38.54, "elapsed_time": "4:20:01", "remaining_time": "6:54:36"} +{"current_steps": 4970, "total_steps": 12869, "loss": 0.905, "learning_rate": 7.705692939736754e-06, "epoch": 0.38619939389229935, "percentage": 38.62, "elapsed_time": "4:20:35", "remaining_time": "6:54:10"} +{"current_steps": 4980, "total_steps": 12869, "loss": 0.8877, "learning_rate": 7.694277930704035e-06, "epoch": 0.3869764550470122, "percentage": 38.7, "elapsed_time": "4:21:08", "remaining_time": "6:53:41"} +{"current_steps": 4990, "total_steps": 12869, "loss": 0.9017, "learning_rate": 7.682843098426173e-06, "epoch": 0.3877535162017251, "percentage": 38.78, "elapsed_time": "4:21:42", "remaining_time": "6:53:13"} +{"current_steps": 5000, "total_steps": 12869, "loss": 0.839, "learning_rate": 7.671388527035353e-06, "epoch": 0.388530577356438, "percentage": 38.85, "elapsed_time": "4:22:17", "remaining_time": "6:52:47"} +{"current_steps": 5010, "total_steps": 12869, "loss": 0.8551, "learning_rate": 7.659914300808987e-06, "epoch": 0.38930763851115086, "percentage": 38.93, "elapsed_time": "4:22:46", "remaining_time": "6:52:12"} +{"current_steps": 5020, "total_steps": 12869, "loss": 0.9367, "learning_rate": 7.6484205041691e-06, "epoch": 0.3900846996658637, "percentage": 39.01, "elapsed_time": "4:23:17", "remaining_time": "6:51:39"} +{"current_steps": 5030, "total_steps": 12869, "loss": 0.8439, "learning_rate": 7.63690722168171e-06, "epoch": 0.39086176082057655, "percentage": 39.09, "elapsed_time": "4:23:50", "remaining_time": "6:51:11"} +{"current_steps": 5040, "total_steps": 12869, "loss": 0.9143, "learning_rate": 7.625374538056196e-06, "epoch": 0.39163882197528943, "percentage": 39.16, "elapsed_time": "4:24:24", "remaining_time": "6:50:44"} +{"current_steps": 5050, "total_steps": 12869, "loss": 0.8488, "learning_rate": 7.61382253814469e-06, "epoch": 0.3924158831300023, "percentage": 39.24, "elapsed_time": "4:24:55", "remaining_time": "6:50:11"} +{"current_steps": 5060, "total_steps": 12869, "loss": 0.9244, "learning_rate": 7.6022513069414375e-06, "epoch": 0.3931929442847152, "percentage": 39.32, "elapsed_time": "4:25:23", "remaining_time": "6:49:34"} +{"current_steps": 5070, "total_steps": 12869, "loss": 0.7828, "learning_rate": 7.5906609295821785e-06, "epoch": 0.39397000543942806, "percentage": 39.4, "elapsed_time": "4:25:58", "remaining_time": "6:49:08"} +{"current_steps": 5080, "total_steps": 12869, "loss": 0.8343, "learning_rate": 7.57905149134353e-06, "epoch": 0.39474706659414094, "percentage": 39.47, "elapsed_time": "4:26:29", "remaining_time": "6:48:36"} +{"current_steps": 5090, "total_steps": 12869, "loss": 0.8029, "learning_rate": 7.567423077642342e-06, "epoch": 0.3955241277488538, "percentage": 39.55, "elapsed_time": "4:26:55", "remaining_time": "6:47:56"} +{"current_steps": 5100, "total_steps": 12869, "loss": 0.8595, "learning_rate": 7.555775774035077e-06, "epoch": 0.3963011889035667, "percentage": 39.63, "elapsed_time": "4:27:24", "remaining_time": "6:47:20"} +{"current_steps": 5110, "total_steps": 12869, "loss": 0.8058, "learning_rate": 7.544109666217186e-06, "epoch": 0.39707825005827957, "percentage": 39.71, "elapsed_time": "4:27:51", "remaining_time": "6:46:43"} +{"current_steps": 5120, "total_steps": 12869, "loss": 0.8203, "learning_rate": 7.532424840022468e-06, "epoch": 0.39785531121299245, "percentage": 39.79, "elapsed_time": "4:28:19", "remaining_time": "6:46:05"} +{"current_steps": 5130, "total_steps": 12869, "loss": 0.8766, "learning_rate": 7.520721381422444e-06, "epoch": 0.3986323723677053, "percentage": 39.86, "elapsed_time": "4:28:49", "remaining_time": "6:45:32"} +{"current_steps": 5140, "total_steps": 12869, "loss": 0.8252, "learning_rate": 7.5089993765257295e-06, "epoch": 0.3994094335224182, "percentage": 39.94, "elapsed_time": "4:29:23", "remaining_time": "6:45:05"} +{"current_steps": 5150, "total_steps": 12869, "loss": 0.8241, "learning_rate": 7.497258911577385e-06, "epoch": 0.4001864946771311, "percentage": 40.02, "elapsed_time": "4:29:54", "remaining_time": "6:44:32"} +{"current_steps": 5160, "total_steps": 12869, "loss": 0.8047, "learning_rate": 7.485500072958298e-06, "epoch": 0.40096355583184395, "percentage": 40.1, "elapsed_time": "4:30:25", "remaining_time": "6:44:01"} +{"current_steps": 5170, "total_steps": 12869, "loss": 0.8469, "learning_rate": 7.4737229471845384e-06, "epoch": 0.40174061698655683, "percentage": 40.17, "elapsed_time": "4:30:54", "remaining_time": "6:43:26"} +{"current_steps": 5180, "total_steps": 12869, "loss": 0.8986, "learning_rate": 7.46192762090673e-06, "epoch": 0.4025176781412697, "percentage": 40.25, "elapsed_time": "4:31:24", "remaining_time": "6:42:52"} +{"current_steps": 5190, "total_steps": 12869, "loss": 0.8572, "learning_rate": 7.450114180909396e-06, "epoch": 0.4032947392959826, "percentage": 40.33, "elapsed_time": "4:31:52", "remaining_time": "6:42:16"} +{"current_steps": 5200, "total_steps": 12869, "loss": 0.8348, "learning_rate": 7.438282714110346e-06, "epoch": 0.40407180045069546, "percentage": 40.41, "elapsed_time": "4:32:24", "remaining_time": "6:41:45"} +{"current_steps": 5210, "total_steps": 12869, "loss": 0.817, "learning_rate": 7.4264333075600094e-06, "epoch": 0.40484886160540834, "percentage": 40.48, "elapsed_time": "4:32:55", "remaining_time": "6:41:13"} +{"current_steps": 5220, "total_steps": 12869, "loss": 0.773, "learning_rate": 7.414566048440815e-06, "epoch": 0.4056259227601212, "percentage": 40.56, "elapsed_time": "4:33:31", "remaining_time": "6:40:47"} +{"current_steps": 5230, "total_steps": 12869, "loss": 0.8406, "learning_rate": 7.4026810240665455e-06, "epoch": 0.4064029839148341, "percentage": 40.64, "elapsed_time": "4:34:03", "remaining_time": "6:40:17"} +{"current_steps": 5240, "total_steps": 12869, "loss": 0.8299, "learning_rate": 7.390778321881684e-06, "epoch": 0.40718004506954697, "percentage": 40.72, "elapsed_time": "4:34:30", "remaining_time": "6:39:39"} +{"current_steps": 5250, "total_steps": 12869, "loss": 0.8443, "learning_rate": 7.378858029460785e-06, "epoch": 0.40795710622425985, "percentage": 40.8, "elapsed_time": "4:34:58", "remaining_time": "6:39:02"} +{"current_steps": 5260, "total_steps": 12869, "loss": 0.8563, "learning_rate": 7.366920234507819e-06, "epoch": 0.4087341673789727, "percentage": 40.87, "elapsed_time": "4:35:26", "remaining_time": "6:38:26"} +{"current_steps": 5270, "total_steps": 12869, "loss": 0.7995, "learning_rate": 7.354965024855536e-06, "epoch": 0.4095112285336856, "percentage": 40.95, "elapsed_time": "4:35:59", "remaining_time": "6:37:57"} +{"current_steps": 5280, "total_steps": 12869, "loss": 0.8513, "learning_rate": 7.342992488464813e-06, "epoch": 0.4102882896883985, "percentage": 41.03, "elapsed_time": "4:36:33", "remaining_time": "6:37:29"} +{"current_steps": 5290, "total_steps": 12869, "loss": 0.818, "learning_rate": 7.331002713424012e-06, "epoch": 0.41106535084311135, "percentage": 41.11, "elapsed_time": "4:37:05", "remaining_time": "6:36:59"} +{"current_steps": 5300, "total_steps": 12869, "loss": 0.8724, "learning_rate": 7.3189957879483235e-06, "epoch": 0.41184241199782423, "percentage": 41.18, "elapsed_time": "4:37:35", "remaining_time": "6:36:25"} +{"current_steps": 5310, "total_steps": 12869, "loss": 0.8836, "learning_rate": 7.3069718003791276e-06, "epoch": 0.4126194731525371, "percentage": 41.26, "elapsed_time": "4:38:06", "remaining_time": "6:35:53"} +{"current_steps": 5320, "total_steps": 12869, "loss": 0.8408, "learning_rate": 7.29493083918334e-06, "epoch": 0.41339653430725, "percentage": 41.34, "elapsed_time": "4:38:36", "remaining_time": "6:35:20"} +{"current_steps": 5330, "total_steps": 12869, "loss": 0.796, "learning_rate": 7.282872992952757e-06, "epoch": 0.41417359546196286, "percentage": 41.42, "elapsed_time": "4:39:05", "remaining_time": "6:34:46"} +{"current_steps": 5340, "total_steps": 12869, "loss": 0.7622, "learning_rate": 7.270798350403407e-06, "epoch": 0.41495065661667574, "percentage": 41.5, "elapsed_time": "4:39:36", "remaining_time": "6:34:13"} +{"current_steps": 5350, "total_steps": 12869, "loss": 0.8264, "learning_rate": 7.2587070003749015e-06, "epoch": 0.4157277177713886, "percentage": 41.57, "elapsed_time": "4:40:11", "remaining_time": "6:33:47"} +{"current_steps": 5360, "total_steps": 12869, "loss": 0.7943, "learning_rate": 7.246599031829775e-06, "epoch": 0.4165047789261015, "percentage": 41.65, "elapsed_time": "4:40:43", "remaining_time": "6:33:17"} +{"current_steps": 5370, "total_steps": 12869, "loss": 0.8368, "learning_rate": 7.234474533852834e-06, "epoch": 0.41728184008081437, "percentage": 41.73, "elapsed_time": "4:41:17", "remaining_time": "6:32:48"} +{"current_steps": 5380, "total_steps": 12869, "loss": 0.8416, "learning_rate": 7.222333595650502e-06, "epoch": 0.41805890123552725, "percentage": 41.81, "elapsed_time": "4:41:43", "remaining_time": "6:32:10"} +{"current_steps": 5390, "total_steps": 12869, "loss": 0.8347, "learning_rate": 7.210176306550161e-06, "epoch": 0.4188359623902401, "percentage": 41.88, "elapsed_time": "4:42:17", "remaining_time": "6:31:42"} +{"current_steps": 5400, "total_steps": 12869, "loss": 0.8079, "learning_rate": 7.198002755999495e-06, "epoch": 0.419613023544953, "percentage": 41.96, "elapsed_time": "4:42:46", "remaining_time": "6:31:07"} +{"current_steps": 5410, "total_steps": 12869, "loss": 0.8434, "learning_rate": 7.185813033565832e-06, "epoch": 0.4203900846996659, "percentage": 42.04, "elapsed_time": "4:43:11", "remaining_time": "6:30:27"} +{"current_steps": 5420, "total_steps": 12869, "loss": 0.8578, "learning_rate": 7.1736072289354875e-06, "epoch": 0.42116714585437875, "percentage": 42.12, "elapsed_time": "4:43:46", "remaining_time": "6:29:59"} +{"current_steps": 5430, "total_steps": 12869, "loss": 0.7804, "learning_rate": 7.161385431913098e-06, "epoch": 0.42194420700909163, "percentage": 42.19, "elapsed_time": "4:44:16", "remaining_time": "6:29:27"} +{"current_steps": 5440, "total_steps": 12869, "loss": 0.8248, "learning_rate": 7.149147732420971e-06, "epoch": 0.4227212681638045, "percentage": 42.27, "elapsed_time": "4:44:52", "remaining_time": "6:29:01"} +{"current_steps": 5450, "total_steps": 12869, "loss": 0.8057, "learning_rate": 7.1368942204984094e-06, "epoch": 0.4234983293185174, "percentage": 42.35, "elapsed_time": "4:45:31", "remaining_time": "6:28:40"} +{"current_steps": 5460, "total_steps": 12869, "loss": 0.8439, "learning_rate": 7.124624986301062e-06, "epoch": 0.42427539047323026, "percentage": 42.43, "elapsed_time": "4:46:00", "remaining_time": "6:28:05"} +{"current_steps": 5470, "total_steps": 12869, "loss": 0.8744, "learning_rate": 7.112340120100255e-06, "epoch": 0.42505245162794314, "percentage": 42.51, "elapsed_time": "4:46:28", "remaining_time": "6:27:30"} +{"current_steps": 5480, "total_steps": 12869, "loss": 0.8211, "learning_rate": 7.100039712282323e-06, "epoch": 0.425829512782656, "percentage": 42.58, "elapsed_time": "4:46:58", "remaining_time": "6:26:56"} +{"current_steps": 5490, "total_steps": 12869, "loss": 0.838, "learning_rate": 7.0877238533479535e-06, "epoch": 0.4266065739373689, "percentage": 42.66, "elapsed_time": "4:47:34", "remaining_time": "6:26:30"} +{"current_steps": 5500, "total_steps": 12869, "loss": 0.8409, "learning_rate": 7.075392633911513e-06, "epoch": 0.42738363509208177, "percentage": 42.74, "elapsed_time": "4:48:02", "remaining_time": "6:25:55"} +{"current_steps": 5510, "total_steps": 12869, "loss": 0.8555, "learning_rate": 7.063046144700383e-06, "epoch": 0.42816069624679465, "percentage": 42.82, "elapsed_time": "4:48:33", "remaining_time": "6:25:23"} +{"current_steps": 5520, "total_steps": 12869, "loss": 0.822, "learning_rate": 7.050684476554299e-06, "epoch": 0.4289377574015075, "percentage": 42.89, "elapsed_time": "4:49:06", "remaining_time": "6:24:53"} +{"current_steps": 5530, "total_steps": 12869, "loss": 0.8538, "learning_rate": 7.038307720424668e-06, "epoch": 0.4297148185562204, "percentage": 42.97, "elapsed_time": "4:49:39", "remaining_time": "6:24:24"} +{"current_steps": 5540, "total_steps": 12869, "loss": 0.7909, "learning_rate": 7.025915967373911e-06, "epoch": 0.4304918797109332, "percentage": 43.05, "elapsed_time": "4:50:12", "remaining_time": "6:23:55"} +{"current_steps": 5550, "total_steps": 12869, "loss": 0.7084, "learning_rate": 7.013509308574788e-06, "epoch": 0.4312689408656461, "percentage": 43.13, "elapsed_time": "4:50:51", "remaining_time": "6:23:33"} +{"current_steps": 5560, "total_steps": 12869, "loss": 0.8192, "learning_rate": 7.001087835309734e-06, "epoch": 0.432046002020359, "percentage": 43.2, "elapsed_time": "4:51:18", "remaining_time": "6:22:56"} +{"current_steps": 5570, "total_steps": 12869, "loss": 0.7937, "learning_rate": 6.988651638970175e-06, "epoch": 0.43282306317507185, "percentage": 43.28, "elapsed_time": "4:51:59", "remaining_time": "6:22:37"} +{"current_steps": 5580, "total_steps": 12869, "loss": 0.8409, "learning_rate": 6.976200811055867e-06, "epoch": 0.43360012432978473, "percentage": 43.36, "elapsed_time": "4:52:34", "remaining_time": "6:22:11"} +{"current_steps": 5590, "total_steps": 12869, "loss": 0.8, "learning_rate": 6.963735443174213e-06, "epoch": 0.4343771854844976, "percentage": 43.44, "elapsed_time": "4:53:07", "remaining_time": "6:21:41"} +{"current_steps": 5600, "total_steps": 12869, "loss": 0.8202, "learning_rate": 6.9512556270395996e-06, "epoch": 0.4351542466392105, "percentage": 43.52, "elapsed_time": "4:53:38", "remaining_time": "6:21:09"} +{"current_steps": 5610, "total_steps": 12869, "loss": 0.7907, "learning_rate": 6.938761454472718e-06, "epoch": 0.43593130779392336, "percentage": 43.59, "elapsed_time": "4:54:07", "remaining_time": "6:20:35"} +{"current_steps": 5620, "total_steps": 12869, "loss": 0.7455, "learning_rate": 6.926253017399882e-06, "epoch": 0.43670836894863624, "percentage": 43.67, "elapsed_time": "4:54:35", "remaining_time": "6:19:58"} +{"current_steps": 5630, "total_steps": 12869, "loss": 0.7798, "learning_rate": 6.913730407852359e-06, "epoch": 0.4374854301033491, "percentage": 43.75, "elapsed_time": "4:55:06", "remaining_time": "6:19:27"} +{"current_steps": 5640, "total_steps": 12869, "loss": 0.86, "learning_rate": 6.9011937179656956e-06, "epoch": 0.438262491258062, "percentage": 43.83, "elapsed_time": "4:55:33", "remaining_time": "6:18:49"} +{"current_steps": 5650, "total_steps": 12869, "loss": 0.8565, "learning_rate": 6.888643039979025e-06, "epoch": 0.43903955241277487, "percentage": 43.9, "elapsed_time": "4:55:58", "remaining_time": "6:18:09"} +{"current_steps": 5660, "total_steps": 12869, "loss": 0.8222, "learning_rate": 6.8760784662344085e-06, "epoch": 0.43981661356748775, "percentage": 43.98, "elapsed_time": "4:56:26", "remaining_time": "6:17:34"} +{"current_steps": 5670, "total_steps": 12869, "loss": 0.7994, "learning_rate": 6.863500089176141e-06, "epoch": 0.4405936747222006, "percentage": 44.06, "elapsed_time": "4:57:03", "remaining_time": "6:17:09"} +{"current_steps": 5680, "total_steps": 12869, "loss": 0.8085, "learning_rate": 6.850908001350076e-06, "epoch": 0.4413707358769135, "percentage": 44.14, "elapsed_time": "4:57:34", "remaining_time": "6:16:38"} +{"current_steps": 5690, "total_steps": 12869, "loss": 0.8206, "learning_rate": 6.838302295402944e-06, "epoch": 0.4421477970316264, "percentage": 44.21, "elapsed_time": "4:58:03", "remaining_time": "6:16:03"} +{"current_steps": 5700, "total_steps": 12869, "loss": 0.7733, "learning_rate": 6.825683064081673e-06, "epoch": 0.44292485818633925, "percentage": 44.29, "elapsed_time": "4:58:26", "remaining_time": "6:15:21"} +{"current_steps": 5710, "total_steps": 12869, "loss": 0.7684, "learning_rate": 6.813050400232705e-06, "epoch": 0.44370191934105213, "percentage": 44.37, "elapsed_time": "4:58:59", "remaining_time": "6:14:51"} +{"current_steps": 5720, "total_steps": 12869, "loss": 0.8003, "learning_rate": 6.800404396801309e-06, "epoch": 0.444478980495765, "percentage": 44.45, "elapsed_time": "4:59:33", "remaining_time": "6:14:23"} +{"current_steps": 5730, "total_steps": 12869, "loss": 0.8037, "learning_rate": 6.787745146830903e-06, "epoch": 0.4452560416504779, "percentage": 44.53, "elapsed_time": "5:00:04", "remaining_time": "6:13:52"} +{"current_steps": 5740, "total_steps": 12869, "loss": 0.7318, "learning_rate": 6.775072743462368e-06, "epoch": 0.44603310280519076, "percentage": 44.6, "elapsed_time": "5:00:41", "remaining_time": "6:13:27"} +{"current_steps": 5750, "total_steps": 12869, "loss": 0.7842, "learning_rate": 6.762387279933355e-06, "epoch": 0.44681016395990364, "percentage": 44.68, "elapsed_time": "5:01:16", "remaining_time": "6:13:00"} +{"current_steps": 5760, "total_steps": 12869, "loss": 0.7452, "learning_rate": 6.749688849577616e-06, "epoch": 0.4475872251146165, "percentage": 44.76, "elapsed_time": "5:01:48", "remaining_time": "6:12:29"} +{"current_steps": 5770, "total_steps": 12869, "loss": 0.7755, "learning_rate": 6.736977545824299e-06, "epoch": 0.4483642862693294, "percentage": 44.84, "elapsed_time": "5:02:22", "remaining_time": "6:12:01"} +{"current_steps": 5780, "total_steps": 12869, "loss": 0.7483, "learning_rate": 6.72425346219727e-06, "epoch": 0.44914134742404227, "percentage": 44.91, "elapsed_time": "5:02:50", "remaining_time": "6:11:25"} +{"current_steps": 5790, "total_steps": 12869, "loss": 0.8714, "learning_rate": 6.711516692314426e-06, "epoch": 0.44991840857875515, "percentage": 44.99, "elapsed_time": "5:03:14", "remaining_time": "6:10:45"} +{"current_steps": 5800, "total_steps": 12869, "loss": 0.8087, "learning_rate": 6.698767329887001e-06, "epoch": 0.450695469733468, "percentage": 45.07, "elapsed_time": "5:03:50", "remaining_time": "6:10:19"} +{"current_steps": 5810, "total_steps": 12869, "loss": 0.7593, "learning_rate": 6.686005468718879e-06, "epoch": 0.4514725308881809, "percentage": 45.15, "elapsed_time": "5:04:19", "remaining_time": "6:09:45"} +{"current_steps": 5820, "total_steps": 12869, "loss": 0.744, "learning_rate": 6.673231202705906e-06, "epoch": 0.4522495920428938, "percentage": 45.22, "elapsed_time": "5:04:52", "remaining_time": "6:09:15"} +{"current_steps": 5830, "total_steps": 12869, "loss": 0.7233, "learning_rate": 6.660444625835194e-06, "epoch": 0.45302665319760665, "percentage": 45.3, "elapsed_time": "5:05:20", "remaining_time": "6:08:40"} +{"current_steps": 5840, "total_steps": 12869, "loss": 0.7726, "learning_rate": 6.647645832184437e-06, "epoch": 0.45380371435231953, "percentage": 45.38, "elapsed_time": "5:05:53", "remaining_time": "6:08:10"} +{"current_steps": 5850, "total_steps": 12869, "loss": 0.7414, "learning_rate": 6.634834915921211e-06, "epoch": 0.4545807755070324, "percentage": 45.46, "elapsed_time": "5:06:27", "remaining_time": "6:07:42"} +{"current_steps": 5860, "total_steps": 12869, "loss": 0.7431, "learning_rate": 6.6220119713022855e-06, "epoch": 0.4553578366617453, "percentage": 45.54, "elapsed_time": "5:07:03", "remaining_time": "6:07:15"} +{"current_steps": 5870, "total_steps": 12869, "loss": 0.8191, "learning_rate": 6.609177092672927e-06, "epoch": 0.45613489781645816, "percentage": 45.61, "elapsed_time": "5:07:35", "remaining_time": "6:06:45"} +{"current_steps": 5880, "total_steps": 12869, "loss": 0.7609, "learning_rate": 6.596330374466212e-06, "epoch": 0.45691195897117104, "percentage": 45.69, "elapsed_time": "5:08:09", "remaining_time": "6:06:16"} +{"current_steps": 5890, "total_steps": 12869, "loss": 0.7252, "learning_rate": 6.5834719112023215e-06, "epoch": 0.4576890201258839, "percentage": 45.77, "elapsed_time": "5:08:39", "remaining_time": "6:05:43"} +{"current_steps": 5900, "total_steps": 12869, "loss": 0.8437, "learning_rate": 6.570601797487854e-06, "epoch": 0.4584660812805968, "percentage": 45.85, "elapsed_time": "5:09:04", "remaining_time": "6:05:04"} +{"current_steps": 5910, "total_steps": 12869, "loss": 0.8236, "learning_rate": 6.557720128015127e-06, "epoch": 0.45924314243530967, "percentage": 45.92, "elapsed_time": "5:09:39", "remaining_time": "6:04:37"} +{"current_steps": 5920, "total_steps": 12869, "loss": 0.7797, "learning_rate": 6.544826997561479e-06, "epoch": 0.46002020359002255, "percentage": 46.0, "elapsed_time": "5:10:05", "remaining_time": "6:03:59"} +{"current_steps": 5930, "total_steps": 12869, "loss": 0.751, "learning_rate": 6.531922500988572e-06, "epoch": 0.4607972647447354, "percentage": 46.08, "elapsed_time": "5:10:38", "remaining_time": "6:03:29"} +{"current_steps": 5940, "total_steps": 12869, "loss": 0.7701, "learning_rate": 6.519006733241697e-06, "epoch": 0.4615743258994483, "percentage": 46.16, "elapsed_time": "5:11:11", "remaining_time": "6:03:00"} +{"current_steps": 5950, "total_steps": 12869, "loss": 0.7682, "learning_rate": 6.506079789349074e-06, "epoch": 0.4623513870541612, "percentage": 46.24, "elapsed_time": "5:11:45", "remaining_time": "6:02:32"} +{"current_steps": 5960, "total_steps": 12869, "loss": 0.8537, "learning_rate": 6.493141764421145e-06, "epoch": 0.46312844820887406, "percentage": 46.31, "elapsed_time": "5:12:11", "remaining_time": "6:01:54"} +{"current_steps": 5970, "total_steps": 12869, "loss": 0.7729, "learning_rate": 6.48019275364989e-06, "epoch": 0.46390550936358693, "percentage": 46.39, "elapsed_time": "5:12:44", "remaining_time": "6:01:25"} +{"current_steps": 5980, "total_steps": 12869, "loss": 0.7959, "learning_rate": 6.46723285230811e-06, "epoch": 0.4646825705182998, "percentage": 46.47, "elapsed_time": "5:13:15", "remaining_time": "6:00:52"} +{"current_steps": 5990, "total_steps": 12869, "loss": 0.771, "learning_rate": 6.454262155748741e-06, "epoch": 0.4654596316730127, "percentage": 46.55, "elapsed_time": "5:13:43", "remaining_time": "6:00:16"} +{"current_steps": 6000, "total_steps": 12869, "loss": 0.8038, "learning_rate": 6.4412807594041396e-06, "epoch": 0.46623669282772556, "percentage": 46.62, "elapsed_time": "5:14:11", "remaining_time": "5:59:42"} +{"current_steps": 6010, "total_steps": 12869, "loss": 0.7784, "learning_rate": 6.428288758785387e-06, "epoch": 0.46701375398243844, "percentage": 46.7, "elapsed_time": "5:14:43", "remaining_time": "5:59:10"} +{"current_steps": 6020, "total_steps": 12869, "loss": 0.7705, "learning_rate": 6.415286249481591e-06, "epoch": 0.4677908151371513, "percentage": 46.78, "elapsed_time": "5:15:11", "remaining_time": "5:58:36"} +{"current_steps": 6030, "total_steps": 12869, "loss": 0.7182, "learning_rate": 6.402273327159169e-06, "epoch": 0.4685678762918642, "percentage": 46.86, "elapsed_time": "5:15:43", "remaining_time": "5:58:05"} +{"current_steps": 6040, "total_steps": 12869, "loss": 0.7736, "learning_rate": 6.389250087561162e-06, "epoch": 0.46934493744657707, "percentage": 46.93, "elapsed_time": "5:16:22", "remaining_time": "5:57:42"} +{"current_steps": 6050, "total_steps": 12869, "loss": 0.7431, "learning_rate": 6.376216626506513e-06, "epoch": 0.47012199860128995, "percentage": 47.01, "elapsed_time": "5:16:54", "remaining_time": "5:57:11"} +{"current_steps": 6060, "total_steps": 12869, "loss": 0.7973, "learning_rate": 6.363173039889373e-06, "epoch": 0.4708990597560028, "percentage": 47.09, "elapsed_time": "5:17:31", "remaining_time": "5:56:46"} +{"current_steps": 6070, "total_steps": 12869, "loss": 0.7898, "learning_rate": 6.350119423678391e-06, "epoch": 0.47167612091071565, "percentage": 47.17, "elapsed_time": "5:17:59", "remaining_time": "5:56:11"} +{"current_steps": 6080, "total_steps": 12869, "loss": 0.7576, "learning_rate": 6.3370558739160096e-06, "epoch": 0.4724531820654285, "percentage": 47.25, "elapsed_time": "5:18:35", "remaining_time": "5:55:44"} +{"current_steps": 6090, "total_steps": 12869, "loss": 0.7725, "learning_rate": 6.32398248671776e-06, "epoch": 0.4732302432201414, "percentage": 47.32, "elapsed_time": "5:19:06", "remaining_time": "5:55:12"} +{"current_steps": 6100, "total_steps": 12869, "loss": 0.8273, "learning_rate": 6.310899358271549e-06, "epoch": 0.4740073043748543, "percentage": 47.4, "elapsed_time": "5:19:43", "remaining_time": "5:54:47"} +{"current_steps": 6110, "total_steps": 12869, "loss": 0.7365, "learning_rate": 6.2978065848369594e-06, "epoch": 0.47478436552956715, "percentage": 47.48, "elapsed_time": "5:20:14", "remaining_time": "5:54:15"} +{"current_steps": 6120, "total_steps": 12869, "loss": 0.7739, "learning_rate": 6.284704262744532e-06, "epoch": 0.47556142668428003, "percentage": 47.56, "elapsed_time": "5:20:48", "remaining_time": "5:53:47"} +{"current_steps": 6130, "total_steps": 12869, "loss": 0.769, "learning_rate": 6.271592488395064e-06, "epoch": 0.4763384878389929, "percentage": 47.63, "elapsed_time": "5:21:22", "remaining_time": "5:53:18"} +{"current_steps": 6140, "total_steps": 12869, "loss": 0.801, "learning_rate": 6.2584713582589015e-06, "epoch": 0.4771155489937058, "percentage": 47.71, "elapsed_time": "5:21:52", "remaining_time": "5:52:44"} +{"current_steps": 6150, "total_steps": 12869, "loss": 0.7343, "learning_rate": 6.2453409688752244e-06, "epoch": 0.47789261014841866, "percentage": 47.79, "elapsed_time": "5:22:27", "remaining_time": "5:52:17"} +{"current_steps": 6160, "total_steps": 12869, "loss": 0.7774, "learning_rate": 6.232201416851332e-06, "epoch": 0.47866967130313154, "percentage": 47.87, "elapsed_time": "5:23:06", "remaining_time": "5:51:54"} +{"current_steps": 6170, "total_steps": 12869, "loss": 0.8151, "learning_rate": 6.219052798861948e-06, "epoch": 0.4794467324578444, "percentage": 47.94, "elapsed_time": "5:23:33", "remaining_time": "5:51:17"} +{"current_steps": 6180, "total_steps": 12869, "loss": 0.7851, "learning_rate": 6.205895211648489e-06, "epoch": 0.4802237936125573, "percentage": 48.02, "elapsed_time": "5:24:04", "remaining_time": "5:50:46"} +{"current_steps": 6190, "total_steps": 12869, "loss": 0.8465, "learning_rate": 6.192728752018373e-06, "epoch": 0.48100085476727017, "percentage": 48.1, "elapsed_time": "5:24:32", "remaining_time": "5:50:11"} +{"current_steps": 6200, "total_steps": 12869, "loss": 0.7675, "learning_rate": 6.179553516844291e-06, "epoch": 0.48177791592198305, "percentage": 48.18, "elapsed_time": "5:24:59", "remaining_time": "5:49:34"} +{"current_steps": 6210, "total_steps": 12869, "loss": 0.7459, "learning_rate": 6.1663696030635e-06, "epoch": 0.4825549770766959, "percentage": 48.26, "elapsed_time": "5:25:39", "remaining_time": "5:49:11"} +{"current_steps": 6220, "total_steps": 12869, "loss": 0.7385, "learning_rate": 6.153177107677112e-06, "epoch": 0.4833320382314088, "percentage": 48.33, "elapsed_time": "5:26:13", "remaining_time": "5:48:43"} +{"current_steps": 6230, "total_steps": 12869, "loss": 0.7594, "learning_rate": 6.139976127749381e-06, "epoch": 0.4841090993861217, "percentage": 48.41, "elapsed_time": "5:26:47", "remaining_time": "5:48:14"} +{"current_steps": 6240, "total_steps": 12869, "loss": 0.7504, "learning_rate": 6.126766760406982e-06, "epoch": 0.48488616054083455, "percentage": 48.49, "elapsed_time": "5:27:18", "remaining_time": "5:47:43"} +{"current_steps": 6250, "total_steps": 12869, "loss": 0.8189, "learning_rate": 6.1135491028383e-06, "epoch": 0.48566322169554743, "percentage": 48.57, "elapsed_time": "5:27:46", "remaining_time": "5:47:07"} +{"current_steps": 6260, "total_steps": 12869, "loss": 0.8037, "learning_rate": 6.100323252292721e-06, "epoch": 0.4864402828502603, "percentage": 48.64, "elapsed_time": "5:28:12", "remaining_time": "5:46:30"} +{"current_steps": 6270, "total_steps": 12869, "loss": 0.7396, "learning_rate": 6.087089306079907e-06, "epoch": 0.4872173440049732, "percentage": 48.72, "elapsed_time": "5:28:47", "remaining_time": "5:46:02"} +{"current_steps": 6280, "total_steps": 12869, "loss": 0.7712, "learning_rate": 6.073847361569085e-06, "epoch": 0.48799440515968606, "percentage": 48.8, "elapsed_time": "5:29:20", "remaining_time": "5:45:33"} +{"current_steps": 6290, "total_steps": 12869, "loss": 0.7744, "learning_rate": 6.06059751618833e-06, "epoch": 0.48877146631439894, "percentage": 48.88, "elapsed_time": "5:29:55", "remaining_time": "5:45:05"} +{"current_steps": 6300, "total_steps": 12869, "loss": 0.739, "learning_rate": 6.047339867423849e-06, "epoch": 0.4895485274691118, "percentage": 48.95, "elapsed_time": "5:30:29", "remaining_time": "5:44:35"} +{"current_steps": 6310, "total_steps": 12869, "loss": 0.7921, "learning_rate": 6.034074512819259e-06, "epoch": 0.4903255886238247, "percentage": 49.03, "elapsed_time": "5:31:01", "remaining_time": "5:44:05"} +{"current_steps": 6320, "total_steps": 12869, "loss": 0.7627, "learning_rate": 6.020801549974879e-06, "epoch": 0.49110264977853757, "percentage": 49.11, "elapsed_time": "5:31:28", "remaining_time": "5:43:28"} +{"current_steps": 6330, "total_steps": 12869, "loss": 0.6908, "learning_rate": 6.007521076546999e-06, "epoch": 0.49187971093325045, "percentage": 49.19, "elapsed_time": "5:32:05", "remaining_time": "5:43:03"} +{"current_steps": 6340, "total_steps": 12869, "loss": 0.6984, "learning_rate": 5.994233190247174e-06, "epoch": 0.4926567720879633, "percentage": 49.27, "elapsed_time": "5:32:36", "remaining_time": "5:42:31"} +{"current_steps": 6350, "total_steps": 12869, "loss": 0.7312, "learning_rate": 5.9809379888414975e-06, "epoch": 0.4934338332426762, "percentage": 49.34, "elapsed_time": "5:33:04", "remaining_time": "5:41:56"} +{"current_steps": 6360, "total_steps": 12869, "loss": 0.739, "learning_rate": 5.967635570149881e-06, "epoch": 0.4942108943973891, "percentage": 49.42, "elapsed_time": "5:33:32", "remaining_time": "5:41:21"} +{"current_steps": 6370, "total_steps": 12869, "loss": 0.7115, "learning_rate": 5.9543260320453445e-06, "epoch": 0.49498795555210195, "percentage": 49.5, "elapsed_time": "5:34:01", "remaining_time": "5:40:47"} +{"current_steps": 6380, "total_steps": 12869, "loss": 0.7313, "learning_rate": 5.941009472453283e-06, "epoch": 0.49576501670681483, "percentage": 49.58, "elapsed_time": "5:34:31", "remaining_time": "5:40:14"} +{"current_steps": 6390, "total_steps": 12869, "loss": 0.7689, "learning_rate": 5.927685989350755e-06, "epoch": 0.4965420778615277, "percentage": 49.65, "elapsed_time": "5:34:57", "remaining_time": "5:39:37"} +{"current_steps": 6400, "total_steps": 12869, "loss": 0.7209, "learning_rate": 5.914355680765757e-06, "epoch": 0.4973191390162406, "percentage": 49.73, "elapsed_time": "5:35:31", "remaining_time": "5:39:08"} +{"current_steps": 6410, "total_steps": 12869, "loss": 0.7151, "learning_rate": 5.901018644776509e-06, "epoch": 0.49809620017095346, "percentage": 49.81, "elapsed_time": "5:35:59", "remaining_time": "5:38:33"} +{"current_steps": 6420, "total_steps": 12869, "loss": 0.768, "learning_rate": 5.8876749795107214e-06, "epoch": 0.49887326132566634, "percentage": 49.89, "elapsed_time": "5:36:32", "remaining_time": "5:38:03"} +{"current_steps": 6430, "total_steps": 12869, "loss": 0.8139, "learning_rate": 5.874324783144885e-06, "epoch": 0.4996503224803792, "percentage": 49.97, "elapsed_time": "5:37:00", "remaining_time": "5:37:28"} +{"current_steps": 6440, "total_steps": 12869, "loss": 0.6869, "learning_rate": 5.860968153903542e-06, "epoch": 0.5004273836350921, "percentage": 50.04, "elapsed_time": "5:37:32", "remaining_time": "5:36:57"} +{"current_steps": 6450, "total_steps": 12869, "loss": 0.747, "learning_rate": 5.847605190058563e-06, "epoch": 0.501204444789805, "percentage": 50.12, "elapsed_time": "5:38:11", "remaining_time": "5:36:34"} +{"current_steps": 6460, "total_steps": 12869, "loss": 0.7425, "learning_rate": 5.8342359899284286e-06, "epoch": 0.5019815059445178, "percentage": 50.2, "elapsed_time": "5:38:37", "remaining_time": "5:35:57"} +{"current_steps": 6470, "total_steps": 12869, "loss": 0.7474, "learning_rate": 5.8208606518775e-06, "epoch": 0.5027585670992307, "percentage": 50.28, "elapsed_time": "5:39:08", "remaining_time": "5:35:25"} +{"current_steps": 6480, "total_steps": 12869, "loss": 0.7354, "learning_rate": 5.807479274315302e-06, "epoch": 0.5035356282539436, "percentage": 50.35, "elapsed_time": "5:39:39", "remaining_time": "5:34:52"} +{"current_steps": 6490, "total_steps": 12869, "loss": 0.7693, "learning_rate": 5.79409195569579e-06, "epoch": 0.5043126894086565, "percentage": 50.43, "elapsed_time": "5:40:15", "remaining_time": "5:34:25"} +{"current_steps": 6500, "total_steps": 12869, "loss": 0.7159, "learning_rate": 5.780698794516636e-06, "epoch": 0.5050897505633694, "percentage": 50.51, "elapsed_time": "5:40:41", "remaining_time": "5:33:49"} +{"current_steps": 6510, "total_steps": 12869, "loss": 0.7258, "learning_rate": 5.767299889318496e-06, "epoch": 0.5058668117180822, "percentage": 50.59, "elapsed_time": "5:41:07", "remaining_time": "5:33:12"} +{"current_steps": 6520, "total_steps": 12869, "loss": 0.831, "learning_rate": 5.75389533868429e-06, "epoch": 0.5066438728727951, "percentage": 50.66, "elapsed_time": "5:41:34", "remaining_time": "5:32:36"} +{"current_steps": 6530, "total_steps": 12869, "loss": 0.6962, "learning_rate": 5.7404852412384725e-06, "epoch": 0.507420934027508, "percentage": 50.74, "elapsed_time": "5:42:04", "remaining_time": "5:32:04"} +{"current_steps": 6540, "total_steps": 12869, "loss": 0.7612, "learning_rate": 5.72706969564631e-06, "epoch": 0.5081979951822209, "percentage": 50.82, "elapsed_time": "5:42:33", "remaining_time": "5:31:30"} +{"current_steps": 6550, "total_steps": 12869, "loss": 0.7464, "learning_rate": 5.713648800613154e-06, "epoch": 0.5089750563369337, "percentage": 50.9, "elapsed_time": "5:43:03", "remaining_time": "5:30:57"} +{"current_steps": 6560, "total_steps": 12869, "loss": 0.784, "learning_rate": 5.700222654883712e-06, "epoch": 0.5097521174916466, "percentage": 50.98, "elapsed_time": "5:43:31", "remaining_time": "5:30:22"} +{"current_steps": 6570, "total_steps": 12869, "loss": 0.7418, "learning_rate": 5.686791357241329e-06, "epoch": 0.5105291786463595, "percentage": 51.05, "elapsed_time": "5:43:59", "remaining_time": "5:29:48"} +{"current_steps": 6580, "total_steps": 12869, "loss": 0.7931, "learning_rate": 5.673355006507251e-06, "epoch": 0.5113062398010724, "percentage": 51.13, "elapsed_time": "5:44:29", "remaining_time": "5:29:15"} +{"current_steps": 6590, "total_steps": 12869, "loss": 0.7255, "learning_rate": 5.659913701539903e-06, "epoch": 0.5120833009557852, "percentage": 51.21, "elapsed_time": "5:44:59", "remaining_time": "5:28:42"} +{"current_steps": 6600, "total_steps": 12869, "loss": 0.6869, "learning_rate": 5.646467541234162e-06, "epoch": 0.5128603621104981, "percentage": 51.29, "elapsed_time": "5:45:33", "remaining_time": "5:28:13"} +{"current_steps": 6610, "total_steps": 12869, "loss": 0.723, "learning_rate": 5.633016624520627e-06, "epoch": 0.513637423265211, "percentage": 51.36, "elapsed_time": "5:46:02", "remaining_time": "5:27:40"} +{"current_steps": 6620, "total_steps": 12869, "loss": 0.7021, "learning_rate": 5.619561050364897e-06, "epoch": 0.5144144844199239, "percentage": 51.44, "elapsed_time": "5:46:38", "remaining_time": "5:27:13"} +{"current_steps": 6630, "total_steps": 12869, "loss": 0.7289, "learning_rate": 5.606100917766829e-06, "epoch": 0.5151915455746368, "percentage": 51.52, "elapsed_time": "5:47:09", "remaining_time": "5:26:40"} +{"current_steps": 6640, "total_steps": 12869, "loss": 0.6616, "learning_rate": 5.592636325759829e-06, "epoch": 0.5159686067293496, "percentage": 51.6, "elapsed_time": "5:47:42", "remaining_time": "5:26:11"} +{"current_steps": 6650, "total_steps": 12869, "loss": 0.6983, "learning_rate": 5.579167373410108e-06, "epoch": 0.5167456678840625, "percentage": 51.67, "elapsed_time": "5:48:12", "remaining_time": "5:25:38"} +{"current_steps": 6660, "total_steps": 12869, "loss": 0.7799, "learning_rate": 5.565694159815955e-06, "epoch": 0.5175227290387754, "percentage": 51.75, "elapsed_time": "5:48:43", "remaining_time": "5:25:06"} +{"current_steps": 6670, "total_steps": 12869, "loss": 0.7443, "learning_rate": 5.552216784107022e-06, "epoch": 0.5182997901934883, "percentage": 51.83, "elapsed_time": "5:49:12", "remaining_time": "5:24:33"} +{"current_steps": 6680, "total_steps": 12869, "loss": 0.7195, "learning_rate": 5.538735345443573e-06, "epoch": 0.5190768513482011, "percentage": 51.91, "elapsed_time": "5:49:46", "remaining_time": "5:24:04"} +{"current_steps": 6690, "total_steps": 12869, "loss": 0.7499, "learning_rate": 5.525249943015771e-06, "epoch": 0.519853912502914, "percentage": 51.99, "elapsed_time": "5:50:12", "remaining_time": "5:23:27"} +{"current_steps": 6700, "total_steps": 12869, "loss": 0.7462, "learning_rate": 5.511760676042941e-06, "epoch": 0.5206309736576269, "percentage": 52.06, "elapsed_time": "5:50:50", "remaining_time": "5:23:01"} +{"current_steps": 6710, "total_steps": 12869, "loss": 0.6735, "learning_rate": 5.498267643772842e-06, "epoch": 0.5214080348123398, "percentage": 52.14, "elapsed_time": "5:51:22", "remaining_time": "5:22:31"} +{"current_steps": 6720, "total_steps": 12869, "loss": 0.7432, "learning_rate": 5.484770945480935e-06, "epoch": 0.5221850959670526, "percentage": 52.22, "elapsed_time": "5:51:55", "remaining_time": "5:22:01"} +{"current_steps": 6730, "total_steps": 12869, "loss": 0.7086, "learning_rate": 5.471270680469656e-06, "epoch": 0.5229621571217655, "percentage": 52.3, "elapsed_time": "5:52:28", "remaining_time": "5:21:30"} +{"current_steps": 6740, "total_steps": 12869, "loss": 0.6972, "learning_rate": 5.457766948067682e-06, "epoch": 0.5237392182764784, "percentage": 52.37, "elapsed_time": "5:53:00", "remaining_time": "5:21:00"} +{"current_steps": 6750, "total_steps": 12869, "loss": 0.697, "learning_rate": 5.4442598476292e-06, "epoch": 0.5245162794311913, "percentage": 52.45, "elapsed_time": "5:53:31", "remaining_time": "5:20:28"} +{"current_steps": 6760, "total_steps": 12869, "loss": 0.6823, "learning_rate": 5.430749478533182e-06, "epoch": 0.5252933405859042, "percentage": 52.53, "elapsed_time": "5:54:02", "remaining_time": "5:19:56"} +{"current_steps": 6770, "total_steps": 12869, "loss": 0.6954, "learning_rate": 5.417235940182646e-06, "epoch": 0.526070401740617, "percentage": 52.61, "elapsed_time": "5:54:35", "remaining_time": "5:19:26"} +{"current_steps": 6780, "total_steps": 12869, "loss": 0.7129, "learning_rate": 5.403719332003925e-06, "epoch": 0.5268474628953299, "percentage": 52.68, "elapsed_time": "5:55:08", "remaining_time": "5:18:56"} +{"current_steps": 6790, "total_steps": 12869, "loss": 0.7457, "learning_rate": 5.390199753445945e-06, "epoch": 0.5276245240500428, "percentage": 52.76, "elapsed_time": "5:55:38", "remaining_time": "5:18:24"} +{"current_steps": 6800, "total_steps": 12869, "loss": 0.716, "learning_rate": 5.376677303979481e-06, "epoch": 0.5284015852047557, "percentage": 52.84, "elapsed_time": "5:56:08", "remaining_time": "5:17:51"} +{"current_steps": 6810, "total_steps": 12869, "loss": 0.7075, "learning_rate": 5.3631520830964335e-06, "epoch": 0.5291786463594685, "percentage": 52.92, "elapsed_time": "5:56:39", "remaining_time": "5:17:19"} +{"current_steps": 6820, "total_steps": 12869, "loss": 0.6646, "learning_rate": 5.349624190309095e-06, "epoch": 0.5299557075141814, "percentage": 53.0, "elapsed_time": "5:57:11", "remaining_time": "5:16:48"} +{"current_steps": 6830, "total_steps": 12869, "loss": 0.7197, "learning_rate": 5.3360937251494145e-06, "epoch": 0.5307327686688943, "percentage": 53.07, "elapsed_time": "5:57:40", "remaining_time": "5:16:14"} +{"current_steps": 6840, "total_steps": 12869, "loss": 0.7113, "learning_rate": 5.322560787168266e-06, "epoch": 0.5315098298236072, "percentage": 53.15, "elapsed_time": "5:58:09", "remaining_time": "5:15:41"} +{"current_steps": 6850, "total_steps": 12869, "loss": 0.7051, "learning_rate": 5.30902547593472e-06, "epoch": 0.53228689097832, "percentage": 53.23, "elapsed_time": "5:58:43", "remaining_time": "5:15:12"} +{"current_steps": 6860, "total_steps": 12869, "loss": 0.7044, "learning_rate": 5.29548789103531e-06, "epoch": 0.5330639521330328, "percentage": 53.31, "elapsed_time": "5:59:07", "remaining_time": "5:14:34"} +{"current_steps": 6870, "total_steps": 12869, "loss": 0.7119, "learning_rate": 5.281948132073293e-06, "epoch": 0.5338410132877457, "percentage": 53.38, "elapsed_time": "5:59:38", "remaining_time": "5:14:02"} +{"current_steps": 6880, "total_steps": 12869, "loss": 0.7208, "learning_rate": 5.2684062986679245e-06, "epoch": 0.5346180744424586, "percentage": 53.46, "elapsed_time": "6:00:13", "remaining_time": "5:13:34"} +{"current_steps": 6890, "total_steps": 12869, "loss": 0.6855, "learning_rate": 5.254862490453723e-06, "epoch": 0.5353951355971714, "percentage": 53.54, "elapsed_time": "6:00:46", "remaining_time": "5:13:04"} +{"current_steps": 6900, "total_steps": 12869, "loss": 0.7176, "learning_rate": 5.241316807079735e-06, "epoch": 0.5361721967518843, "percentage": 53.62, "elapsed_time": "6:01:22", "remaining_time": "5:12:36"} +{"current_steps": 6910, "total_steps": 12869, "loss": 0.7158, "learning_rate": 5.227769348208808e-06, "epoch": 0.5369492579065972, "percentage": 53.69, "elapsed_time": "6:01:56", "remaining_time": "5:12:07"} +{"current_steps": 6920, "total_steps": 12869, "loss": 0.6492, "learning_rate": 5.214220213516849e-06, "epoch": 0.5377263190613101, "percentage": 53.77, "elapsed_time": "6:02:29", "remaining_time": "5:11:37"} +{"current_steps": 6930, "total_steps": 12869, "loss": 0.6784, "learning_rate": 5.200669502692092e-06, "epoch": 0.538503380216023, "percentage": 53.85, "elapsed_time": "6:03:00", "remaining_time": "5:11:05"} +{"current_steps": 6940, "total_steps": 12869, "loss": 0.6969, "learning_rate": 5.187117315434374e-06, "epoch": 0.5392804413707358, "percentage": 53.93, "elapsed_time": "6:03:31", "remaining_time": "5:10:34"} +{"current_steps": 6950, "total_steps": 12869, "loss": 0.7804, "learning_rate": 5.173563751454393e-06, "epoch": 0.5400575025254487, "percentage": 54.01, "elapsed_time": "6:03:59", "remaining_time": "5:10:00"} +{"current_steps": 6960, "total_steps": 12869, "loss": 0.6805, "learning_rate": 5.160008910472971e-06, "epoch": 0.5408345636801616, "percentage": 54.08, "elapsed_time": "6:04:32", "remaining_time": "5:09:29"} +{"current_steps": 6970, "total_steps": 12869, "loss": 0.7214, "learning_rate": 5.146452892220334e-06, "epoch": 0.5416116248348745, "percentage": 54.16, "elapsed_time": "6:05:02", "remaining_time": "5:08:57"} +{"current_steps": 6980, "total_steps": 12869, "loss": 0.6417, "learning_rate": 5.132895796435363e-06, "epoch": 0.5423886859895873, "percentage": 54.24, "elapsed_time": "6:05:41", "remaining_time": "5:08:31"} +{"current_steps": 6990, "total_steps": 12869, "loss": 0.6636, "learning_rate": 5.119337722864871e-06, "epoch": 0.5431657471443002, "percentage": 54.32, "elapsed_time": "6:06:12", "remaining_time": "5:08:00"} +{"current_steps": 7000, "total_steps": 12869, "loss": 0.6869, "learning_rate": 5.1057787712628645e-06, "epoch": 0.5439428082990131, "percentage": 54.39, "elapsed_time": "6:06:45", "remaining_time": "5:07:29"} +{"current_steps": 7010, "total_steps": 12869, "loss": 0.698, "learning_rate": 5.092219041389809e-06, "epoch": 0.544719869453726, "percentage": 54.47, "elapsed_time": "6:07:14", "remaining_time": "5:06:56"} +{"current_steps": 7020, "total_steps": 12869, "loss": 0.6499, "learning_rate": 5.0786586330118936e-06, "epoch": 0.5454969306084388, "percentage": 54.55, "elapsed_time": "6:07:50", "remaining_time": "5:06:28"} +{"current_steps": 7030, "total_steps": 12869, "loss": 0.7365, "learning_rate": 5.065097645900305e-06, "epoch": 0.5462739917631517, "percentage": 54.63, "elapsed_time": "6:08:20", "remaining_time": "5:05:56"} +{"current_steps": 7040, "total_steps": 12869, "loss": 0.7244, "learning_rate": 5.051536179830485e-06, "epoch": 0.5470510529178646, "percentage": 54.71, "elapsed_time": "6:08:52", "remaining_time": "5:05:25"} +{"current_steps": 7050, "total_steps": 12869, "loss": 0.6463, "learning_rate": 5.0379743345814e-06, "epoch": 0.5478281140725775, "percentage": 54.78, "elapsed_time": "6:09:24", "remaining_time": "5:04:54"} +{"current_steps": 7060, "total_steps": 12869, "loss": 0.7134, "learning_rate": 5.024412209934806e-06, "epoch": 0.5486051752272904, "percentage": 54.86, "elapsed_time": "6:09:51", "remaining_time": "5:04:19"} +{"current_steps": 7070, "total_steps": 12869, "loss": 0.6646, "learning_rate": 5.010849905674513e-06, "epoch": 0.5493822363820032, "percentage": 54.94, "elapsed_time": "6:10:23", "remaining_time": "5:03:48"} +{"current_steps": 7080, "total_steps": 12869, "loss": 0.6604, "learning_rate": 4.997287521585657e-06, "epoch": 0.5501592975367161, "percentage": 55.02, "elapsed_time": "6:10:55", "remaining_time": "5:03:17"} +{"current_steps": 7090, "total_steps": 12869, "loss": 0.6713, "learning_rate": 4.983725157453956e-06, "epoch": 0.550936358691429, "percentage": 55.09, "elapsed_time": "6:11:23", "remaining_time": "5:02:43"} +{"current_steps": 7100, "total_steps": 12869, "loss": 0.7095, "learning_rate": 4.9701629130649834e-06, "epoch": 0.5517134198461419, "percentage": 55.17, "elapsed_time": "6:11:55", "remaining_time": "5:02:12"} +{"current_steps": 7110, "total_steps": 12869, "loss": 0.6714, "learning_rate": 4.956600888203433e-06, "epoch": 0.5524904810008547, "percentage": 55.25, "elapsed_time": "6:12:27", "remaining_time": "5:01:40"} +{"current_steps": 7120, "total_steps": 12869, "loss": 0.7235, "learning_rate": 4.943039182652383e-06, "epoch": 0.5532675421555676, "percentage": 55.33, "elapsed_time": "6:12:57", "remaining_time": "5:01:08"} +{"current_steps": 7130, "total_steps": 12869, "loss": 0.8093, "learning_rate": 4.929477896192561e-06, "epoch": 0.5540446033102805, "percentage": 55.4, "elapsed_time": "6:13:25", "remaining_time": "5:00:33"} +{"current_steps": 7140, "total_steps": 12869, "loss": 0.7031, "learning_rate": 4.915917128601611e-06, "epoch": 0.5548216644649934, "percentage": 55.48, "elapsed_time": "6:13:52", "remaining_time": "4:59:59"} +{"current_steps": 7150, "total_steps": 12869, "loss": 0.7084, "learning_rate": 4.902356979653361e-06, "epoch": 0.5555987256197062, "percentage": 55.56, "elapsed_time": "6:14:23", "remaining_time": "4:59:27"} +{"current_steps": 7160, "total_steps": 12869, "loss": 0.7181, "learning_rate": 4.8887975491170845e-06, "epoch": 0.5563757867744191, "percentage": 55.64, "elapsed_time": "6:14:55", "remaining_time": "4:58:56"} +{"current_steps": 7170, "total_steps": 12869, "loss": 0.6763, "learning_rate": 4.875238936756774e-06, "epoch": 0.557152847929132, "percentage": 55.72, "elapsed_time": "6:15:30", "remaining_time": "4:58:27"} +{"current_steps": 7180, "total_steps": 12869, "loss": 0.6756, "learning_rate": 4.861681242330397e-06, "epoch": 0.5579299090838449, "percentage": 55.79, "elapsed_time": "6:16:01", "remaining_time": "4:57:56"} +{"current_steps": 7190, "total_steps": 12869, "loss": 0.6644, "learning_rate": 4.84812456558917e-06, "epoch": 0.5587069702385578, "percentage": 55.87, "elapsed_time": "6:16:26", "remaining_time": "4:57:20"} +{"current_steps": 7200, "total_steps": 12869, "loss": 0.6786, "learning_rate": 4.834569006276823e-06, "epoch": 0.5594840313932706, "percentage": 55.95, "elapsed_time": "6:17:01", "remaining_time": "4:56:51"} +{"current_steps": 7210, "total_steps": 12869, "loss": 0.7156, "learning_rate": 4.821014664128859e-06, "epoch": 0.5602610925479835, "percentage": 56.03, "elapsed_time": "6:17:28", "remaining_time": "4:56:16"} +{"current_steps": 7220, "total_steps": 12869, "loss": 0.7262, "learning_rate": 4.807461638871835e-06, "epoch": 0.5610381537026964, "percentage": 56.1, "elapsed_time": "6:17:56", "remaining_time": "4:55:42"} +{"current_steps": 7230, "total_steps": 12869, "loss": 0.6989, "learning_rate": 4.79391003022261e-06, "epoch": 0.5618152148574093, "percentage": 56.18, "elapsed_time": "6:18:26", "remaining_time": "4:55:09"} +{"current_steps": 7240, "total_steps": 12869, "loss": 0.6682, "learning_rate": 4.780359937887625e-06, "epoch": 0.5625922760121221, "percentage": 56.26, "elapsed_time": "6:19:01", "remaining_time": "4:54:41"} +{"current_steps": 7250, "total_steps": 12869, "loss": 0.6464, "learning_rate": 4.766811461562163e-06, "epoch": 0.563369337166835, "percentage": 56.34, "elapsed_time": "6:19:34", "remaining_time": "4:54:11"} +{"current_steps": 7260, "total_steps": 12869, "loss": 0.6507, "learning_rate": 4.753264700929619e-06, "epoch": 0.5641463983215479, "percentage": 56.41, "elapsed_time": "6:20:08", "remaining_time": "4:53:41"} +{"current_steps": 7270, "total_steps": 12869, "loss": 0.7014, "learning_rate": 4.739719755660761e-06, "epoch": 0.5649234594762608, "percentage": 56.49, "elapsed_time": "6:20:43", "remaining_time": "4:53:13"} +{"current_steps": 7280, "total_steps": 12869, "loss": 0.693, "learning_rate": 4.726176725413004e-06, "epoch": 0.5657005206309736, "percentage": 56.57, "elapsed_time": "6:21:16", "remaining_time": "4:52:42"} +{"current_steps": 7290, "total_steps": 12869, "loss": 0.6591, "learning_rate": 4.712635709829672e-06, "epoch": 0.5664775817856865, "percentage": 56.65, "elapsed_time": "6:21:48", "remaining_time": "4:52:11"} +{"current_steps": 7300, "total_steps": 12869, "loss": 0.7431, "learning_rate": 4.699096808539264e-06, "epoch": 0.5672546429403994, "percentage": 56.73, "elapsed_time": "6:22:18", "remaining_time": "4:51:39"} +{"current_steps": 7310, "total_steps": 12869, "loss": 0.6474, "learning_rate": 4.685560121154729e-06, "epoch": 0.5680317040951123, "percentage": 56.8, "elapsed_time": "6:22:51", "remaining_time": "4:51:08"} +{"current_steps": 7320, "total_steps": 12869, "loss": 0.6816, "learning_rate": 4.672025747272721e-06, "epoch": 0.5688087652498252, "percentage": 56.88, "elapsed_time": "6:23:26", "remaining_time": "4:50:40"} +{"current_steps": 7330, "total_steps": 12869, "loss": 0.6741, "learning_rate": 4.658493786472874e-06, "epoch": 0.569585826404538, "percentage": 56.96, "elapsed_time": "6:24:01", "remaining_time": "4:50:11"} +{"current_steps": 7340, "total_steps": 12869, "loss": 0.7111, "learning_rate": 4.644964338317069e-06, "epoch": 0.5703628875592509, "percentage": 57.04, "elapsed_time": "6:24:28", "remaining_time": "4:49:36"} +{"current_steps": 7350, "total_steps": 12869, "loss": 0.6552, "learning_rate": 4.631437502348697e-06, "epoch": 0.5711399487139638, "percentage": 57.11, "elapsed_time": "6:25:01", "remaining_time": "4:49:06"} +{"current_steps": 7360, "total_steps": 12869, "loss": 0.6893, "learning_rate": 4.617913378091935e-06, "epoch": 0.5719170098686767, "percentage": 57.19, "elapsed_time": "6:25:29", "remaining_time": "4:48:32"} +{"current_steps": 7370, "total_steps": 12869, "loss": 0.7376, "learning_rate": 4.604392065051003e-06, "epoch": 0.5726940710233895, "percentage": 57.27, "elapsed_time": "6:25:57", "remaining_time": "4:47:58"} +{"current_steps": 7380, "total_steps": 12869, "loss": 0.6914, "learning_rate": 4.590873662709441e-06, "epoch": 0.5734711321781024, "percentage": 57.35, "elapsed_time": "6:26:17", "remaining_time": "4:47:18"} +{"current_steps": 7390, "total_steps": 12869, "loss": 0.6414, "learning_rate": 4.577358270529371e-06, "epoch": 0.5742481933328153, "percentage": 57.42, "elapsed_time": "6:26:48", "remaining_time": "4:46:46"} +{"current_steps": 7400, "total_steps": 12869, "loss": 0.6661, "learning_rate": 4.5638459879507685e-06, "epoch": 0.5750252544875282, "percentage": 57.5, "elapsed_time": "6:27:20", "remaining_time": "4:46:15"} +{"current_steps": 7410, "total_steps": 12869, "loss": 0.6594, "learning_rate": 4.550336914390734e-06, "epoch": 0.575802315642241, "percentage": 57.58, "elapsed_time": "6:27:54", "remaining_time": "4:45:46"} +{"current_steps": 7420, "total_steps": 12869, "loss": 0.6672, "learning_rate": 4.536831149242752e-06, "epoch": 0.5765793767969539, "percentage": 57.66, "elapsed_time": "6:28:29", "remaining_time": "4:45:17"} +{"current_steps": 7430, "total_steps": 12869, "loss": 0.708, "learning_rate": 4.5233287918759645e-06, "epoch": 0.5773564379516668, "percentage": 57.74, "elapsed_time": "6:29:03", "remaining_time": "4:44:47"} +{"current_steps": 7440, "total_steps": 12869, "loss": 0.686, "learning_rate": 4.509829941634447e-06, "epoch": 0.5781334991063797, "percentage": 57.81, "elapsed_time": "6:29:33", "remaining_time": "4:44:15"} +{"current_steps": 7450, "total_steps": 12869, "loss": 0.6866, "learning_rate": 4.496334697836466e-06, "epoch": 0.5789105602610926, "percentage": 57.89, "elapsed_time": "6:30:06", "remaining_time": "4:43:45"} +{"current_steps": 7460, "total_steps": 12869, "loss": 0.701, "learning_rate": 4.482843159773753e-06, "epoch": 0.5796876214158054, "percentage": 57.97, "elapsed_time": "6:30:38", "remaining_time": "4:43:14"} +{"current_steps": 7470, "total_steps": 12869, "loss": 0.6266, "learning_rate": 4.46935542671078e-06, "epoch": 0.5804646825705183, "percentage": 58.05, "elapsed_time": "6:31:12", "remaining_time": "4:42:45"} +{"current_steps": 7480, "total_steps": 12869, "loss": 0.6965, "learning_rate": 4.455871597884016e-06, "epoch": 0.5812417437252312, "percentage": 58.12, "elapsed_time": "6:31:42", "remaining_time": "4:42:12"} +{"current_steps": 7490, "total_steps": 12869, "loss": 0.6256, "learning_rate": 4.4423917725012125e-06, "epoch": 0.5820188048799441, "percentage": 58.2, "elapsed_time": "6:32:16", "remaining_time": "4:41:43"} +{"current_steps": 7500, "total_steps": 12869, "loss": 0.5885, "learning_rate": 4.428916049740657e-06, "epoch": 0.5827958660346569, "percentage": 58.28, "elapsed_time": "6:32:49", "remaining_time": "4:41:12"} +{"current_steps": 7510, "total_steps": 12869, "loss": 0.6549, "learning_rate": 4.41544452875046e-06, "epoch": 0.5835729271893698, "percentage": 58.36, "elapsed_time": "6:33:14", "remaining_time": "4:40:36"} +{"current_steps": 7520, "total_steps": 12869, "loss": 0.6566, "learning_rate": 4.401977308647811e-06, "epoch": 0.5843499883440827, "percentage": 58.43, "elapsed_time": "6:33:43", "remaining_time": "4:40:03"} +{"current_steps": 7530, "total_steps": 12869, "loss": 0.6687, "learning_rate": 4.38851448851826e-06, "epoch": 0.5851270494987956, "percentage": 58.51, "elapsed_time": "6:34:12", "remaining_time": "4:39:30"} +{"current_steps": 7540, "total_steps": 12869, "loss": 0.6292, "learning_rate": 4.3750561674149815e-06, "epoch": 0.5859041106535084, "percentage": 58.59, "elapsed_time": "6:34:39", "remaining_time": "4:38:55"} +{"current_steps": 7550, "total_steps": 12869, "loss": 0.6541, "learning_rate": 4.3616024443580475e-06, "epoch": 0.5866811718082213, "percentage": 58.67, "elapsed_time": "6:35:10", "remaining_time": "4:38:24"} +{"current_steps": 7560, "total_steps": 12869, "loss": 0.667, "learning_rate": 4.348153418333703e-06, "epoch": 0.5874582329629342, "percentage": 58.75, "elapsed_time": "6:35:47", "remaining_time": "4:37:56"} +{"current_steps": 7570, "total_steps": 12869, "loss": 0.6419, "learning_rate": 4.334709188293631e-06, "epoch": 0.5882352941176471, "percentage": 58.82, "elapsed_time": "6:36:20", "remaining_time": "4:37:26"} +{"current_steps": 7580, "total_steps": 12869, "loss": 0.65, "learning_rate": 4.321269853154231e-06, "epoch": 0.58901235527236, "percentage": 58.9, "elapsed_time": "6:36:53", "remaining_time": "4:36:56"} +{"current_steps": 7590, "total_steps": 12869, "loss": 0.622, "learning_rate": 4.307835511795883e-06, "epoch": 0.5897894164270728, "percentage": 58.98, "elapsed_time": "6:37:30", "remaining_time": "4:36:28"} +{"current_steps": 7600, "total_steps": 12869, "loss": 0.6422, "learning_rate": 4.294406263062235e-06, "epoch": 0.5905664775817857, "percentage": 59.06, "elapsed_time": "6:37:58", "remaining_time": "4:35:54"} +{"current_steps": 7610, "total_steps": 12869, "loss": 0.664, "learning_rate": 4.280982205759453e-06, "epoch": 0.5913435387364986, "percentage": 59.13, "elapsed_time": "6:38:22", "remaining_time": "4:35:18"} +{"current_steps": 7620, "total_steps": 12869, "loss": 0.6834, "learning_rate": 4.267563438655517e-06, "epoch": 0.5921205998912115, "percentage": 59.21, "elapsed_time": "6:38:55", "remaining_time": "4:34:47"} +{"current_steps": 7630, "total_steps": 12869, "loss": 0.6773, "learning_rate": 4.254150060479479e-06, "epoch": 0.5928976610459243, "percentage": 59.29, "elapsed_time": "6:39:24", "remaining_time": "4:34:15"} +{"current_steps": 7640, "total_steps": 12869, "loss": 0.6612, "learning_rate": 4.240742169920744e-06, "epoch": 0.5936747222006372, "percentage": 59.37, "elapsed_time": "6:39:56", "remaining_time": "4:33:44"} +{"current_steps": 7650, "total_steps": 12869, "loss": 0.5946, "learning_rate": 4.22733986562834e-06, "epoch": 0.5944517833553501, "percentage": 59.45, "elapsed_time": "6:40:31", "remaining_time": "4:33:14"} +{"current_steps": 7660, "total_steps": 12869, "loss": 0.6839, "learning_rate": 4.213943246210195e-06, "epoch": 0.595228844510063, "percentage": 59.52, "elapsed_time": "6:41:06", "remaining_time": "4:32:45"} +{"current_steps": 7670, "total_steps": 12869, "loss": 0.6839, "learning_rate": 4.200552410232411e-06, "epoch": 0.5960059056647758, "percentage": 59.6, "elapsed_time": "6:41:33", "remaining_time": "4:32:11"} +{"current_steps": 7680, "total_steps": 12869, "loss": 0.7096, "learning_rate": 4.187167456218536e-06, "epoch": 0.5967829668194887, "percentage": 59.68, "elapsed_time": "6:42:01", "remaining_time": "4:31:37"} +{"current_steps": 7690, "total_steps": 12869, "loss": 0.6495, "learning_rate": 4.173788482648841e-06, "epoch": 0.5975600279742016, "percentage": 59.76, "elapsed_time": "6:42:26", "remaining_time": "4:31:01"} +{"current_steps": 7700, "total_steps": 12869, "loss": 0.6266, "learning_rate": 4.1604155879595985e-06, "epoch": 0.5983370891289145, "percentage": 59.83, "elapsed_time": "6:42:54", "remaining_time": "4:30:28"} +{"current_steps": 7710, "total_steps": 12869, "loss": 0.6682, "learning_rate": 4.147048870542358e-06, "epoch": 0.5991141502836274, "percentage": 59.91, "elapsed_time": "6:43:19", "remaining_time": "4:29:52"} +{"current_steps": 7720, "total_steps": 12869, "loss": 0.6504, "learning_rate": 4.133688428743209e-06, "epoch": 0.5998912114383402, "percentage": 59.99, "elapsed_time": "6:43:45", "remaining_time": "4:29:17"} +{"current_steps": 7730, "total_steps": 12869, "loss": 0.6068, "learning_rate": 4.120334360862078e-06, "epoch": 0.6006682725930531, "percentage": 60.07, "elapsed_time": "6:44:12", "remaining_time": "4:28:43"} +{"current_steps": 7740, "total_steps": 12869, "loss": 0.6811, "learning_rate": 4.106986765151992e-06, "epoch": 0.601445333747766, "percentage": 60.14, "elapsed_time": "6:44:42", "remaining_time": "4:28:10"} +{"current_steps": 7750, "total_steps": 12869, "loss": 0.6374, "learning_rate": 4.093645739818357e-06, "epoch": 0.6022223949024789, "percentage": 60.22, "elapsed_time": "6:45:12", "remaining_time": "4:27:38"} +{"current_steps": 7760, "total_steps": 12869, "loss": 0.7078, "learning_rate": 4.080311383018239e-06, "epoch": 0.6029994560571917, "percentage": 60.3, "elapsed_time": "6:45:44", "remaining_time": "4:27:07"} +{"current_steps": 7770, "total_steps": 12869, "loss": 0.6759, "learning_rate": 4.06698379285964e-06, "epoch": 0.6037765172119046, "percentage": 60.38, "elapsed_time": "6:46:18", "remaining_time": "4:26:38"} +{"current_steps": 7780, "total_steps": 12869, "loss": 0.6109, "learning_rate": 4.0536630674007734e-06, "epoch": 0.6045535783666175, "percentage": 60.46, "elapsed_time": "6:46:49", "remaining_time": "4:26:06"} +{"current_steps": 7790, "total_steps": 12869, "loss": 0.685, "learning_rate": 4.040349304649351e-06, "epoch": 0.6053306395213304, "percentage": 60.53, "elapsed_time": "6:47:19", "remaining_time": "4:25:34"} +{"current_steps": 7800, "total_steps": 12869, "loss": 0.6498, "learning_rate": 4.027042602561853e-06, "epoch": 0.6061077006760432, "percentage": 60.61, "elapsed_time": "6:47:50", "remaining_time": "4:25:02"} +{"current_steps": 7810, "total_steps": 12869, "loss": 0.6977, "learning_rate": 4.013743059042808e-06, "epoch": 0.6068847618307561, "percentage": 60.69, "elapsed_time": "6:48:21", "remaining_time": "4:24:31"} +{"current_steps": 7820, "total_steps": 12869, "loss": 0.6635, "learning_rate": 4.0004507719440795e-06, "epoch": 0.607661822985469, "percentage": 60.77, "elapsed_time": "6:48:51", "remaining_time": "4:23:58"} +{"current_steps": 7830, "total_steps": 12869, "loss": 0.6758, "learning_rate": 3.987165839064141e-06, "epoch": 0.6084388841401819, "percentage": 60.84, "elapsed_time": "6:49:22", "remaining_time": "4:23:27"} +{"current_steps": 7840, "total_steps": 12869, "loss": 0.623, "learning_rate": 3.973888358147353e-06, "epoch": 0.6092159452948948, "percentage": 60.92, "elapsed_time": "6:49:57", "remaining_time": "4:22:58"} +{"current_steps": 7850, "total_steps": 12869, "loss": 0.6758, "learning_rate": 3.9606184268832525e-06, "epoch": 0.6099930064496076, "percentage": 61.0, "elapsed_time": "6:50:26", "remaining_time": "4:22:25"} +{"current_steps": 7860, "total_steps": 12869, "loss": 0.6132, "learning_rate": 3.947356142905827e-06, "epoch": 0.6107700676043205, "percentage": 61.08, "elapsed_time": "6:50:58", "remaining_time": "4:21:54"} +{"current_steps": 7870, "total_steps": 12869, "loss": 0.6084, "learning_rate": 3.934101603792802e-06, "epoch": 0.6115471287590334, "percentage": 61.15, "elapsed_time": "6:51:29", "remaining_time": "4:21:22"} +{"current_steps": 7880, "total_steps": 12869, "loss": 0.6277, "learning_rate": 3.920854907064912e-06, "epoch": 0.6123241899137463, "percentage": 61.23, "elapsed_time": "6:52:01", "remaining_time": "4:20:51"} +{"current_steps": 7890, "total_steps": 12869, "loss": 0.6746, "learning_rate": 3.907616150185205e-06, "epoch": 0.6131012510684591, "percentage": 61.31, "elapsed_time": "6:52:27", "remaining_time": "4:20:16"} +{"current_steps": 7900, "total_steps": 12869, "loss": 0.6112, "learning_rate": 3.894385430558297e-06, "epoch": 0.613878312223172, "percentage": 61.39, "elapsed_time": "6:53:02", "remaining_time": "4:19:48"} +{"current_steps": 7910, "total_steps": 12869, "loss": 0.6219, "learning_rate": 3.881162845529678e-06, "epoch": 0.6146553733778849, "percentage": 61.47, "elapsed_time": "6:53:34", "remaining_time": "4:19:16"} +{"current_steps": 7920, "total_steps": 12869, "loss": 0.6693, "learning_rate": 3.867948492384983e-06, "epoch": 0.6154324345325977, "percentage": 61.54, "elapsed_time": "6:54:04", "remaining_time": "4:18:44"} +{"current_steps": 7930, "total_steps": 12869, "loss": 0.6833, "learning_rate": 3.854742468349283e-06, "epoch": 0.6162094956873105, "percentage": 61.62, "elapsed_time": "6:54:33", "remaining_time": "4:18:11"} +{"current_steps": 7940, "total_steps": 12869, "loss": 0.6947, "learning_rate": 3.841544870586369e-06, "epoch": 0.6169865568420234, "percentage": 61.7, "elapsed_time": "6:55:08", "remaining_time": "4:17:42"} +{"current_steps": 7950, "total_steps": 12869, "loss": 0.6342, "learning_rate": 3.828355796198029e-06, "epoch": 0.6177636179967363, "percentage": 61.78, "elapsed_time": "6:55:40", "remaining_time": "4:17:11"} +{"current_steps": 7960, "total_steps": 12869, "loss": 0.6267, "learning_rate": 3.815175342223349e-06, "epoch": 0.6185406791514492, "percentage": 61.85, "elapsed_time": "6:56:13", "remaining_time": "4:16:41"} +{"current_steps": 7970, "total_steps": 12869, "loss": 0.6319, "learning_rate": 3.80200360563798e-06, "epoch": 0.619317740306162, "percentage": 61.93, "elapsed_time": "6:56:45", "remaining_time": "4:16:10"} +{"current_steps": 7980, "total_steps": 12869, "loss": 0.6219, "learning_rate": 3.7888406833534447e-06, "epoch": 0.6200948014608749, "percentage": 62.01, "elapsed_time": "6:57:18", "remaining_time": "4:15:39"} +{"current_steps": 7990, "total_steps": 12869, "loss": 0.6304, "learning_rate": 3.7756866722164055e-06, "epoch": 0.6208718626155878, "percentage": 62.09, "elapsed_time": "6:57:50", "remaining_time": "4:15:08"} +{"current_steps": 8000, "total_steps": 12869, "loss": 0.5913, "learning_rate": 3.7625416690079674e-06, "epoch": 0.6216489237703007, "percentage": 62.16, "elapsed_time": "6:58:20", "remaining_time": "4:14:36"} +{"current_steps": 8010, "total_steps": 12869, "loss": 0.6062, "learning_rate": 3.749405770442954e-06, "epoch": 0.6224259849250136, "percentage": 62.24, "elapsed_time": "6:58:46", "remaining_time": "4:14:01"} +{"current_steps": 8020, "total_steps": 12869, "loss": 0.5785, "learning_rate": 3.7362790731692045e-06, "epoch": 0.6232030460797264, "percentage": 62.32, "elapsed_time": "6:59:22", "remaining_time": "4:13:33"} +{"current_steps": 8030, "total_steps": 12869, "loss": 0.6212, "learning_rate": 3.7231616737668587e-06, "epoch": 0.6239801072344393, "percentage": 62.4, "elapsed_time": "6:59:49", "remaining_time": "4:12:59"} +{"current_steps": 8040, "total_steps": 12869, "loss": 0.6978, "learning_rate": 3.710053668747644e-06, "epoch": 0.6247571683891522, "percentage": 62.48, "elapsed_time": "7:00:19", "remaining_time": "4:12:27"} +{"current_steps": 8050, "total_steps": 12869, "loss": 0.6677, "learning_rate": 3.696955154554174e-06, "epoch": 0.6255342295438651, "percentage": 62.55, "elapsed_time": "7:00:54", "remaining_time": "4:11:58"} +{"current_steps": 8060, "total_steps": 12869, "loss": 0.5961, "learning_rate": 3.6838662275592285e-06, "epoch": 0.6263112906985779, "percentage": 62.63, "elapsed_time": "7:01:23", "remaining_time": "4:11:25"} +{"current_steps": 8070, "total_steps": 12869, "loss": 0.5932, "learning_rate": 3.670786984065049e-06, "epoch": 0.6270883518532908, "percentage": 62.71, "elapsed_time": "7:01:49", "remaining_time": "4:10:50"} +{"current_steps": 8080, "total_steps": 12869, "loss": 0.6507, "learning_rate": 3.657717520302635e-06, "epoch": 0.6278654130080037, "percentage": 62.79, "elapsed_time": "7:02:20", "remaining_time": "4:10:19"} +{"current_steps": 8090, "total_steps": 12869, "loss": 0.5622, "learning_rate": 3.6446579324310283e-06, "epoch": 0.6286424741627166, "percentage": 62.86, "elapsed_time": "7:02:52", "remaining_time": "4:09:48"} +{"current_steps": 8100, "total_steps": 12869, "loss": 0.6807, "learning_rate": 3.6316083165366066e-06, "epoch": 0.6294195353174294, "percentage": 62.94, "elapsed_time": "7:03:23", "remaining_time": "4:09:16"} +{"current_steps": 8110, "total_steps": 12869, "loss": 0.6127, "learning_rate": 3.61856876863238e-06, "epoch": 0.6301965964721423, "percentage": 63.02, "elapsed_time": "7:03:53", "remaining_time": "4:08:44"} +{"current_steps": 8120, "total_steps": 12869, "loss": 0.6355, "learning_rate": 3.6055393846572863e-06, "epoch": 0.6309736576268552, "percentage": 63.1, "elapsed_time": "7:04:29", "remaining_time": "4:08:16"} +{"current_steps": 8130, "total_steps": 12869, "loss": 0.5764, "learning_rate": 3.592520260475474e-06, "epoch": 0.6317507187815681, "percentage": 63.18, "elapsed_time": "7:05:07", "remaining_time": "4:07:48"} +{"current_steps": 8140, "total_steps": 12869, "loss": 0.5824, "learning_rate": 3.579511491875614e-06, "epoch": 0.632527779936281, "percentage": 63.25, "elapsed_time": "7:05:41", "remaining_time": "4:07:18"} +{"current_steps": 8150, "total_steps": 12869, "loss": 0.6927, "learning_rate": 3.5665131745701796e-06, "epoch": 0.6333048410909938, "percentage": 63.33, "elapsed_time": "7:06:10", "remaining_time": "4:06:45"} +{"current_steps": 8160, "total_steps": 12869, "loss": 0.6589, "learning_rate": 3.5535254041947487e-06, "epoch": 0.6340819022457067, "percentage": 63.41, "elapsed_time": "7:06:38", "remaining_time": "4:06:12"} +{"current_steps": 8170, "total_steps": 12869, "loss": 0.6264, "learning_rate": 3.5405482763073006e-06, "epoch": 0.6348589634004196, "percentage": 63.49, "elapsed_time": "7:07:09", "remaining_time": "4:05:40"} +{"current_steps": 8180, "total_steps": 12869, "loss": 0.6298, "learning_rate": 3.5275818863875176e-06, "epoch": 0.6356360245551325, "percentage": 63.56, "elapsed_time": "7:07:44", "remaining_time": "4:05:11"} +{"current_steps": 8190, "total_steps": 12869, "loss": 0.6409, "learning_rate": 3.5146263298360676e-06, "epoch": 0.6364130857098453, "percentage": 63.64, "elapsed_time": "7:08:16", "remaining_time": "4:04:40"} +{"current_steps": 8200, "total_steps": 12869, "loss": 0.5988, "learning_rate": 3.501681701973917e-06, "epoch": 0.6371901468645582, "percentage": 63.72, "elapsed_time": "7:08:44", "remaining_time": "4:04:07"} +{"current_steps": 8210, "total_steps": 12869, "loss": 0.56, "learning_rate": 3.488748098041623e-06, "epoch": 0.6379672080192711, "percentage": 63.8, "elapsed_time": "7:09:14", "remaining_time": "4:03:35"} +{"current_steps": 8220, "total_steps": 12869, "loss": 0.6102, "learning_rate": 3.4758256131986333e-06, "epoch": 0.638744269173984, "percentage": 63.87, "elapsed_time": "7:09:42", "remaining_time": "4:03:01"} +{"current_steps": 8230, "total_steps": 12869, "loss": 0.6887, "learning_rate": 3.4629143425225893e-06, "epoch": 0.6395213303286968, "percentage": 63.95, "elapsed_time": "7:10:16", "remaining_time": "4:02:32"} +{"current_steps": 8240, "total_steps": 12869, "loss": 0.6373, "learning_rate": 3.4500143810086194e-06, "epoch": 0.6402983914834097, "percentage": 64.03, "elapsed_time": "7:10:49", "remaining_time": "4:02:01"} +{"current_steps": 8250, "total_steps": 12869, "loss": 0.6452, "learning_rate": 3.437125823568646e-06, "epoch": 0.6410754526381226, "percentage": 64.11, "elapsed_time": "7:11:19", "remaining_time": "4:01:29"} +{"current_steps": 8260, "total_steps": 12869, "loss": 0.65, "learning_rate": 3.4242487650306867e-06, "epoch": 0.6418525137928355, "percentage": 64.19, "elapsed_time": "7:11:45", "remaining_time": "4:00:55"} +{"current_steps": 8270, "total_steps": 12869, "loss": 0.6041, "learning_rate": 3.4113833001381575e-06, "epoch": 0.6426295749475484, "percentage": 64.26, "elapsed_time": "7:12:21", "remaining_time": "4:00:26"} +{"current_steps": 8280, "total_steps": 12869, "loss": 0.6047, "learning_rate": 3.398529523549169e-06, "epoch": 0.6434066361022612, "percentage": 64.34, "elapsed_time": "7:12:55", "remaining_time": "3:59:56"} +{"current_steps": 8290, "total_steps": 12869, "loss": 0.6619, "learning_rate": 3.3856875298358365e-06, "epoch": 0.6441836972569741, "percentage": 64.42, "elapsed_time": "7:13:27", "remaining_time": "3:59:25"} +{"current_steps": 8300, "total_steps": 12869, "loss": 0.6198, "learning_rate": 3.3728574134835846e-06, "epoch": 0.644960758411687, "percentage": 64.5, "elapsed_time": "7:13:56", "remaining_time": "3:58:52"} +{"current_steps": 8310, "total_steps": 12869, "loss": 0.6003, "learning_rate": 3.360039268890446e-06, "epoch": 0.6457378195663999, "percentage": 64.57, "elapsed_time": "7:14:30", "remaining_time": "3:58:22"} +{"current_steps": 8320, "total_steps": 12869, "loss": 0.6101, "learning_rate": 3.347233190366375e-06, "epoch": 0.6465148807211127, "percentage": 64.65, "elapsed_time": "7:15:01", "remaining_time": "3:57:50"} +{"current_steps": 8330, "total_steps": 12869, "loss": 0.6248, "learning_rate": 3.3344392721325458e-06, "epoch": 0.6472919418758256, "percentage": 64.73, "elapsed_time": "7:15:35", "remaining_time": "3:57:21"} +{"current_steps": 8340, "total_steps": 12869, "loss": 0.6087, "learning_rate": 3.3216576083206637e-06, "epoch": 0.6480690030305385, "percentage": 64.81, "elapsed_time": "7:16:05", "remaining_time": "3:56:48"} +{"current_steps": 8350, "total_steps": 12869, "loss": 0.5888, "learning_rate": 3.308888292972273e-06, "epoch": 0.6488460641852514, "percentage": 64.88, "elapsed_time": "7:16:43", "remaining_time": "3:56:21"} +{"current_steps": 8360, "total_steps": 12869, "loss": 0.637, "learning_rate": 3.2961314200380616e-06, "epoch": 0.6496231253399642, "percentage": 64.96, "elapsed_time": "7:17:17", "remaining_time": "3:55:51"} +{"current_steps": 8370, "total_steps": 12869, "loss": 0.6105, "learning_rate": 3.2833870833771753e-06, "epoch": 0.6504001864946771, "percentage": 65.04, "elapsed_time": "7:17:55", "remaining_time": "3:55:23"} +{"current_steps": 8380, "total_steps": 12869, "loss": 0.579, "learning_rate": 3.270655376756521e-06, "epoch": 0.65117724764939, "percentage": 65.12, "elapsed_time": "7:18:26", "remaining_time": "3:54:51"} +{"current_steps": 8390, "total_steps": 12869, "loss": 0.6072, "learning_rate": 3.25793639385008e-06, "epoch": 0.6519543088041029, "percentage": 65.2, "elapsed_time": "7:19:02", "remaining_time": "3:54:22"} +{"current_steps": 8400, "total_steps": 12869, "loss": 0.5656, "learning_rate": 3.2452302282382185e-06, "epoch": 0.6527313699588158, "percentage": 65.27, "elapsed_time": "7:19:37", "remaining_time": "3:53:53"} +{"current_steps": 8410, "total_steps": 12869, "loss": 0.6353, "learning_rate": 3.232536973407e-06, "epoch": 0.6535084311135286, "percentage": 65.35, "elapsed_time": "7:20:09", "remaining_time": "3:53:22"} +{"current_steps": 8420, "total_steps": 12869, "loss": 0.6239, "learning_rate": 3.2198567227474954e-06, "epoch": 0.6542854922682415, "percentage": 65.43, "elapsed_time": "7:20:38", "remaining_time": "3:52:49"} +{"current_steps": 8430, "total_steps": 12869, "loss": 0.6493, "learning_rate": 3.207189569555096e-06, "epoch": 0.6550625534229544, "percentage": 65.51, "elapsed_time": "7:21:07", "remaining_time": "3:52:17"} +{"current_steps": 8440, "total_steps": 12869, "loss": 0.5765, "learning_rate": 3.194535607028832e-06, "epoch": 0.6558396145776673, "percentage": 65.58, "elapsed_time": "7:21:44", "remaining_time": "3:51:48"} +{"current_steps": 8450, "total_steps": 12869, "loss": 0.584, "learning_rate": 3.1818949282706764e-06, "epoch": 0.6566166757323801, "percentage": 65.66, "elapsed_time": "7:22:20", "remaining_time": "3:51:19"} +{"current_steps": 8460, "total_steps": 12869, "loss": 0.5846, "learning_rate": 3.1692676262848732e-06, "epoch": 0.657393736887093, "percentage": 65.74, "elapsed_time": "7:22:50", "remaining_time": "3:50:47"} +{"current_steps": 8470, "total_steps": 12869, "loss": 0.6164, "learning_rate": 3.1566537939772433e-06, "epoch": 0.6581707980418059, "percentage": 65.82, "elapsed_time": "7:23:20", "remaining_time": "3:50:15"} +{"current_steps": 8480, "total_steps": 12869, "loss": 0.5667, "learning_rate": 3.1440535241545035e-06, "epoch": 0.6589478591965188, "percentage": 65.89, "elapsed_time": "7:23:56", "remaining_time": "3:49:46"} +{"current_steps": 8490, "total_steps": 12869, "loss": 0.5729, "learning_rate": 3.131466909523582e-06, "epoch": 0.6597249203512316, "percentage": 65.97, "elapsed_time": "7:24:30", "remaining_time": "3:49:15"} +{"current_steps": 8500, "total_steps": 12869, "loss": 0.5639, "learning_rate": 3.118894042690945e-06, "epoch": 0.6605019815059445, "percentage": 66.05, "elapsed_time": "7:25:04", "remaining_time": "3:48:45"} +{"current_steps": 8510, "total_steps": 12869, "loss": 0.5904, "learning_rate": 3.1063350161619025e-06, "epoch": 0.6612790426606574, "percentage": 66.13, "elapsed_time": "7:25:33", "remaining_time": "3:48:13"} +{"current_steps": 8520, "total_steps": 12869, "loss": 0.5998, "learning_rate": 3.093789922339936e-06, "epoch": 0.6620561038153703, "percentage": 66.21, "elapsed_time": "7:26:04", "remaining_time": "3:47:41"} +{"current_steps": 8530, "total_steps": 12869, "loss": 0.5886, "learning_rate": 3.081258853526018e-06, "epoch": 0.6628331649700832, "percentage": 66.28, "elapsed_time": "7:26:36", "remaining_time": "3:47:10"} +{"current_steps": 8540, "total_steps": 12869, "loss": 0.6011, "learning_rate": 3.0687419019179285e-06, "epoch": 0.663610226124796, "percentage": 66.36, "elapsed_time": "7:27:04", "remaining_time": "3:46:37"} +{"current_steps": 8550, "total_steps": 12869, "loss": 0.61, "learning_rate": 3.0562391596095833e-06, "epoch": 0.6643872872795089, "percentage": 66.44, "elapsed_time": "7:27:35", "remaining_time": "3:46:05"} +{"current_steps": 8560, "total_steps": 12869, "loss": 0.6334, "learning_rate": 3.0437507185903516e-06, "epoch": 0.6651643484342218, "percentage": 66.52, "elapsed_time": "7:28:07", "remaining_time": "3:45:34"} +{"current_steps": 8570, "total_steps": 12869, "loss": 0.6492, "learning_rate": 3.0312766707443784e-06, "epoch": 0.6659414095889347, "percentage": 66.59, "elapsed_time": "7:28:35", "remaining_time": "3:45:01"} +{"current_steps": 8580, "total_steps": 12869, "loss": 0.6293, "learning_rate": 3.0188171078499117e-06, "epoch": 0.6667184707436475, "percentage": 66.67, "elapsed_time": "7:29:00", "remaining_time": "3:44:26"} +{"current_steps": 8590, "total_steps": 12869, "loss": 0.6125, "learning_rate": 3.0063721215786274e-06, "epoch": 0.6674955318983604, "percentage": 66.75, "elapsed_time": "7:29:32", "remaining_time": "3:43:55"} +{"current_steps": 8600, "total_steps": 12869, "loss": 0.6152, "learning_rate": 2.99394180349495e-06, "epoch": 0.6682725930530733, "percentage": 66.83, "elapsed_time": "7:30:02", "remaining_time": "3:43:23"} +{"current_steps": 8610, "total_steps": 12869, "loss": 0.5768, "learning_rate": 2.981526245055387e-06, "epoch": 0.6690496542077862, "percentage": 66.9, "elapsed_time": "7:30:36", "remaining_time": "3:42:53"} +{"current_steps": 8620, "total_steps": 12869, "loss": 0.542, "learning_rate": 2.9691255376078464e-06, "epoch": 0.669826715362499, "percentage": 66.98, "elapsed_time": "7:31:14", "remaining_time": "3:42:25"} +{"current_steps": 8630, "total_steps": 12869, "loss": 0.519, "learning_rate": 2.9567397723909725e-06, "epoch": 0.6706037765172119, "percentage": 67.06, "elapsed_time": "7:31:48", "remaining_time": "3:41:55"} +{"current_steps": 8640, "total_steps": 12869, "loss": 0.6396, "learning_rate": 2.944369040533471e-06, "epoch": 0.6713808376719248, "percentage": 67.14, "elapsed_time": "7:32:21", "remaining_time": "3:41:24"} +{"current_steps": 8650, "total_steps": 12869, "loss": 0.6385, "learning_rate": 2.9320134330534367e-06, "epoch": 0.6721578988266377, "percentage": 67.22, "elapsed_time": "7:32:49", "remaining_time": "3:40:51"} +{"current_steps": 8660, "total_steps": 12869, "loss": 0.5935, "learning_rate": 2.919673040857693e-06, "epoch": 0.6729349599813506, "percentage": 67.29, "elapsed_time": "7:33:15", "remaining_time": "3:40:17"} +{"current_steps": 8670, "total_steps": 12869, "loss": 0.6041, "learning_rate": 2.9073479547411087e-06, "epoch": 0.6737120211360634, "percentage": 67.37, "elapsed_time": "7:33:45", "remaining_time": "3:39:45"} +{"current_steps": 8680, "total_steps": 12869, "loss": 0.5603, "learning_rate": 2.89503826538594e-06, "epoch": 0.6744890822907763, "percentage": 67.45, "elapsed_time": "7:34:19", "remaining_time": "3:39:15"} +{"current_steps": 8690, "total_steps": 12869, "loss": 0.5839, "learning_rate": 2.882744063361165e-06, "epoch": 0.6752661434454892, "percentage": 67.53, "elapsed_time": "7:34:47", "remaining_time": "3:38:42"} +{"current_steps": 8700, "total_steps": 12869, "loss": 0.6, "learning_rate": 2.870465439121807e-06, "epoch": 0.6760432046002021, "percentage": 67.6, "elapsed_time": "7:35:16", "remaining_time": "3:38:10"} +{"current_steps": 8710, "total_steps": 12869, "loss": 0.6255, "learning_rate": 2.8582024830082796e-06, "epoch": 0.6768202657549149, "percentage": 67.68, "elapsed_time": "7:35:44", "remaining_time": "3:37:37"} +{"current_steps": 8720, "total_steps": 12869, "loss": 0.5545, "learning_rate": 2.845955285245715e-06, "epoch": 0.6775973269096278, "percentage": 67.76, "elapsed_time": "7:36:14", "remaining_time": "3:37:04"} +{"current_steps": 8730, "total_steps": 12869, "loss": 0.5684, "learning_rate": 2.833723935943301e-06, "epoch": 0.6783743880643407, "percentage": 67.84, "elapsed_time": "7:36:42", "remaining_time": "3:36:32"} +{"current_steps": 8740, "total_steps": 12869, "loss": 0.6519, "learning_rate": 2.821508525093627e-06, "epoch": 0.6791514492190536, "percentage": 67.92, "elapsed_time": "7:37:09", "remaining_time": "3:35:58"} +{"current_steps": 8750, "total_steps": 12869, "loss": 0.6229, "learning_rate": 2.8093091425720097e-06, "epoch": 0.6799285103737664, "percentage": 67.99, "elapsed_time": "7:37:41", "remaining_time": "3:35:27"} +{"current_steps": 8760, "total_steps": 12869, "loss": 0.5641, "learning_rate": 2.797125878135837e-06, "epoch": 0.6807055715284793, "percentage": 68.07, "elapsed_time": "7:38:12", "remaining_time": "3:34:55"} +{"current_steps": 8770, "total_steps": 12869, "loss": 0.6232, "learning_rate": 2.784958821423907e-06, "epoch": 0.6814826326831922, "percentage": 68.15, "elapsed_time": "7:38:44", "remaining_time": "3:34:24"} +{"current_steps": 8780, "total_steps": 12869, "loss": 0.5977, "learning_rate": 2.7728080619557702e-06, "epoch": 0.6822596938379051, "percentage": 68.23, "elapsed_time": "7:39:10", "remaining_time": "3:33:50"} +{"current_steps": 8790, "total_steps": 12869, "loss": 0.6185, "learning_rate": 2.760673689131068e-06, "epoch": 0.683036754992618, "percentage": 68.3, "elapsed_time": "7:39:36", "remaining_time": "3:33:16"} +{"current_steps": 8800, "total_steps": 12869, "loss": 0.6274, "learning_rate": 2.7485557922288776e-06, "epoch": 0.6838138161473308, "percentage": 68.38, "elapsed_time": "7:40:06", "remaining_time": "3:32:44"} +{"current_steps": 8810, "total_steps": 12869, "loss": 0.6181, "learning_rate": 2.736454460407055e-06, "epoch": 0.6845908773020437, "percentage": 68.46, "elapsed_time": "7:40:35", "remaining_time": "3:32:12"} +{"current_steps": 8820, "total_steps": 12869, "loss": 0.621, "learning_rate": 2.724369782701578e-06, "epoch": 0.6853679384567566, "percentage": 68.54, "elapsed_time": "7:41:11", "remaining_time": "3:31:42"} +{"current_steps": 8830, "total_steps": 12869, "loss": 0.5441, "learning_rate": 2.7123018480258876e-06, "epoch": 0.6861449996114695, "percentage": 68.61, "elapsed_time": "7:41:42", "remaining_time": "3:31:11"} +{"current_steps": 8840, "total_steps": 12869, "loss": 0.5498, "learning_rate": 2.7002507451702394e-06, "epoch": 0.6869220607661823, "percentage": 68.69, "elapsed_time": "7:42:14", "remaining_time": "3:30:40"} +{"current_steps": 8850, "total_steps": 12869, "loss": 0.5992, "learning_rate": 2.688216562801052e-06, "epoch": 0.6876991219208952, "percentage": 68.77, "elapsed_time": "7:42:43", "remaining_time": "3:30:08"} +{"current_steps": 8860, "total_steps": 12869, "loss": 0.5945, "learning_rate": 2.6761993894602444e-06, "epoch": 0.6884761830756081, "percentage": 68.85, "elapsed_time": "7:43:13", "remaining_time": "3:29:35"} +{"current_steps": 8870, "total_steps": 12869, "loss": 0.5958, "learning_rate": 2.664199313564598e-06, "epoch": 0.689253244230321, "percentage": 68.93, "elapsed_time": "7:43:42", "remaining_time": "3:29:03"} +{"current_steps": 8880, "total_steps": 12869, "loss": 0.5645, "learning_rate": 2.652216423405093e-06, "epoch": 0.6900303053850338, "percentage": 69.0, "elapsed_time": "7:44:09", "remaining_time": "3:28:30"} +{"current_steps": 8890, "total_steps": 12869, "loss": 0.5821, "learning_rate": 2.6402508071462685e-06, "epoch": 0.6908073665397467, "percentage": 69.08, "elapsed_time": "7:44:38", "remaining_time": "3:27:58"} +{"current_steps": 8900, "total_steps": 12869, "loss": 0.6111, "learning_rate": 2.6283025528255685e-06, "epoch": 0.6915844276944596, "percentage": 69.16, "elapsed_time": "7:45:09", "remaining_time": "3:27:26"} +{"current_steps": 8910, "total_steps": 12869, "loss": 0.5546, "learning_rate": 2.6163717483526953e-06, "epoch": 0.6923614888491725, "percentage": 69.24, "elapsed_time": "7:45:41", "remaining_time": "3:26:55"} +{"current_steps": 8920, "total_steps": 12869, "loss": 0.5685, "learning_rate": 2.6044584815089667e-06, "epoch": 0.6931385500038854, "percentage": 69.31, "elapsed_time": "7:46:10", "remaining_time": "3:26:22"} +{"current_steps": 8930, "total_steps": 12869, "loss": 0.5456, "learning_rate": 2.592562839946664e-06, "epoch": 0.6939156111585982, "percentage": 69.39, "elapsed_time": "7:46:40", "remaining_time": "3:25:50"} +{"current_steps": 8940, "total_steps": 12869, "loss": 0.559, "learning_rate": 2.5806849111883913e-06, "epoch": 0.6946926723133111, "percentage": 69.47, "elapsed_time": "7:47:16", "remaining_time": "3:25:21"} +{"current_steps": 8950, "total_steps": 12869, "loss": 0.5538, "learning_rate": 2.56882478262643e-06, "epoch": 0.695469733468024, "percentage": 69.55, "elapsed_time": "7:47:46", "remaining_time": "3:24:49"} +{"current_steps": 8960, "total_steps": 12869, "loss": 0.5383, "learning_rate": 2.556982541522094e-06, "epoch": 0.6962467946227369, "percentage": 69.62, "elapsed_time": "7:48:15", "remaining_time": "3:24:17"} +{"current_steps": 8970, "total_steps": 12869, "loss": 0.5698, "learning_rate": 2.5451582750050896e-06, "epoch": 0.6970238557774496, "percentage": 69.7, "elapsed_time": "7:48:49", "remaining_time": "3:23:47"} +{"current_steps": 8980, "total_steps": 12869, "loss": 0.5581, "learning_rate": 2.5333520700728793e-06, "epoch": 0.6978009169321625, "percentage": 69.78, "elapsed_time": "7:49:26", "remaining_time": "3:23:18"} +{"current_steps": 8990, "total_steps": 12869, "loss": 0.5334, "learning_rate": 2.521564013590031e-06, "epoch": 0.6985779780868754, "percentage": 69.86, "elapsed_time": "7:49:55", "remaining_time": "3:22:45"} +{"current_steps": 9000, "total_steps": 12869, "loss": 0.561, "learning_rate": 2.509794192287588e-06, "epoch": 0.6993550392415883, "percentage": 69.94, "elapsed_time": "7:50:31", "remaining_time": "3:22:16"} +{"current_steps": 9010, "total_steps": 12869, "loss": 0.5418, "learning_rate": 2.498042692762426e-06, "epoch": 0.7001321003963011, "percentage": 70.01, "elapsed_time": "7:51:01", "remaining_time": "3:21:44"} +{"current_steps": 9020, "total_steps": 12869, "loss": 0.5411, "learning_rate": 2.4863096014766193e-06, "epoch": 0.700909161551014, "percentage": 70.09, "elapsed_time": "7:51:31", "remaining_time": "3:21:12"} +{"current_steps": 9030, "total_steps": 12869, "loss": 0.5589, "learning_rate": 2.474595004756799e-06, "epoch": 0.7016862227057269, "percentage": 70.17, "elapsed_time": "7:52:05", "remaining_time": "3:20:42"} +{"current_steps": 9040, "total_steps": 12869, "loss": 0.537, "learning_rate": 2.4628989887935266e-06, "epoch": 0.7024632838604398, "percentage": 70.25, "elapsed_time": "7:52:35", "remaining_time": "3:20:10"} +{"current_steps": 9050, "total_steps": 12869, "loss": 0.6243, "learning_rate": 2.4512216396406552e-06, "epoch": 0.7032403450151526, "percentage": 70.32, "elapsed_time": "7:53:05", "remaining_time": "3:19:38"} +{"current_steps": 9060, "total_steps": 12869, "loss": 0.5817, "learning_rate": 2.4395630432146926e-06, "epoch": 0.7040174061698655, "percentage": 70.4, "elapsed_time": "7:53:36", "remaining_time": "3:19:06"} +{"current_steps": 9070, "total_steps": 12869, "loss": 0.5788, "learning_rate": 2.427923285294174e-06, "epoch": 0.7047944673245784, "percentage": 70.48, "elapsed_time": "7:54:11", "remaining_time": "3:18:37"} +{"current_steps": 9080, "total_steps": 12869, "loss": 0.5311, "learning_rate": 2.4163024515190293e-06, "epoch": 0.7055715284792913, "percentage": 70.56, "elapsed_time": "7:54:38", "remaining_time": "3:18:03"} +{"current_steps": 9090, "total_steps": 12869, "loss": 0.5713, "learning_rate": 2.4047006273899527e-06, "epoch": 0.7063485896340042, "percentage": 70.63, "elapsed_time": "7:55:09", "remaining_time": "3:17:32"} +{"current_steps": 9100, "total_steps": 12869, "loss": 0.6031, "learning_rate": 2.393117898267779e-06, "epoch": 0.707125650788717, "percentage": 70.71, "elapsed_time": "7:55:44", "remaining_time": "3:17:02"} +{"current_steps": 9110, "total_steps": 12869, "loss": 0.5594, "learning_rate": 2.3815543493728454e-06, "epoch": 0.7079027119434299, "percentage": 70.79, "elapsed_time": "7:56:21", "remaining_time": "3:16:33"} +{"current_steps": 9120, "total_steps": 12869, "loss": 0.5461, "learning_rate": 2.370010065784372e-06, "epoch": 0.7086797730981428, "percentage": 70.87, "elapsed_time": "7:56:49", "remaining_time": "3:16:00"} +{"current_steps": 9130, "total_steps": 12869, "loss": 0.5815, "learning_rate": 2.358485132439831e-06, "epoch": 0.7094568342528557, "percentage": 70.95, "elapsed_time": "7:57:14", "remaining_time": "3:15:26"} +{"current_steps": 9140, "total_steps": 12869, "loss": 0.5247, "learning_rate": 2.3469796341343315e-06, "epoch": 0.7102338954075685, "percentage": 71.02, "elapsed_time": "7:57:51", "remaining_time": "3:14:57"} +{"current_steps": 9150, "total_steps": 12869, "loss": 0.5387, "learning_rate": 2.33549365551998e-06, "epoch": 0.7110109565622814, "percentage": 71.1, "elapsed_time": "7:58:27", "remaining_time": "3:14:28"} +{"current_steps": 9160, "total_steps": 12869, "loss": 0.5776, "learning_rate": 2.3240272811052738e-06, "epoch": 0.7117880177169943, "percentage": 71.18, "elapsed_time": "7:58:54", "remaining_time": "3:13:55"} +{"current_steps": 9170, "total_steps": 12869, "loss": 0.5842, "learning_rate": 2.3125805952544666e-06, "epoch": 0.7125650788717072, "percentage": 71.26, "elapsed_time": "7:59:30", "remaining_time": "3:13:25"} +{"current_steps": 9180, "total_steps": 12869, "loss": 0.53, "learning_rate": 2.301153682186954e-06, "epoch": 0.71334214002642, "percentage": 71.33, "elapsed_time": "8:00:03", "remaining_time": "3:12:54"} +{"current_steps": 9190, "total_steps": 12869, "loss": 0.5681, "learning_rate": 2.289746625976653e-06, "epoch": 0.7141192011811329, "percentage": 71.41, "elapsed_time": "8:00:32", "remaining_time": "3:12:22"} +{"current_steps": 9200, "total_steps": 12869, "loss": 0.5575, "learning_rate": 2.2783595105513832e-06, "epoch": 0.7148962623358458, "percentage": 71.49, "elapsed_time": "8:01:07", "remaining_time": "3:11:52"} +{"current_steps": 9210, "total_steps": 12869, "loss": 0.5716, "learning_rate": 2.266992419692247e-06, "epoch": 0.7156733234905587, "percentage": 71.57, "elapsed_time": "8:01:34", "remaining_time": "3:11:19"} +{"current_steps": 9220, "total_steps": 12869, "loss": 0.5431, "learning_rate": 2.2556454370330195e-06, "epoch": 0.7164503846452716, "percentage": 71.65, "elapsed_time": "8:02:05", "remaining_time": "3:10:48"} +{"current_steps": 9230, "total_steps": 12869, "loss": 0.5502, "learning_rate": 2.2443186460595277e-06, "epoch": 0.7172274457999844, "percentage": 71.72, "elapsed_time": "8:02:34", "remaining_time": "3:10:15"} +{"current_steps": 9240, "total_steps": 12869, "loss": 0.5844, "learning_rate": 2.2330121301090362e-06, "epoch": 0.7180045069546973, "percentage": 71.8, "elapsed_time": "8:03:08", "remaining_time": "3:09:45"} +{"current_steps": 9250, "total_steps": 12869, "loss": 0.5568, "learning_rate": 2.221725972369635e-06, "epoch": 0.7187815681094102, "percentage": 71.88, "elapsed_time": "8:03:41", "remaining_time": "3:09:14"} +{"current_steps": 9260, "total_steps": 12869, "loss": 0.5173, "learning_rate": 2.210460255879629e-06, "epoch": 0.7195586292641231, "percentage": 71.96, "elapsed_time": "8:04:15", "remaining_time": "3:08:44"} +{"current_steps": 9270, "total_steps": 12869, "loss": 0.5229, "learning_rate": 2.1992150635269233e-06, "epoch": 0.7203356904188359, "percentage": 72.03, "elapsed_time": "8:04:44", "remaining_time": "3:08:11"} +{"current_steps": 9280, "total_steps": 12869, "loss": 0.5761, "learning_rate": 2.187990478048423e-06, "epoch": 0.7211127515735488, "percentage": 72.11, "elapsed_time": "8:05:14", "remaining_time": "3:07:39"} +{"current_steps": 9290, "total_steps": 12869, "loss": 0.4937, "learning_rate": 2.1767865820294093e-06, "epoch": 0.7218898127282617, "percentage": 72.19, "elapsed_time": "8:05:41", "remaining_time": "3:07:07"} +{"current_steps": 9300, "total_steps": 12869, "loss": 0.5237, "learning_rate": 2.165603457902945e-06, "epoch": 0.7226668738829746, "percentage": 72.27, "elapsed_time": "8:06:12", "remaining_time": "3:06:35"} +{"current_steps": 9310, "total_steps": 12869, "loss": 0.5743, "learning_rate": 2.1544411879492597e-06, "epoch": 0.7234439350376874, "percentage": 72.34, "elapsed_time": "8:06:45", "remaining_time": "3:06:04"} +{"current_steps": 9320, "total_steps": 12869, "loss": 0.5824, "learning_rate": 2.143299854295149e-06, "epoch": 0.7242209961924003, "percentage": 72.42, "elapsed_time": "8:07:19", "remaining_time": "3:05:34"} +{"current_steps": 9330, "total_steps": 12869, "loss": 0.5274, "learning_rate": 2.13217953891337e-06, "epoch": 0.7249980573471132, "percentage": 72.5, "elapsed_time": "8:07:53", "remaining_time": "3:05:03"} +{"current_steps": 9340, "total_steps": 12869, "loss": 0.5612, "learning_rate": 2.121080323622038e-06, "epoch": 0.7257751185018261, "percentage": 72.58, "elapsed_time": "8:08:28", "remaining_time": "3:04:33"} +{"current_steps": 9350, "total_steps": 12869, "loss": 0.5317, "learning_rate": 2.1100022900840208e-06, "epoch": 0.726552179656539, "percentage": 72.66, "elapsed_time": "8:09:02", "remaining_time": "3:04:03"} +{"current_steps": 9360, "total_steps": 12869, "loss": 0.574, "learning_rate": 2.0989455198063415e-06, "epoch": 0.7273292408112518, "percentage": 72.73, "elapsed_time": "8:09:29", "remaining_time": "3:03:30"} +{"current_steps": 9370, "total_steps": 12869, "loss": 0.5289, "learning_rate": 2.0879100941395787e-06, "epoch": 0.7281063019659647, "percentage": 72.81, "elapsed_time": "8:09:59", "remaining_time": "3:02:58"} +{"current_steps": 9380, "total_steps": 12869, "loss": 0.5622, "learning_rate": 2.076896094277265e-06, "epoch": 0.7288833631206776, "percentage": 72.89, "elapsed_time": "8:10:31", "remaining_time": "3:02:27"} +{"current_steps": 9390, "total_steps": 12869, "loss": 0.5176, "learning_rate": 2.065903601255297e-06, "epoch": 0.7296604242753905, "percentage": 72.97, "elapsed_time": "8:11:04", "remaining_time": "3:01:56"} +{"current_steps": 9400, "total_steps": 12869, "loss": 0.5315, "learning_rate": 2.0549326959513287e-06, "epoch": 0.7304374854301033, "percentage": 73.04, "elapsed_time": "8:11:31", "remaining_time": "3:01:23"} +{"current_steps": 9410, "total_steps": 12869, "loss": 0.5177, "learning_rate": 2.0439834590841833e-06, "epoch": 0.7312145465848162, "percentage": 73.12, "elapsed_time": "8:12:02", "remaining_time": "3:00:52"} +{"current_steps": 9420, "total_steps": 12869, "loss": 0.5484, "learning_rate": 2.0330559712132614e-06, "epoch": 0.7319916077395291, "percentage": 73.2, "elapsed_time": "8:12:32", "remaining_time": "3:00:20"} +{"current_steps": 9430, "total_steps": 12869, "loss": 0.5467, "learning_rate": 2.022150312737939e-06, "epoch": 0.732768668894242, "percentage": 73.28, "elapsed_time": "8:13:06", "remaining_time": "2:59:49"} +{"current_steps": 9440, "total_steps": 12869, "loss": 0.5266, "learning_rate": 2.0112665638969842e-06, "epoch": 0.7335457300489548, "percentage": 73.35, "elapsed_time": "8:13:36", "remaining_time": "2:59:18"} +{"current_steps": 9450, "total_steps": 12869, "loss": 0.5767, "learning_rate": 2.0004048047679624e-06, "epoch": 0.7343227912036677, "percentage": 73.43, "elapsed_time": "8:14:11", "remaining_time": "2:58:48"} +{"current_steps": 9460, "total_steps": 12869, "loss": 0.5613, "learning_rate": 1.9895651152666538e-06, "epoch": 0.7350998523583806, "percentage": 73.51, "elapsed_time": "8:14:46", "remaining_time": "2:58:17"} +{"current_steps": 9470, "total_steps": 12869, "loss": 0.5111, "learning_rate": 1.978747575146455e-06, "epoch": 0.7358769135130935, "percentage": 73.59, "elapsed_time": "8:15:15", "remaining_time": "2:57:45"} +{"current_steps": 9480, "total_steps": 12869, "loss": 0.5538, "learning_rate": 1.967952263997801e-06, "epoch": 0.7366539746678064, "percentage": 73.67, "elapsed_time": "8:15:50", "remaining_time": "2:57:15"} +{"current_steps": 9490, "total_steps": 12869, "loss": 0.5741, "learning_rate": 1.9571792612475747e-06, "epoch": 0.7374310358225192, "percentage": 73.74, "elapsed_time": "8:16:24", "remaining_time": "2:56:44"} +{"current_steps": 9500, "total_steps": 12869, "loss": 0.5357, "learning_rate": 1.9464286461585223e-06, "epoch": 0.7382080969772321, "percentage": 73.82, "elapsed_time": "8:16:54", "remaining_time": "2:56:13"} +{"current_steps": 9510, "total_steps": 12869, "loss": 0.5369, "learning_rate": 1.9357004978286777e-06, "epoch": 0.738985158131945, "percentage": 73.9, "elapsed_time": "8:17:25", "remaining_time": "2:55:41"} +{"current_steps": 9520, "total_steps": 12869, "loss": 0.547, "learning_rate": 1.924994895190772e-06, "epoch": 0.7397622192866579, "percentage": 73.98, "elapsed_time": "8:17:51", "remaining_time": "2:55:08"} +{"current_steps": 9530, "total_steps": 12869, "loss": 0.5365, "learning_rate": 1.9143119170116534e-06, "epoch": 0.7405392804413707, "percentage": 74.05, "elapsed_time": "8:18:22", "remaining_time": "2:54:36"} +{"current_steps": 9540, "total_steps": 12869, "loss": 0.576, "learning_rate": 1.9036516418917128e-06, "epoch": 0.7413163415960836, "percentage": 74.13, "elapsed_time": "8:19:01", "remaining_time": "2:54:08"} +{"current_steps": 9550, "total_steps": 12869, "loss": 0.5528, "learning_rate": 1.8930141482643005e-06, "epoch": 0.7420934027507965, "percentage": 74.21, "elapsed_time": "8:19:30", "remaining_time": "2:53:35"} +{"current_steps": 9560, "total_steps": 12869, "loss": 0.5505, "learning_rate": 1.88239951439515e-06, "epoch": 0.7428704639055094, "percentage": 74.29, "elapsed_time": "8:19:55", "remaining_time": "2:53:02"} +{"current_steps": 9570, "total_steps": 12869, "loss": 0.547, "learning_rate": 1.8718078183818094e-06, "epoch": 0.7436475250602222, "percentage": 74.36, "elapsed_time": "8:20:28", "remaining_time": "2:52:31"} +{"current_steps": 9580, "total_steps": 12869, "loss": 0.5361, "learning_rate": 1.8612391381530548e-06, "epoch": 0.7444245862149351, "percentage": 74.44, "elapsed_time": "8:21:02", "remaining_time": "2:52:01"} +{"current_steps": 9590, "total_steps": 12869, "loss": 0.5558, "learning_rate": 1.8506935514683244e-06, "epoch": 0.745201647369648, "percentage": 74.52, "elapsed_time": "8:21:38", "remaining_time": "2:51:31"} +{"current_steps": 9600, "total_steps": 12869, "loss": 0.5406, "learning_rate": 1.8401711359171438e-06, "epoch": 0.7459787085243609, "percentage": 74.6, "elapsed_time": "8:22:10", "remaining_time": "2:51:00"} +{"current_steps": 9610, "total_steps": 12869, "loss": 0.5345, "learning_rate": 1.82967196891856e-06, "epoch": 0.7467557696790738, "percentage": 74.68, "elapsed_time": "8:22:47", "remaining_time": "2:50:30"} +{"current_steps": 9620, "total_steps": 12869, "loss": 0.5417, "learning_rate": 1.819196127720565e-06, "epoch": 0.7475328308337866, "percentage": 74.75, "elapsed_time": "8:23:21", "remaining_time": "2:49:59"} +{"current_steps": 9630, "total_steps": 12869, "loss": 0.5792, "learning_rate": 1.808743689399528e-06, "epoch": 0.7483098919884995, "percentage": 74.83, "elapsed_time": "8:23:47", "remaining_time": "2:49:26"} +{"current_steps": 9640, "total_steps": 12869, "loss": 0.5527, "learning_rate": 1.798314730859637e-06, "epoch": 0.7490869531432124, "percentage": 74.91, "elapsed_time": "8:24:23", "remaining_time": "2:48:56"} +{"current_steps": 9650, "total_steps": 12869, "loss": 0.5491, "learning_rate": 1.787909328832323e-06, "epoch": 0.7498640142979253, "percentage": 74.99, "elapsed_time": "8:24:58", "remaining_time": "2:48:26"} +{"current_steps": 9660, "total_steps": 12869, "loss": 0.5553, "learning_rate": 1.7775275598756974e-06, "epoch": 0.7506410754526381, "percentage": 75.06, "elapsed_time": "8:25:22", "remaining_time": "2:47:53"} +{"current_steps": 9670, "total_steps": 12869, "loss": 0.5143, "learning_rate": 1.7671695003739935e-06, "epoch": 0.751418136607351, "percentage": 75.14, "elapsed_time": "8:25:59", "remaining_time": "2:47:23"} +{"current_steps": 9680, "total_steps": 12869, "loss": 0.5291, "learning_rate": 1.7568352265369987e-06, "epoch": 0.7521951977620639, "percentage": 75.22, "elapsed_time": "8:26:25", "remaining_time": "2:46:50"} +{"current_steps": 9690, "total_steps": 12869, "loss": 0.5271, "learning_rate": 1.7465248143995011e-06, "epoch": 0.7529722589167768, "percentage": 75.3, "elapsed_time": "8:26:52", "remaining_time": "2:46:17"} +{"current_steps": 9700, "total_steps": 12869, "loss": 0.5665, "learning_rate": 1.7362383398207189e-06, "epoch": 0.7537493200714896, "percentage": 75.37, "elapsed_time": "8:27:20", "remaining_time": "2:45:44"} +{"current_steps": 9710, "total_steps": 12869, "loss": 0.5282, "learning_rate": 1.725975878483757e-06, "epoch": 0.7545263812262025, "percentage": 75.45, "elapsed_time": "8:27:49", "remaining_time": "2:45:12"} +{"current_steps": 9720, "total_steps": 12869, "loss": 0.5572, "learning_rate": 1.7157375058950349e-06, "epoch": 0.7553034423809154, "percentage": 75.53, "elapsed_time": "8:28:22", "remaining_time": "2:44:41"} +{"current_steps": 9730, "total_steps": 12869, "loss": 0.5502, "learning_rate": 1.705523297383741e-06, "epoch": 0.7560805035356283, "percentage": 75.61, "elapsed_time": "8:28:53", "remaining_time": "2:44:10"} +{"current_steps": 9740, "total_steps": 12869, "loss": 0.5557, "learning_rate": 1.6953333281012745e-06, "epoch": 0.7568575646903412, "percentage": 75.69, "elapsed_time": "8:29:23", "remaining_time": "2:43:38"} +{"current_steps": 9750, "total_steps": 12869, "loss": 0.5067, "learning_rate": 1.6851676730206978e-06, "epoch": 0.757634625845054, "percentage": 75.76, "elapsed_time": "8:29:51", "remaining_time": "2:43:06"} +{"current_steps": 9760, "total_steps": 12869, "loss": 0.521, "learning_rate": 1.6750264069361755e-06, "epoch": 0.7584116869997669, "percentage": 75.84, "elapsed_time": "8:30:20", "remaining_time": "2:42:33"} +{"current_steps": 9770, "total_steps": 12869, "loss": 0.5162, "learning_rate": 1.664909604462432e-06, "epoch": 0.7591887481544798, "percentage": 75.92, "elapsed_time": "8:30:54", "remaining_time": "2:42:03"} +{"current_steps": 9780, "total_steps": 12869, "loss": 0.4662, "learning_rate": 1.6548173400341988e-06, "epoch": 0.7599658093091927, "percentage": 76.0, "elapsed_time": "8:31:31", "remaining_time": "2:41:33"} +{"current_steps": 9790, "total_steps": 12869, "loss": 0.5326, "learning_rate": 1.6447496879056667e-06, "epoch": 0.7607428704639055, "percentage": 76.07, "elapsed_time": "8:32:01", "remaining_time": "2:41:02"} +{"current_steps": 9800, "total_steps": 12869, "loss": 0.5221, "learning_rate": 1.6347067221499441e-06, "epoch": 0.7615199316186184, "percentage": 76.15, "elapsed_time": "8:32:32", "remaining_time": "2:40:30"} +{"current_steps": 9810, "total_steps": 12869, "loss": 0.5404, "learning_rate": 1.6246885166585081e-06, "epoch": 0.7622969927733313, "percentage": 76.23, "elapsed_time": "8:33:04", "remaining_time": "2:39:59"} +{"current_steps": 9820, "total_steps": 12869, "loss": 0.4837, "learning_rate": 1.6146951451406583e-06, "epoch": 0.7630740539280442, "percentage": 76.31, "elapsed_time": "8:33:39", "remaining_time": "2:39:29"} +{"current_steps": 9830, "total_steps": 12869, "loss": 0.4849, "learning_rate": 1.604726681122979e-06, "epoch": 0.763851115082757, "percentage": 76.39, "elapsed_time": "8:34:10", "remaining_time": "2:38:57"} +{"current_steps": 9840, "total_steps": 12869, "loss": 0.5925, "learning_rate": 1.5947831979487966e-06, "epoch": 0.7646281762374699, "percentage": 76.46, "elapsed_time": "8:34:35", "remaining_time": "2:38:24"} +{"current_steps": 9850, "total_steps": 12869, "loss": 0.5019, "learning_rate": 1.5848647687776397e-06, "epoch": 0.7654052373921828, "percentage": 76.54, "elapsed_time": "8:35:00", "remaining_time": "2:37:51"} +{"current_steps": 9860, "total_steps": 12869, "loss": 0.5124, "learning_rate": 1.574971466584701e-06, "epoch": 0.7661822985468957, "percentage": 76.62, "elapsed_time": "8:35:33", "remaining_time": "2:37:20"} +{"current_steps": 9870, "total_steps": 12869, "loss": 0.5314, "learning_rate": 1.5651033641603041e-06, "epoch": 0.7669593597016086, "percentage": 76.7, "elapsed_time": "8:36:10", "remaining_time": "2:36:50"} +{"current_steps": 9880, "total_steps": 12869, "loss": 0.5089, "learning_rate": 1.555260534109359e-06, "epoch": 0.7677364208563214, "percentage": 76.77, "elapsed_time": "8:36:42", "remaining_time": "2:36:19"} +{"current_steps": 9890, "total_steps": 12869, "loss": 0.5472, "learning_rate": 1.5454430488508359e-06, "epoch": 0.7685134820110343, "percentage": 76.85, "elapsed_time": "8:37:14", "remaining_time": "2:35:47"} +{"current_steps": 9900, "total_steps": 12869, "loss": 0.5168, "learning_rate": 1.5356509806172315e-06, "epoch": 0.7692905431657472, "percentage": 76.93, "elapsed_time": "8:37:41", "remaining_time": "2:35:15"} +{"current_steps": 9910, "total_steps": 12869, "loss": 0.5485, "learning_rate": 1.525884401454033e-06, "epoch": 0.7700676043204601, "percentage": 77.01, "elapsed_time": "8:38:10", "remaining_time": "2:34:43"} +{"current_steps": 9920, "total_steps": 12869, "loss": 0.5044, "learning_rate": 1.5161433832191902e-06, "epoch": 0.7708446654751729, "percentage": 77.08, "elapsed_time": "8:38:36", "remaining_time": "2:34:10"} +{"current_steps": 9930, "total_steps": 12869, "loss": 0.4934, "learning_rate": 1.5064279975825923e-06, "epoch": 0.7716217266298858, "percentage": 77.16, "elapsed_time": "8:39:03", "remaining_time": "2:33:37"} +{"current_steps": 9940, "total_steps": 12869, "loss": 0.5183, "learning_rate": 1.4967383160255316e-06, "epoch": 0.7723987877845987, "percentage": 77.24, "elapsed_time": "8:39:36", "remaining_time": "2:33:06"} +{"current_steps": 9950, "total_steps": 12869, "loss": 0.5306, "learning_rate": 1.4870744098401819e-06, "epoch": 0.7731758489393116, "percentage": 77.32, "elapsed_time": "8:40:09", "remaining_time": "2:32:35"} +{"current_steps": 9960, "total_steps": 12869, "loss": 0.5415, "learning_rate": 1.4774363501290755e-06, "epoch": 0.7739529100940244, "percentage": 77.4, "elapsed_time": "8:40:38", "remaining_time": "2:32:03"} +{"current_steps": 9970, "total_steps": 12869, "loss": 0.5421, "learning_rate": 1.4678242078045756e-06, "epoch": 0.7747299712487373, "percentage": 77.47, "elapsed_time": "8:41:07", "remaining_time": "2:31:31"} +{"current_steps": 9980, "total_steps": 12869, "loss": 0.5452, "learning_rate": 1.4582380535883622e-06, "epoch": 0.7755070324034502, "percentage": 77.55, "elapsed_time": "8:41:40", "remaining_time": "2:31:00"} +{"current_steps": 9990, "total_steps": 12869, "loss": 0.5254, "learning_rate": 1.4486779580109012e-06, "epoch": 0.7762840935581631, "percentage": 77.63, "elapsed_time": "8:42:16", "remaining_time": "2:30:30"} +{"current_steps": 10000, "total_steps": 12869, "loss": 0.4899, "learning_rate": 1.4391439914109367e-06, "epoch": 0.777061154712876, "percentage": 77.71, "elapsed_time": "8:42:46", "remaining_time": "2:29:59"} +{"current_steps": 10000, "total_steps": 12869, "eval_loss": 0.5171714425086975, "epoch": 0.777061154712876, "percentage": 77.71, "elapsed_time": "8:50:39", "remaining_time": "2:32:14"} +{"current_steps": 10010, "total_steps": 12869, "loss": 0.4927, "learning_rate": 1.429636223934963e-06, "epoch": 0.7778382158675888, "percentage": 77.78, "elapsed_time": "8:51:07", "remaining_time": "2:31:41"} +{"current_steps": 10020, "total_steps": 12869, "loss": 0.5085, "learning_rate": 1.4201547255367165e-06, "epoch": 0.7786152770223017, "percentage": 77.86, "elapsed_time": "8:51:38", "remaining_time": "2:31:09"} +{"current_steps": 10030, "total_steps": 12869, "loss": 0.5058, "learning_rate": 1.4106995659766547e-06, "epoch": 0.7793923381770145, "percentage": 77.94, "elapsed_time": "8:52:06", "remaining_time": "2:30:36"} +{"current_steps": 10040, "total_steps": 12869, "loss": 0.5265, "learning_rate": 1.4012708148214522e-06, "epoch": 0.7801693993317274, "percentage": 78.02, "elapsed_time": "8:52:38", "remaining_time": "2:30:05"} +{"current_steps": 10050, "total_steps": 12869, "loss": 0.4623, "learning_rate": 1.3918685414434763e-06, "epoch": 0.7809464604864402, "percentage": 78.09, "elapsed_time": "8:53:15", "remaining_time": "2:29:34"} +{"current_steps": 10060, "total_steps": 12869, "loss": 0.4865, "learning_rate": 1.3824928150202866e-06, "epoch": 0.7817235216411531, "percentage": 78.17, "elapsed_time": "8:53:41", "remaining_time": "2:29:01"} +{"current_steps": 10070, "total_steps": 12869, "loss": 0.5297, "learning_rate": 1.3731437045341218e-06, "epoch": 0.782500582795866, "percentage": 78.25, "elapsed_time": "8:54:14", "remaining_time": "2:28:29"} +{"current_steps": 10080, "total_steps": 12869, "loss": 0.5588, "learning_rate": 1.363821278771391e-06, "epoch": 0.7832776439505789, "percentage": 78.33, "elapsed_time": "8:54:44", "remaining_time": "2:27:57"} +{"current_steps": 10090, "total_steps": 12869, "loss": 0.5241, "learning_rate": 1.3545256063221745e-06, "epoch": 0.7840547051052917, "percentage": 78.41, "elapsed_time": "8:55:18", "remaining_time": "2:27:26"} +{"current_steps": 10100, "total_steps": 12869, "loss": 0.5351, "learning_rate": 1.3452567555797085e-06, "epoch": 0.7848317662600046, "percentage": 78.48, "elapsed_time": "8:55:50", "remaining_time": "2:26:54"} +{"current_steps": 10110, "total_steps": 12869, "loss": 0.4874, "learning_rate": 1.3360147947398927e-06, "epoch": 0.7856088274147175, "percentage": 78.56, "elapsed_time": "8:56:20", "remaining_time": "2:26:22"} +{"current_steps": 10120, "total_steps": 12869, "loss": 0.5148, "learning_rate": 1.3267997918007792e-06, "epoch": 0.7863858885694304, "percentage": 78.64, "elapsed_time": "8:56:50", "remaining_time": "2:25:49"} +{"current_steps": 10130, "total_steps": 12869, "loss": 0.4988, "learning_rate": 1.3176118145620775e-06, "epoch": 0.7871629497241432, "percentage": 78.72, "elapsed_time": "8:57:18", "remaining_time": "2:25:16"} +{"current_steps": 10140, "total_steps": 12869, "loss": 0.4687, "learning_rate": 1.3084509306246562e-06, "epoch": 0.7879400108788561, "percentage": 78.79, "elapsed_time": "8:57:46", "remaining_time": "2:24:44"} +{"current_steps": 10150, "total_steps": 12869, "loss": 0.518, "learning_rate": 1.29931720739004e-06, "epoch": 0.788717072033569, "percentage": 78.87, "elapsed_time": "8:58:16", "remaining_time": "2:24:11"} +{"current_steps": 10160, "total_steps": 12869, "loss": 0.5312, "learning_rate": 1.2902107120599249e-06, "epoch": 0.7894941331882819, "percentage": 78.95, "elapsed_time": "8:58:46", "remaining_time": "2:23:39"} +{"current_steps": 10170, "total_steps": 12869, "loss": 0.5196, "learning_rate": 1.2811315116356698e-06, "epoch": 0.7902711943429948, "percentage": 79.03, "elapsed_time": "8:59:15", "remaining_time": "2:23:06"} +{"current_steps": 10180, "total_steps": 12869, "loss": 0.527, "learning_rate": 1.2720796729178115e-06, "epoch": 0.7910482554977076, "percentage": 79.1, "elapsed_time": "8:59:45", "remaining_time": "2:22:34"} +{"current_steps": 10190, "total_steps": 12869, "loss": 0.5347, "learning_rate": 1.2630552625055763e-06, "epoch": 0.7918253166524205, "percentage": 79.18, "elapsed_time": "9:00:13", "remaining_time": "2:22:01"} +{"current_steps": 10200, "total_steps": 12869, "loss": 0.4811, "learning_rate": 1.2540583467963817e-06, "epoch": 0.7926023778071334, "percentage": 79.26, "elapsed_time": "9:00:44", "remaining_time": "2:21:29"} +{"current_steps": 10210, "total_steps": 12869, "loss": 0.5086, "learning_rate": 1.245088991985352e-06, "epoch": 0.7933794389618463, "percentage": 79.34, "elapsed_time": "9:01:18", "remaining_time": "2:20:58"} +{"current_steps": 10220, "total_steps": 12869, "loss": 0.4862, "learning_rate": 1.2361472640648347e-06, "epoch": 0.7941565001165591, "percentage": 79.42, "elapsed_time": "9:01:46", "remaining_time": "2:20:25"} +{"current_steps": 10230, "total_steps": 12869, "loss": 0.5303, "learning_rate": 1.227233228823908e-06, "epoch": 0.794933561271272, "percentage": 79.49, "elapsed_time": "9:02:12", "remaining_time": "2:19:52"} +{"current_steps": 10240, "total_steps": 12869, "loss": 0.5179, "learning_rate": 1.2183469518479018e-06, "epoch": 0.7957106224259849, "percentage": 79.57, "elapsed_time": "9:02:45", "remaining_time": "2:19:20"} +{"current_steps": 10250, "total_steps": 12869, "loss": 0.5318, "learning_rate": 1.2094884985179117e-06, "epoch": 0.7964876835806978, "percentage": 79.65, "elapsed_time": "9:03:14", "remaining_time": "2:18:48"} +{"current_steps": 10260, "total_steps": 12869, "loss": 0.4547, "learning_rate": 1.200657934010323e-06, "epoch": 0.7972647447354106, "percentage": 79.73, "elapsed_time": "9:03:48", "remaining_time": "2:18:17"} +{"current_steps": 10270, "total_steps": 12869, "loss": 0.5134, "learning_rate": 1.1918553232963237e-06, "epoch": 0.7980418058901235, "percentage": 79.8, "elapsed_time": "9:04:19", "remaining_time": "2:17:45"} +{"current_steps": 10280, "total_steps": 12869, "loss": 0.524, "learning_rate": 1.1830807311414355e-06, "epoch": 0.7988188670448364, "percentage": 79.88, "elapsed_time": "9:04:45", "remaining_time": "2:17:11"} +{"current_steps": 10290, "total_steps": 12869, "loss": 0.5175, "learning_rate": 1.1743342221050314e-06, "epoch": 0.7995959281995493, "percentage": 79.96, "elapsed_time": "9:05:16", "remaining_time": "2:16:39"} +{"current_steps": 10300, "total_steps": 12869, "loss": 0.4854, "learning_rate": 1.1656158605398599e-06, "epoch": 0.8003729893542622, "percentage": 80.04, "elapsed_time": "9:05:52", "remaining_time": "2:16:08"} +{"current_steps": 10310, "total_steps": 12869, "loss": 0.5293, "learning_rate": 1.1569257105915743e-06, "epoch": 0.801150050508975, "percentage": 80.12, "elapsed_time": "9:06:18", "remaining_time": "2:15:35"} +{"current_steps": 10320, "total_steps": 12869, "loss": 0.5067, "learning_rate": 1.1482638361982595e-06, "epoch": 0.8019271116636879, "percentage": 80.19, "elapsed_time": "9:06:51", "remaining_time": "2:15:04"} +{"current_steps": 10330, "total_steps": 12869, "loss": 0.5031, "learning_rate": 1.1396303010899623e-06, "epoch": 0.8027041728184008, "percentage": 80.27, "elapsed_time": "9:07:22", "remaining_time": "2:14:32"} +{"current_steps": 10340, "total_steps": 12869, "loss": 0.5339, "learning_rate": 1.131025168788225e-06, "epoch": 0.8034812339731137, "percentage": 80.35, "elapsed_time": "9:07:44", "remaining_time": "2:13:58"} +{"current_steps": 10350, "total_steps": 12869, "loss": 0.5187, "learning_rate": 1.122448502605611e-06, "epoch": 0.8042582951278265, "percentage": 80.43, "elapsed_time": "9:08:09", "remaining_time": "2:13:24"} +{"current_steps": 10360, "total_steps": 12869, "loss": 0.5012, "learning_rate": 1.1139003656452451e-06, "epoch": 0.8050353562825394, "percentage": 80.5, "elapsed_time": "9:08:39", "remaining_time": "2:12:52"} +{"current_steps": 10370, "total_steps": 12869, "loss": 0.5039, "learning_rate": 1.1053808208003463e-06, "epoch": 0.8058124174372523, "percentage": 80.58, "elapsed_time": "9:09:14", "remaining_time": "2:12:21"} +{"current_steps": 10380, "total_steps": 12869, "loss": 0.5096, "learning_rate": 1.0968899307537688e-06, "epoch": 0.8065894785919652, "percentage": 80.66, "elapsed_time": "9:09:49", "remaining_time": "2:11:50"} +{"current_steps": 10390, "total_steps": 12869, "loss": 0.4995, "learning_rate": 1.088427757977535e-06, "epoch": 0.807366539746678, "percentage": 80.74, "elapsed_time": "9:10:20", "remaining_time": "2:11:18"} +{"current_steps": 10400, "total_steps": 12869, "loss": 0.4896, "learning_rate": 1.0799943647323823e-06, "epoch": 0.8081436009013909, "percentage": 80.81, "elapsed_time": "9:10:51", "remaining_time": "2:10:46"} +{"current_steps": 10410, "total_steps": 12869, "loss": 0.4757, "learning_rate": 1.071589813067298e-06, "epoch": 0.8089206620561038, "percentage": 80.89, "elapsed_time": "9:11:20", "remaining_time": "2:10:14"} +{"current_steps": 10420, "total_steps": 12869, "loss": 0.5033, "learning_rate": 1.0632141648190685e-06, "epoch": 0.8096977232108167, "percentage": 80.97, "elapsed_time": "9:11:58", "remaining_time": "2:09:43"} +{"current_steps": 10430, "total_steps": 12869, "loss": 0.4849, "learning_rate": 1.054867481611822e-06, "epoch": 0.8104747843655296, "percentage": 81.05, "elapsed_time": "9:12:25", "remaining_time": "2:09:10"} +{"current_steps": 10440, "total_steps": 12869, "loss": 0.4344, "learning_rate": 1.046549824856574e-06, "epoch": 0.8112518455202424, "percentage": 81.13, "elapsed_time": "9:13:10", "remaining_time": "2:08:42"} +{"current_steps": 10450, "total_steps": 12869, "loss": 0.4419, "learning_rate": 1.038261255750781e-06, "epoch": 0.8120289066749553, "percentage": 81.2, "elapsed_time": "9:13:43", "remaining_time": "2:08:10"} +{"current_steps": 10460, "total_steps": 12869, "loss": 0.4905, "learning_rate": 1.0300018352778817e-06, "epoch": 0.8128059678296682, "percentage": 81.28, "elapsed_time": "9:14:11", "remaining_time": "2:07:37"} +{"current_steps": 10470, "total_steps": 12869, "loss": 0.4989, "learning_rate": 1.0217716242068525e-06, "epoch": 0.8135830289843811, "percentage": 81.36, "elapsed_time": "9:14:41", "remaining_time": "2:07:05"} +{"current_steps": 10480, "total_steps": 12869, "loss": 0.4527, "learning_rate": 1.0135706830917663e-06, "epoch": 0.8143600901390939, "percentage": 81.44, "elapsed_time": "9:15:14", "remaining_time": "2:06:34"} +{"current_steps": 10490, "total_steps": 12869, "loss": 0.5185, "learning_rate": 1.0053990722713347e-06, "epoch": 0.8151371512938068, "percentage": 81.51, "elapsed_time": "9:15:53", "remaining_time": "2:06:04"} +{"current_steps": 10500, "total_steps": 12869, "loss": 0.5453, "learning_rate": 9.97256851868474e-07, "epoch": 0.8159142124485197, "percentage": 81.59, "elapsed_time": "9:16:26", "remaining_time": "2:05:32"} +{"current_steps": 10510, "total_steps": 12869, "loss": 0.4476, "learning_rate": 9.891440817898569e-07, "epoch": 0.8166912736032326, "percentage": 81.67, "elapsed_time": "9:16:58", "remaining_time": "2:05:00"} +{"current_steps": 10520, "total_steps": 12869, "loss": 0.4535, "learning_rate": 9.810608217254785e-07, "epoch": 0.8174683347579454, "percentage": 81.75, "elapsed_time": "9:17:25", "remaining_time": "2:04:27"} +{"current_steps": 10530, "total_steps": 12869, "loss": 0.5266, "learning_rate": 9.730071311482104e-07, "epoch": 0.8182453959126583, "percentage": 81.82, "elapsed_time": "9:18:02", "remaining_time": "2:03:57"} +{"current_steps": 10540, "total_steps": 12869, "loss": 0.4794, "learning_rate": 9.649830693133649e-07, "epoch": 0.8190224570673712, "percentage": 81.9, "elapsed_time": "9:18:28", "remaining_time": "2:03:24"} +{"current_steps": 10550, "total_steps": 12869, "loss": 0.4857, "learning_rate": 9.569886952582613e-07, "epoch": 0.8197995182220841, "percentage": 81.98, "elapsed_time": "9:18:56", "remaining_time": "2:02:51"} +{"current_steps": 10560, "total_steps": 12869, "loss": 0.4773, "learning_rate": 9.49024067801787e-07, "epoch": 0.820576579376797, "percentage": 82.06, "elapsed_time": "9:19:31", "remaining_time": "2:02:20"} +{"current_steps": 10570, "total_steps": 12869, "loss": 0.5123, "learning_rate": 9.410892455439724e-07, "epoch": 0.8213536405315098, "percentage": 82.14, "elapsed_time": "9:20:02", "remaining_time": "2:01:48"} +{"current_steps": 10580, "total_steps": 12869, "loss": 0.4766, "learning_rate": 9.331842868655538e-07, "epoch": 0.8221307016862227, "percentage": 82.21, "elapsed_time": "9:20:36", "remaining_time": "2:01:17"} +{"current_steps": 10590, "total_steps": 12869, "loss": 0.5059, "learning_rate": 9.253092499275435e-07, "epoch": 0.8229077628409356, "percentage": 82.29, "elapsed_time": "9:21:01", "remaining_time": "2:00:44"} +{"current_steps": 10600, "total_steps": 12869, "loss": 0.5072, "learning_rate": 9.174641926708028e-07, "epoch": 0.8236848239956485, "percentage": 82.37, "elapsed_time": "9:21:33", "remaining_time": "2:00:12"} +{"current_steps": 10610, "total_steps": 12869, "loss": 0.5157, "learning_rate": 9.096491728156187e-07, "epoch": 0.8244618851503613, "percentage": 82.45, "elapsed_time": "9:22:03", "remaining_time": "1:59:40"} +{"current_steps": 10620, "total_steps": 12869, "loss": 0.5325, "learning_rate": 9.018642478612755e-07, "epoch": 0.8252389463050742, "percentage": 82.52, "elapsed_time": "9:22:34", "remaining_time": "1:59:08"} +{"current_steps": 10630, "total_steps": 12869, "loss": 0.5225, "learning_rate": 8.941094750856349e-07, "epoch": 0.8260160074597871, "percentage": 82.6, "elapsed_time": "9:23:05", "remaining_time": "1:58:36"} +{"current_steps": 10640, "total_steps": 12869, "loss": 0.4859, "learning_rate": 8.863849115447121e-07, "epoch": 0.8267930686145, "percentage": 82.68, "elapsed_time": "9:23:30", "remaining_time": "1:58:03"} +{"current_steps": 10650, "total_steps": 12869, "loss": 0.4704, "learning_rate": 8.786906140722551e-07, "epoch": 0.8275701297692128, "percentage": 82.76, "elapsed_time": "9:24:01", "remaining_time": "1:57:31"} +{"current_steps": 10660, "total_steps": 12869, "loss": 0.5054, "learning_rate": 8.710266392793293e-07, "epoch": 0.8283471909239257, "percentage": 82.83, "elapsed_time": "9:24:34", "remaining_time": "1:56:59"} +{"current_steps": 10670, "total_steps": 12869, "loss": 0.5006, "learning_rate": 8.633930435539023e-07, "epoch": 0.8291242520786386, "percentage": 82.91, "elapsed_time": "9:25:08", "remaining_time": "1:56:28"} +{"current_steps": 10680, "total_steps": 12869, "loss": 0.4795, "learning_rate": 8.557898830604239e-07, "epoch": 0.8299013132333515, "percentage": 82.99, "elapsed_time": "9:25:47", "remaining_time": "1:55:57"} +{"current_steps": 10690, "total_steps": 12869, "loss": 0.5052, "learning_rate": 8.48217213739414e-07, "epoch": 0.8306783743880644, "percentage": 83.07, "elapsed_time": "9:26:21", "remaining_time": "1:55:26"} +{"current_steps": 10700, "total_steps": 12869, "loss": 0.5121, "learning_rate": 8.406750913070582e-07, "epoch": 0.8314554355427772, "percentage": 83.15, "elapsed_time": "9:26:56", "remaining_time": "1:54:55"} +{"current_steps": 10710, "total_steps": 12869, "loss": 0.4949, "learning_rate": 8.33163571254787e-07, "epoch": 0.8322324966974901, "percentage": 83.22, "elapsed_time": "9:27:31", "remaining_time": "1:54:24"} +{"current_steps": 10720, "total_steps": 12869, "loss": 0.488, "learning_rate": 8.256827088488756e-07, "epoch": 0.833009557852203, "percentage": 83.3, "elapsed_time": "9:28:00", "remaining_time": "1:53:51"} +{"current_steps": 10730, "total_steps": 12869, "loss": 0.4584, "learning_rate": 8.182325591300333e-07, "epoch": 0.8337866190069159, "percentage": 83.38, "elapsed_time": "9:28:29", "remaining_time": "1:53:19"} +{"current_steps": 10740, "total_steps": 12869, "loss": 0.5078, "learning_rate": 8.10813176912999e-07, "epoch": 0.8345636801616287, "percentage": 83.46, "elapsed_time": "9:29:03", "remaining_time": "1:52:48"} +{"current_steps": 10750, "total_steps": 12869, "loss": 0.5017, "learning_rate": 8.03424616786142e-07, "epoch": 0.8353407413163416, "percentage": 83.53, "elapsed_time": "9:29:37", "remaining_time": "1:52:17"} +{"current_steps": 10760, "total_steps": 12869, "loss": 0.4832, "learning_rate": 7.960669331110521e-07, "epoch": 0.8361178024710545, "percentage": 83.61, "elapsed_time": "9:30:11", "remaining_time": "1:51:45"} +{"current_steps": 10770, "total_steps": 12869, "loss": 0.5278, "learning_rate": 7.887401800221495e-07, "epoch": 0.8368948636257674, "percentage": 83.69, "elapsed_time": "9:30:40", "remaining_time": "1:51:13"} +{"current_steps": 10780, "total_steps": 12869, "loss": 0.4996, "learning_rate": 7.814444114262786e-07, "epoch": 0.8376719247804802, "percentage": 83.77, "elapsed_time": "9:31:06", "remaining_time": "1:50:40"} +{"current_steps": 10790, "total_steps": 12869, "loss": 0.4839, "learning_rate": 7.741796810023139e-07, "epoch": 0.8384489859351931, "percentage": 83.84, "elapsed_time": "9:31:40", "remaining_time": "1:50:08"} +{"current_steps": 10800, "total_steps": 12869, "loss": 0.439, "learning_rate": 7.669460422007657e-07, "epoch": 0.839226047089906, "percentage": 83.92, "elapsed_time": "9:32:15", "remaining_time": "1:49:37"} +{"current_steps": 10810, "total_steps": 12869, "loss": 0.4783, "learning_rate": 7.597435482433896e-07, "epoch": 0.8400031082446189, "percentage": 84.0, "elapsed_time": "9:32:41", "remaining_time": "1:49:04"} +{"current_steps": 10820, "total_steps": 12869, "loss": 0.5017, "learning_rate": 7.525722521227885e-07, "epoch": 0.8407801693993318, "percentage": 84.08, "elapsed_time": "9:33:09", "remaining_time": "1:48:32"} +{"current_steps": 10830, "total_steps": 12869, "loss": 0.5123, "learning_rate": 7.45432206602027e-07, "epoch": 0.8415572305540446, "percentage": 84.16, "elapsed_time": "9:33:43", "remaining_time": "1:48:00"} +{"current_steps": 10840, "total_steps": 12869, "loss": 0.4907, "learning_rate": 7.383234642142422e-07, "epoch": 0.8423342917087575, "percentage": 84.23, "elapsed_time": "9:34:17", "remaining_time": "1:47:29"} +{"current_steps": 10850, "total_steps": 12869, "loss": 0.5107, "learning_rate": 7.312460772622565e-07, "epoch": 0.8431113528634704, "percentage": 84.31, "elapsed_time": "9:34:47", "remaining_time": "1:46:57"} +{"current_steps": 10860, "total_steps": 12869, "loss": 0.5048, "learning_rate": 7.242000978181963e-07, "epoch": 0.8438884140181833, "percentage": 84.39, "elapsed_time": "9:35:19", "remaining_time": "1:46:25"} +{"current_steps": 10870, "total_steps": 12869, "loss": 0.4617, "learning_rate": 7.171855777231058e-07, "epoch": 0.8446654751728961, "percentage": 84.47, "elapsed_time": "9:35:53", "remaining_time": "1:45:54"} +{"current_steps": 10880, "total_steps": 12869, "loss": 0.4959, "learning_rate": 7.102025685865622e-07, "epoch": 0.845442536327609, "percentage": 84.54, "elapsed_time": "9:36:23", "remaining_time": "1:45:22"} +{"current_steps": 10890, "total_steps": 12869, "loss": 0.4677, "learning_rate": 7.032511217863031e-07, "epoch": 0.8462195974823219, "percentage": 84.62, "elapsed_time": "9:36:56", "remaining_time": "1:44:50"} +{"current_steps": 10900, "total_steps": 12869, "loss": 0.4954, "learning_rate": 6.963312884678441e-07, "epoch": 0.8469966586370348, "percentage": 84.7, "elapsed_time": "9:37:31", "remaining_time": "1:44:19"} +{"current_steps": 10910, "total_steps": 12869, "loss": 0.5297, "learning_rate": 6.894431195441037e-07, "epoch": 0.8477737197917476, "percentage": 84.78, "elapsed_time": "9:37:59", "remaining_time": "1:43:47"} +{"current_steps": 10920, "total_steps": 12869, "loss": 0.445, "learning_rate": 6.825866656950264e-07, "epoch": 0.8485507809464605, "percentage": 84.86, "elapsed_time": "9:38:30", "remaining_time": "1:43:15"} +{"current_steps": 10930, "total_steps": 12869, "loss": 0.493, "learning_rate": 6.757619773672169e-07, "epoch": 0.8493278421011734, "percentage": 84.93, "elapsed_time": "9:39:00", "remaining_time": "1:42:43"} +{"current_steps": 10940, "total_steps": 12869, "loss": 0.5153, "learning_rate": 6.689691047735597e-07, "epoch": 0.8501049032558863, "percentage": 85.01, "elapsed_time": "9:39:30", "remaining_time": "1:42:10"} +{"current_steps": 10950, "total_steps": 12869, "loss": 0.4797, "learning_rate": 6.62208097892853e-07, "epoch": 0.8508819644105992, "percentage": 85.09, "elapsed_time": "9:40:03", "remaining_time": "1:41:39"} +{"current_steps": 10960, "total_steps": 12869, "loss": 0.4897, "learning_rate": 6.554790064694471e-07, "epoch": 0.851659025565312, "percentage": 85.17, "elapsed_time": "9:40:35", "remaining_time": "1:41:07"} +{"current_steps": 10970, "total_steps": 12869, "loss": 0.4698, "learning_rate": 6.487818800128692e-07, "epoch": 0.8524360867200249, "percentage": 85.24, "elapsed_time": "9:41:05", "remaining_time": "1:40:35"} +{"current_steps": 10980, "total_steps": 12869, "loss": 0.5016, "learning_rate": 6.421167677974622e-07, "epoch": 0.8532131478747378, "percentage": 85.32, "elapsed_time": "9:41:37", "remaining_time": "1:40:03"} +{"current_steps": 10990, "total_steps": 12869, "loss": 0.51, "learning_rate": 6.354837188620278e-07, "epoch": 0.8539902090294507, "percentage": 85.4, "elapsed_time": "9:42:09", "remaining_time": "1:39:32"} +{"current_steps": 11000, "total_steps": 12869, "loss": 0.4875, "learning_rate": 6.288827820094562e-07, "epoch": 0.8547672701841635, "percentage": 85.48, "elapsed_time": "9:42:35", "remaining_time": "1:38:59"} +{"current_steps": 11010, "total_steps": 12869, "loss": 0.4549, "learning_rate": 6.223140058063737e-07, "epoch": 0.8555443313388764, "percentage": 85.55, "elapsed_time": "9:43:02", "remaining_time": "1:38:26"} +{"current_steps": 11020, "total_steps": 12869, "loss": 0.4314, "learning_rate": 6.157774385827847e-07, "epoch": 0.8563213924935893, "percentage": 85.63, "elapsed_time": "9:43:38", "remaining_time": "1:37:55"} +{"current_steps": 11030, "total_steps": 12869, "loss": 0.4654, "learning_rate": 6.092731284317111e-07, "epoch": 0.8570984536483022, "percentage": 85.71, "elapsed_time": "9:44:13", "remaining_time": "1:37:24"} +{"current_steps": 11040, "total_steps": 12869, "loss": 0.482, "learning_rate": 6.028011232088471e-07, "epoch": 0.857875514803015, "percentage": 85.79, "elapsed_time": "9:44:48", "remaining_time": "1:36:53"} +{"current_steps": 11050, "total_steps": 12869, "loss": 0.4618, "learning_rate": 5.963614705321996e-07, "epoch": 0.8586525759577279, "percentage": 85.87, "elapsed_time": "9:45:19", "remaining_time": "1:36:21"} +{"current_steps": 11060, "total_steps": 12869, "loss": 0.4525, "learning_rate": 5.899542177817413e-07, "epoch": 0.8594296371124408, "percentage": 85.94, "elapsed_time": "9:45:48", "remaining_time": "1:35:48"} +{"current_steps": 11070, "total_steps": 12869, "loss": 0.5458, "learning_rate": 5.835794120990607e-07, "epoch": 0.8602066982671537, "percentage": 86.02, "elapsed_time": "9:46:20", "remaining_time": "1:35:17"} +{"current_steps": 11080, "total_steps": 12869, "loss": 0.521, "learning_rate": 5.772371003870147e-07, "epoch": 0.8609837594218664, "percentage": 86.1, "elapsed_time": "9:46:45", "remaining_time": "1:34:44"} +{"current_steps": 11090, "total_steps": 12869, "loss": 0.4641, "learning_rate": 5.709273293093865e-07, "epoch": 0.8617608205765793, "percentage": 86.18, "elapsed_time": "9:47:16", "remaining_time": "1:34:12"} +{"current_steps": 11100, "total_steps": 12869, "loss": 0.4613, "learning_rate": 5.646501452905406e-07, "epoch": 0.8625378817312922, "percentage": 86.25, "elapsed_time": "9:47:52", "remaining_time": "1:33:41"} +{"current_steps": 11110, "total_steps": 12869, "loss": 0.4533, "learning_rate": 5.584055945150807e-07, "epoch": 0.8633149428860051, "percentage": 86.33, "elapsed_time": "9:48:27", "remaining_time": "1:33:10"} +{"current_steps": 11120, "total_steps": 12869, "loss": 0.4584, "learning_rate": 5.521937229275087e-07, "epoch": 0.864092004040718, "percentage": 86.41, "elapsed_time": "9:49:00", "remaining_time": "1:32:38"} +{"current_steps": 11130, "total_steps": 12869, "loss": 0.5072, "learning_rate": 5.460145762318903e-07, "epoch": 0.8648690651954308, "percentage": 86.49, "elapsed_time": "9:49:32", "remaining_time": "1:32:06"} +{"current_steps": 11140, "total_steps": 12869, "loss": 0.454, "learning_rate": 5.398681998915145e-07, "epoch": 0.8656461263501437, "percentage": 86.56, "elapsed_time": "9:50:04", "remaining_time": "1:31:34"} +{"current_steps": 11150, "total_steps": 12869, "loss": 0.4753, "learning_rate": 5.337546391285647e-07, "epoch": 0.8664231875048566, "percentage": 86.64, "elapsed_time": "9:50:39", "remaining_time": "1:31:03"} +{"current_steps": 11160, "total_steps": 12869, "loss": 0.452, "learning_rate": 5.276739389237778e-07, "epoch": 0.8672002486595695, "percentage": 86.72, "elapsed_time": "9:51:11", "remaining_time": "1:30:31"} +{"current_steps": 11170, "total_steps": 12869, "loss": 0.4891, "learning_rate": 5.216261440161236e-07, "epoch": 0.8679773098142823, "percentage": 86.8, "elapsed_time": "9:51:43", "remaining_time": "1:30:00"} +{"current_steps": 11180, "total_steps": 12869, "loss": 0.477, "learning_rate": 5.156112989024653e-07, "epoch": 0.8687543709689952, "percentage": 86.88, "elapsed_time": "9:52:17", "remaining_time": "1:29:28"} +{"current_steps": 11190, "total_steps": 12869, "loss": 0.465, "learning_rate": 5.096294478372382e-07, "epoch": 0.8695314321237081, "percentage": 86.95, "elapsed_time": "9:52:53", "remaining_time": "1:28:57"} +{"current_steps": 11200, "total_steps": 12869, "loss": 0.4654, "learning_rate": 5.036806348321238e-07, "epoch": 0.870308493278421, "percentage": 87.03, "elapsed_time": "9:53:24", "remaining_time": "1:28:25"} +{"current_steps": 11210, "total_steps": 12869, "loss": 0.4933, "learning_rate": 4.977649036557225e-07, "epoch": 0.8710855544331338, "percentage": 87.11, "elapsed_time": "9:53:57", "remaining_time": "1:27:54"} +{"current_steps": 11220, "total_steps": 12869, "loss": 0.4487, "learning_rate": 4.918822978332377e-07, "epoch": 0.8718626155878467, "percentage": 87.19, "elapsed_time": "9:54:26", "remaining_time": "1:27:21"} +{"current_steps": 11230, "total_steps": 12869, "loss": 0.4637, "learning_rate": 4.860328606461485e-07, "epoch": 0.8726396767425596, "percentage": 87.26, "elapsed_time": "9:54:59", "remaining_time": "1:26:50"} +{"current_steps": 11240, "total_steps": 12869, "loss": 0.4899, "learning_rate": 4.802166351318965e-07, "epoch": 0.8734167378972725, "percentage": 87.34, "elapsed_time": "9:55:25", "remaining_time": "1:26:17"} +{"current_steps": 11250, "total_steps": 12869, "loss": 0.5035, "learning_rate": 4.7443366408356673e-07, "epoch": 0.8741937990519854, "percentage": 87.42, "elapsed_time": "9:55:56", "remaining_time": "1:25:45"} +{"current_steps": 11260, "total_steps": 12869, "loss": 0.4983, "learning_rate": 4.6868399004957266e-07, "epoch": 0.8749708602066982, "percentage": 87.5, "elapsed_time": "9:56:33", "remaining_time": "1:25:14"} +{"current_steps": 11270, "total_steps": 12869, "loss": 0.5127, "learning_rate": 4.6296765533334345e-07, "epoch": 0.8757479213614111, "percentage": 87.57, "elapsed_time": "9:57:06", "remaining_time": "1:24:43"} +{"current_steps": 11280, "total_steps": 12869, "loss": 0.4686, "learning_rate": 4.57284701993016e-07, "epoch": 0.876524982516124, "percentage": 87.65, "elapsed_time": "9:57:37", "remaining_time": "1:24:11"} +{"current_steps": 11290, "total_steps": 12869, "loss": 0.4423, "learning_rate": 4.5163517184111885e-07, "epoch": 0.8773020436708369, "percentage": 87.73, "elapsed_time": "9:58:08", "remaining_time": "1:23:39"} +{"current_steps": 11300, "total_steps": 12869, "loss": 0.5013, "learning_rate": 4.460191064442704e-07, "epoch": 0.8780791048255497, "percentage": 87.81, "elapsed_time": "9:58:44", "remaining_time": "1:23:08"} +{"current_steps": 11310, "total_steps": 12869, "loss": 0.4681, "learning_rate": 4.4043654712287e-07, "epoch": 0.8788561659802626, "percentage": 87.89, "elapsed_time": "9:59:20", "remaining_time": "1:22:36"} +{"current_steps": 11320, "total_steps": 12869, "loss": 0.4723, "learning_rate": 4.348875349507953e-07, "epoch": 0.8796332271349755, "percentage": 87.96, "elapsed_time": "9:59:47", "remaining_time": "1:22:04"} +{"current_steps": 11330, "total_steps": 12869, "loss": 0.4948, "learning_rate": 4.293721107551002e-07, "epoch": 0.8804102882896884, "percentage": 88.04, "elapsed_time": "10:00:25", "remaining_time": "1:21:33"} +{"current_steps": 11340, "total_steps": 12869, "loss": 0.4837, "learning_rate": 4.23890315115712e-07, "epoch": 0.8811873494444012, "percentage": 88.12, "elapsed_time": "10:00:55", "remaining_time": "1:21:01"} +{"current_steps": 11350, "total_steps": 12869, "loss": 0.4594, "learning_rate": 4.184421883651374e-07, "epoch": 0.8819644105991141, "percentage": 88.2, "elapsed_time": "10:01:33", "remaining_time": "1:20:30"} +{"current_steps": 11360, "total_steps": 12869, "loss": 0.5087, "learning_rate": 4.1302777058816136e-07, "epoch": 0.882741471753827, "percentage": 88.27, "elapsed_time": "10:02:04", "remaining_time": "1:19:58"} +{"current_steps": 11370, "total_steps": 12869, "loss": 0.4585, "learning_rate": 4.076471016215533e-07, "epoch": 0.8835185329085399, "percentage": 88.35, "elapsed_time": "10:02:33", "remaining_time": "1:19:26"} +{"current_steps": 11380, "total_steps": 12869, "loss": 0.4808, "learning_rate": 4.023002210537763e-07, "epoch": 0.8842955940632528, "percentage": 88.43, "elapsed_time": "10:03:07", "remaining_time": "1:18:54"} +{"current_steps": 11390, "total_steps": 12869, "loss": 0.4764, "learning_rate": 3.9698716822469175e-07, "epoch": 0.8850726552179656, "percentage": 88.51, "elapsed_time": "10:03:38", "remaining_time": "1:18:23"} +{"current_steps": 11400, "total_steps": 12869, "loss": 0.4676, "learning_rate": 3.917079822252756e-07, "epoch": 0.8858497163726785, "percentage": 88.58, "elapsed_time": "10:04:05", "remaining_time": "1:17:50"} +{"current_steps": 11410, "total_steps": 12869, "loss": 0.4594, "learning_rate": 3.864627018973244e-07, "epoch": 0.8866267775273914, "percentage": 88.66, "elapsed_time": "10:04:39", "remaining_time": "1:17:19"} +{"current_steps": 11420, "total_steps": 12869, "loss": 0.4408, "learning_rate": 3.8125136583317404e-07, "epoch": 0.8874038386821043, "percentage": 88.74, "elapsed_time": "10:05:11", "remaining_time": "1:16:47"} +{"current_steps": 11430, "total_steps": 12869, "loss": 0.4906, "learning_rate": 3.760740123754125e-07, "epoch": 0.8881808998368171, "percentage": 88.82, "elapsed_time": "10:05:50", "remaining_time": "1:16:16"} +{"current_steps": 11440, "total_steps": 12869, "loss": 0.4602, "learning_rate": 3.709306796166029e-07, "epoch": 0.88895796099153, "percentage": 88.9, "elapsed_time": "10:06:17", "remaining_time": "1:15:43"} +{"current_steps": 11450, "total_steps": 12869, "loss": 0.4291, "learning_rate": 3.658214053989967e-07, "epoch": 0.8897350221462429, "percentage": 88.97, "elapsed_time": "10:06:47", "remaining_time": "1:15:12"} +{"current_steps": 11460, "total_steps": 12869, "loss": 0.4704, "learning_rate": 3.6074622731426036e-07, "epoch": 0.8905120833009558, "percentage": 89.05, "elapsed_time": "10:07:18", "remaining_time": "1:14:40"} +{"current_steps": 11470, "total_steps": 12869, "loss": 0.4694, "learning_rate": 3.557051827031954e-07, "epoch": 0.8912891444556686, "percentage": 89.13, "elapsed_time": "10:07:53", "remaining_time": "1:14:08"} +{"current_steps": 11480, "total_steps": 12869, "loss": 0.4679, "learning_rate": 3.506983086554666e-07, "epoch": 0.8920662056103815, "percentage": 89.21, "elapsed_time": "10:08:24", "remaining_time": "1:13:36"} +{"current_steps": 11490, "total_steps": 12869, "loss": 0.5283, "learning_rate": 3.4572564200932634e-07, "epoch": 0.8928432667650944, "percentage": 89.28, "elapsed_time": "10:08:53", "remaining_time": "1:13:04"} +{"current_steps": 11500, "total_steps": 12869, "loss": 0.5125, "learning_rate": 3.4078721935134397e-07, "epoch": 0.8936203279198073, "percentage": 89.36, "elapsed_time": "10:09:20", "remaining_time": "1:12:32"} +{"current_steps": 11510, "total_steps": 12869, "loss": 0.4869, "learning_rate": 3.3588307701614144e-07, "epoch": 0.8943973890745202, "percentage": 89.44, "elapsed_time": "10:09:44", "remaining_time": "1:11:59"} +{"current_steps": 11520, "total_steps": 12869, "loss": 0.497, "learning_rate": 3.310132510861169e-07, "epoch": 0.895174450229233, "percentage": 89.52, "elapsed_time": "10:10:12", "remaining_time": "1:11:27"} +{"current_steps": 11530, "total_steps": 12869, "loss": 0.4441, "learning_rate": 3.2617777739118894e-07, "epoch": 0.8959515113839459, "percentage": 89.6, "elapsed_time": "10:10:47", "remaining_time": "1:10:55"} +{"current_steps": 11540, "total_steps": 12869, "loss": 0.4451, "learning_rate": 3.213766915085248e-07, "epoch": 0.8967285725386588, "percentage": 89.67, "elapsed_time": "10:11:17", "remaining_time": "1:10:23"} +{"current_steps": 11550, "total_steps": 12869, "loss": 0.4243, "learning_rate": 3.1661002876228473e-07, "epoch": 0.8975056336933717, "percentage": 89.75, "elapsed_time": "10:11:48", "remaining_time": "1:09:52"} +{"current_steps": 11560, "total_steps": 12869, "loss": 0.4427, "learning_rate": 3.118778242233572e-07, "epoch": 0.8982826948480845, "percentage": 89.83, "elapsed_time": "10:12:19", "remaining_time": "1:09:20"} +{"current_steps": 11570, "total_steps": 12869, "loss": 0.4702, "learning_rate": 3.0718011270910455e-07, "epoch": 0.8990597560027974, "percentage": 89.91, "elapsed_time": "10:12:51", "remaining_time": "1:08:48"} +{"current_steps": 11580, "total_steps": 12869, "loss": 0.4744, "learning_rate": 3.02516928783107e-07, "epoch": 0.8998368171575103, "percentage": 89.98, "elapsed_time": "10:13:24", "remaining_time": "1:08:16"} +{"current_steps": 11590, "total_steps": 12869, "loss": 0.4519, "learning_rate": 2.978883067549032e-07, "epoch": 0.9006138783122232, "percentage": 90.06, "elapsed_time": "10:13:55", "remaining_time": "1:07:44"} +{"current_steps": 11600, "total_steps": 12869, "loss": 0.4612, "learning_rate": 2.9329428067974454e-07, "epoch": 0.901390939466936, "percentage": 90.14, "elapsed_time": "10:14:23", "remaining_time": "1:07:12"} +{"current_steps": 11610, "total_steps": 12869, "loss": 0.46, "learning_rate": 2.8873488435833983e-07, "epoch": 0.9021680006216489, "percentage": 90.22, "elapsed_time": "10:14:54", "remaining_time": "1:06:40"} +{"current_steps": 11620, "total_steps": 12869, "loss": 0.4345, "learning_rate": 2.8421015133660856e-07, "epoch": 0.9029450617763618, "percentage": 90.29, "elapsed_time": "10:15:23", "remaining_time": "1:06:08"} +{"current_steps": 11630, "total_steps": 12869, "loss": 0.4454, "learning_rate": 2.797201149054335e-07, "epoch": 0.9037221229310747, "percentage": 90.37, "elapsed_time": "10:15:55", "remaining_time": "1:05:37"} +{"current_steps": 11640, "total_steps": 12869, "loss": 0.4593, "learning_rate": 2.752648081004183e-07, "epoch": 0.9044991840857876, "percentage": 90.45, "elapsed_time": "10:16:23", "remaining_time": "1:05:04"} +{"current_steps": 11650, "total_steps": 12869, "loss": 0.4888, "learning_rate": 2.7084426370163954e-07, "epoch": 0.9052762452405004, "percentage": 90.53, "elapsed_time": "10:16:53", "remaining_time": "1:04:32"} +{"current_steps": 11660, "total_steps": 12869, "loss": 0.4558, "learning_rate": 2.6645851423340806e-07, "epoch": 0.9060533063952133, "percentage": 90.61, "elapsed_time": "10:17:26", "remaining_time": "1:04:01"} +{"current_steps": 11670, "total_steps": 12869, "loss": 0.4762, "learning_rate": 2.621075919640309e-07, "epoch": 0.9068303675499262, "percentage": 90.68, "elapsed_time": "10:17:53", "remaining_time": "1:03:29"} +{"current_steps": 11680, "total_steps": 12869, "loss": 0.4759, "learning_rate": 2.577915289055727e-07, "epoch": 0.9076074287046391, "percentage": 90.76, "elapsed_time": "10:18:27", "remaining_time": "1:02:57"} +{"current_steps": 11690, "total_steps": 12869, "loss": 0.4955, "learning_rate": 2.535103568136205e-07, "epoch": 0.9083844898593519, "percentage": 90.84, "elapsed_time": "10:18:55", "remaining_time": "1:02:25"} +{"current_steps": 11700, "total_steps": 12869, "loss": 0.5166, "learning_rate": 2.492641071870489e-07, "epoch": 0.9091615510140648, "percentage": 90.92, "elapsed_time": "10:19:28", "remaining_time": "1:01:53"} +{"current_steps": 11710, "total_steps": 12869, "loss": 0.4971, "learning_rate": 2.450528112677886e-07, "epoch": 0.9099386121687777, "percentage": 90.99, "elapsed_time": "10:19:57", "remaining_time": "1:01:21"} +{"current_steps": 11720, "total_steps": 12869, "loss": 0.4796, "learning_rate": 2.408765000406005e-07, "epoch": 0.9107156733234906, "percentage": 91.07, "elapsed_time": "10:20:32", "remaining_time": "1:00:50"} +{"current_steps": 11730, "total_steps": 12869, "loss": 0.4685, "learning_rate": 2.367352042328408e-07, "epoch": 0.9114927344782034, "percentage": 91.15, "elapsed_time": "10:21:01", "remaining_time": "1:00:18"} +{"current_steps": 11740, "total_steps": 12869, "loss": 0.4851, "learning_rate": 2.3262895431424015e-07, "epoch": 0.9122697956329163, "percentage": 91.23, "elapsed_time": "10:21:25", "remaining_time": "0:59:45"} +{"current_steps": 11750, "total_steps": 12869, "loss": 0.4534, "learning_rate": 2.2855778049667653e-07, "epoch": 0.9130468567876292, "percentage": 91.3, "elapsed_time": "10:21:55", "remaining_time": "0:59:13"} +{"current_steps": 11760, "total_steps": 12869, "loss": 0.4548, "learning_rate": 2.2452171273395716e-07, "epoch": 0.9138239179423421, "percentage": 91.38, "elapsed_time": "10:22:28", "remaining_time": "0:58:42"} +{"current_steps": 11770, "total_steps": 12869, "loss": 0.4596, "learning_rate": 2.2052078072159143e-07, "epoch": 0.914600979097055, "percentage": 91.46, "elapsed_time": "10:22:58", "remaining_time": "0:58:10"} +{"current_steps": 11780, "total_steps": 12869, "loss": 0.4744, "learning_rate": 2.1655501389657941e-07, "epoch": 0.9153780402517678, "percentage": 91.54, "elapsed_time": "10:23:30", "remaining_time": "0:57:38"} +{"current_steps": 11790, "total_steps": 12869, "loss": 0.4575, "learning_rate": 2.126244414371903e-07, "epoch": 0.9161551014064807, "percentage": 91.62, "elapsed_time": "10:24:04", "remaining_time": "0:57:06"} +{"current_steps": 11800, "total_steps": 12869, "loss": 0.4722, "learning_rate": 2.087290922627494e-07, "epoch": 0.9169321625611936, "percentage": 91.69, "elapsed_time": "10:24:39", "remaining_time": "0:56:35"} +{"current_steps": 11810, "total_steps": 12869, "loss": 0.4781, "learning_rate": 2.0486899503342595e-07, "epoch": 0.9177092237159065, "percentage": 91.77, "elapsed_time": "10:25:21", "remaining_time": "0:56:04"} +{"current_steps": 11820, "total_steps": 12869, "loss": 0.4561, "learning_rate": 2.010441781500233e-07, "epoch": 0.9184862848706193, "percentage": 91.85, "elapsed_time": "10:25:55", "remaining_time": "0:55:32"} +{"current_steps": 11830, "total_steps": 12869, "loss": 0.4628, "learning_rate": 1.9725466975376585e-07, "epoch": 0.9192633460253322, "percentage": 91.93, "elapsed_time": "10:26:27", "remaining_time": "0:55:01"} +{"current_steps": 11840, "total_steps": 12869, "loss": 0.4849, "learning_rate": 1.9350049772609568e-07, "epoch": 0.9200404071800451, "percentage": 92.0, "elapsed_time": "10:26:58", "remaining_time": "0:54:29"} +{"current_steps": 11850, "total_steps": 12869, "loss": 0.4584, "learning_rate": 1.8978168968846632e-07, "epoch": 0.920817468334758, "percentage": 92.08, "elapsed_time": "10:27:31", "remaining_time": "0:53:57"} +{"current_steps": 11860, "total_steps": 12869, "loss": 0.4575, "learning_rate": 1.8609827300213877e-07, "epoch": 0.9215945294894708, "percentage": 92.16, "elapsed_time": "10:28:06", "remaining_time": "0:53:26"} +{"current_steps": 11870, "total_steps": 12869, "loss": 0.4237, "learning_rate": 1.8245027476798295e-07, "epoch": 0.9223715906441837, "percentage": 92.24, "elapsed_time": "10:28:38", "remaining_time": "0:52:54"} +{"current_steps": 11880, "total_steps": 12869, "loss": 0.4609, "learning_rate": 1.7883772182627378e-07, "epoch": 0.9231486517988966, "percentage": 92.31, "elapsed_time": "10:29:13", "remaining_time": "0:52:22"} +{"current_steps": 11890, "total_steps": 12869, "loss": 0.4725, "learning_rate": 1.7526064075649718e-07, "epoch": 0.9239257129536095, "percentage": 92.39, "elapsed_time": "10:29:44", "remaining_time": "0:51:51"} +{"current_steps": 11900, "total_steps": 12869, "loss": 0.4844, "learning_rate": 1.7171905787715436e-07, "epoch": 0.9247027741083224, "percentage": 92.47, "elapsed_time": "10:30:14", "remaining_time": "0:51:19"} +{"current_steps": 11910, "total_steps": 12869, "loss": 0.4711, "learning_rate": 1.6821299924556557e-07, "epoch": 0.9254798352630352, "percentage": 92.55, "elapsed_time": "10:30:46", "remaining_time": "0:50:47"} +{"current_steps": 11920, "total_steps": 12869, "loss": 0.4536, "learning_rate": 1.647424906576811e-07, "epoch": 0.9262568964177481, "percentage": 92.63, "elapsed_time": "10:31:21", "remaining_time": "0:50:15"} +{"current_steps": 11930, "total_steps": 12869, "loss": 0.461, "learning_rate": 1.613075576478923e-07, "epoch": 0.927033957572461, "percentage": 92.7, "elapsed_time": "10:31:52", "remaining_time": "0:49:44"} +{"current_steps": 11940, "total_steps": 12869, "loss": 0.4619, "learning_rate": 1.5790822548883921e-07, "epoch": 0.9278110187271739, "percentage": 92.78, "elapsed_time": "10:32:17", "remaining_time": "0:49:11"} +{"current_steps": 11950, "total_steps": 12869, "loss": 0.4811, "learning_rate": 1.545445191912287e-07, "epoch": 0.9285880798818867, "percentage": 92.86, "elapsed_time": "10:32:51", "remaining_time": "0:48:40"} +{"current_steps": 11960, "total_steps": 12869, "loss": 0.4677, "learning_rate": 1.5121646350364784e-07, "epoch": 0.9293651410365996, "percentage": 92.94, "elapsed_time": "10:33:22", "remaining_time": "0:48:08"} +{"current_steps": 11970, "total_steps": 12869, "loss": 0.4621, "learning_rate": 1.4792408291238514e-07, "epoch": 0.9301422021913125, "percentage": 93.01, "elapsed_time": "10:33:56", "remaining_time": "0:47:36"} +{"current_steps": 11980, "total_steps": 12869, "loss": 0.423, "learning_rate": 1.4466740164124582e-07, "epoch": 0.9309192633460254, "percentage": 93.09, "elapsed_time": "10:34:28", "remaining_time": "0:47:04"} +{"current_steps": 11990, "total_steps": 12869, "loss": 0.4395, "learning_rate": 1.4144644365137906e-07, "epoch": 0.9316963245007382, "percentage": 93.17, "elapsed_time": "10:35:05", "remaining_time": "0:46:33"} +{"current_steps": 12000, "total_steps": 12869, "loss": 0.4407, "learning_rate": 1.382612326410959e-07, "epoch": 0.9324733856554511, "percentage": 93.25, "elapsed_time": "10:35:33", "remaining_time": "0:46:01"} +{"current_steps": 12010, "total_steps": 12869, "loss": 0.4594, "learning_rate": 1.3511179204570014e-07, "epoch": 0.933250446810164, "percentage": 93.33, "elapsed_time": "10:36:01", "remaining_time": "0:45:29"} +{"current_steps": 12020, "total_steps": 12869, "loss": 0.4935, "learning_rate": 1.3199814503731144e-07, "epoch": 0.9340275079648769, "percentage": 93.4, "elapsed_time": "10:36:35", "remaining_time": "0:44:57"} +{"current_steps": 12030, "total_steps": 12869, "loss": 0.4163, "learning_rate": 1.289203145246981e-07, "epoch": 0.9348045691195898, "percentage": 93.48, "elapsed_time": "10:37:07", "remaining_time": "0:44:26"} +{"current_steps": 12040, "total_steps": 12869, "loss": 0.4795, "learning_rate": 1.258783231531069e-07, "epoch": 0.9355816302743026, "percentage": 93.56, "elapsed_time": "10:37:36", "remaining_time": "0:43:54"} +{"current_steps": 12050, "total_steps": 12869, "loss": 0.4763, "learning_rate": 1.2287219330409716e-07, "epoch": 0.9363586914290155, "percentage": 93.64, "elapsed_time": "10:38:05", "remaining_time": "0:43:22"} +{"current_steps": 12060, "total_steps": 12869, "loss": 0.4663, "learning_rate": 1.1990194709537496e-07, "epoch": 0.9371357525837284, "percentage": 93.71, "elapsed_time": "10:38:34", "remaining_time": "0:42:50"} +{"current_steps": 12070, "total_steps": 12869, "loss": 0.4638, "learning_rate": 1.1696760638063243e-07, "epoch": 0.9379128137384413, "percentage": 93.79, "elapsed_time": "10:39:03", "remaining_time": "0:42:18"} +{"current_steps": 12080, "total_steps": 12869, "loss": 0.5046, "learning_rate": 1.1406919274938477e-07, "epoch": 0.9386898748931541, "percentage": 93.87, "elapsed_time": "10:39:32", "remaining_time": "0:41:46"} +{"current_steps": 12090, "total_steps": 12869, "loss": 0.4713, "learning_rate": 1.112067275268125e-07, "epoch": 0.939466936047867, "percentage": 93.95, "elapsed_time": "10:40:00", "remaining_time": "0:41:14"} +{"current_steps": 12100, "total_steps": 12869, "loss": 0.4698, "learning_rate": 1.083802317736049e-07, "epoch": 0.9402439972025799, "percentage": 94.02, "elapsed_time": "10:40:37", "remaining_time": "0:40:42"} +{"current_steps": 12110, "total_steps": 12869, "loss": 0.5037, "learning_rate": 1.0558972628580522e-07, "epoch": 0.9410210583572928, "percentage": 94.1, "elapsed_time": "10:41:05", "remaining_time": "0:40:10"} +{"current_steps": 12120, "total_steps": 12869, "loss": 0.4538, "learning_rate": 1.0283523159465514e-07, "epoch": 0.9417981195120056, "percentage": 94.18, "elapsed_time": "10:41:33", "remaining_time": "0:39:38"} +{"current_steps": 12130, "total_steps": 12869, "loss": 0.4606, "learning_rate": 1.0011676796644776e-07, "epoch": 0.9425751806667185, "percentage": 94.26, "elapsed_time": "10:42:09", "remaining_time": "0:39:07"} +{"current_steps": 12140, "total_steps": 12869, "loss": 0.4695, "learning_rate": 9.743435540237433e-08, "epoch": 0.9433522418214313, "percentage": 94.34, "elapsed_time": "10:42:42", "remaining_time": "0:38:35"} +{"current_steps": 12150, "total_steps": 12869, "loss": 0.448, "learning_rate": 9.478801363838052e-08, "epoch": 0.9441293029761442, "percentage": 94.41, "elapsed_time": "10:43:15", "remaining_time": "0:38:03"} +{"current_steps": 12160, "total_steps": 12869, "loss": 0.484, "learning_rate": 9.217776214501984e-08, "epoch": 0.944906364130857, "percentage": 94.49, "elapsed_time": "10:43:44", "remaining_time": "0:37:32"} +{"current_steps": 12170, "total_steps": 12869, "loss": 0.4603, "learning_rate": 8.960362012730983e-08, "epoch": 0.9456834252855699, "percentage": 94.57, "elapsed_time": "10:44:15", "remaining_time": "0:37:00"} +{"current_steps": 12180, "total_steps": 12869, "loss": 0.4249, "learning_rate": 8.706560652459062e-08, "epoch": 0.9464604864402828, "percentage": 94.65, "elapsed_time": "10:44:44", "remaining_time": "0:36:28"} +{"current_steps": 12190, "total_steps": 12869, "loss": 0.4491, "learning_rate": 8.456374001038769e-08, "epoch": 0.9472375475949957, "percentage": 94.72, "elapsed_time": "10:45:13", "remaining_time": "0:35:56"} +{"current_steps": 12200, "total_steps": 12869, "loss": 0.4535, "learning_rate": 8.209803899227209e-08, "epoch": 0.9480146087497086, "percentage": 94.8, "elapsed_time": "10:45:46", "remaining_time": "0:35:24"} +{"current_steps": 12210, "total_steps": 12869, "loss": 0.4496, "learning_rate": 7.966852161172711e-08, "epoch": 0.9487916699044214, "percentage": 94.88, "elapsed_time": "10:46:20", "remaining_time": "0:34:53"} +{"current_steps": 12220, "total_steps": 12869, "loss": 0.4243, "learning_rate": 7.727520574401127e-08, "epoch": 0.9495687310591343, "percentage": 94.96, "elapsed_time": "10:46:52", "remaining_time": "0:34:21"} +{"current_steps": 12230, "total_steps": 12869, "loss": 0.4582, "learning_rate": 7.49181089980322e-08, "epoch": 0.9503457922138472, "percentage": 95.03, "elapsed_time": "10:47:21", "remaining_time": "0:33:49"} +{"current_steps": 12240, "total_steps": 12869, "loss": 0.5034, "learning_rate": 7.259724871621188e-08, "epoch": 0.9511228533685601, "percentage": 95.11, "elapsed_time": "10:47:52", "remaining_time": "0:33:17"} +{"current_steps": 12250, "total_steps": 12869, "loss": 0.4268, "learning_rate": 7.031264197436161e-08, "epoch": 0.9518999145232729, "percentage": 95.19, "elapsed_time": "10:48:21", "remaining_time": "0:32:45"} +{"current_steps": 12260, "total_steps": 12869, "loss": 0.4745, "learning_rate": 6.806430558155719e-08, "epoch": 0.9526769756779858, "percentage": 95.27, "elapsed_time": "10:48:51", "remaining_time": "0:32:13"} +{"current_steps": 12270, "total_steps": 12869, "loss": 0.4308, "learning_rate": 6.585225608001178e-08, "epoch": 0.9534540368326987, "percentage": 95.35, "elapsed_time": "10:49:25", "remaining_time": "0:31:42"} +{"current_steps": 12280, "total_steps": 12869, "loss": 0.4222, "learning_rate": 6.367650974495875e-08, "epoch": 0.9542310979874116, "percentage": 95.42, "elapsed_time": "10:50:00", "remaining_time": "0:31:10"} +{"current_steps": 12290, "total_steps": 12869, "loss": 0.4637, "learning_rate": 6.153708258452851e-08, "epoch": 0.9550081591421244, "percentage": 95.5, "elapsed_time": "10:50:30", "remaining_time": "0:30:38"} +{"current_steps": 12300, "total_steps": 12869, "loss": 0.4771, "learning_rate": 5.943399033963182e-08, "epoch": 0.9557852202968373, "percentage": 95.58, "elapsed_time": "10:50:58", "remaining_time": "0:30:06"} +{"current_steps": 12310, "total_steps": 12869, "loss": 0.4866, "learning_rate": 5.7367248483845005e-08, "epoch": 0.9565622814515502, "percentage": 95.66, "elapsed_time": "10:51:26", "remaining_time": "0:29:34"} +{"current_steps": 12320, "total_steps": 12869, "loss": 0.4144, "learning_rate": 5.533687222329332e-08, "epoch": 0.9573393426062631, "percentage": 95.73, "elapsed_time": "10:52:03", "remaining_time": "0:29:03"} +{"current_steps": 12330, "total_steps": 12869, "loss": 0.4685, "learning_rate": 5.3342876496542126e-08, "epoch": 0.958116403760976, "percentage": 95.81, "elapsed_time": "10:52:39", "remaining_time": "0:28:31"} +{"current_steps": 12340, "total_steps": 12869, "loss": 0.4639, "learning_rate": 5.138527597448595e-08, "epoch": 0.9588934649156888, "percentage": 95.89, "elapsed_time": "10:53:09", "remaining_time": "0:27:59"} +{"current_steps": 12350, "total_steps": 12869, "loss": 0.442, "learning_rate": 4.946408506023958e-08, "epoch": 0.9596705260704017, "percentage": 95.97, "elapsed_time": "10:53:36", "remaining_time": "0:27:28"} +{"current_steps": 12360, "total_steps": 12869, "loss": 0.4304, "learning_rate": 4.757931788903325e-08, "epoch": 0.9604475872251146, "percentage": 96.04, "elapsed_time": "10:54:06", "remaining_time": "0:26:56"} +{"current_steps": 12370, "total_steps": 12869, "loss": 0.4478, "learning_rate": 4.573098832810818e-08, "epoch": 0.9612246483798275, "percentage": 96.12, "elapsed_time": "10:54:33", "remaining_time": "0:26:24"} +{"current_steps": 12380, "total_steps": 12869, "loss": 0.4821, "learning_rate": 4.391910997661397e-08, "epoch": 0.9620017095345403, "percentage": 96.2, "elapsed_time": "10:55:03", "remaining_time": "0:25:52"} +{"current_steps": 12390, "total_steps": 12869, "loss": 0.4362, "learning_rate": 4.214369616550973e-08, "epoch": 0.9627787706892532, "percentage": 96.28, "elapsed_time": "10:55:35", "remaining_time": "0:25:20"} +{"current_steps": 12400, "total_steps": 12869, "loss": 0.4375, "learning_rate": 4.040475995746529e-08, "epoch": 0.9635558318439661, "percentage": 96.36, "elapsed_time": "10:56:11", "remaining_time": "0:24:49"} +{"current_steps": 12410, "total_steps": 12869, "loss": 0.4565, "learning_rate": 3.8702314146766284e-08, "epoch": 0.964332892998679, "percentage": 96.43, "elapsed_time": "10:56:44", "remaining_time": "0:24:17"} +{"current_steps": 12420, "total_steps": 12869, "loss": 0.4625, "learning_rate": 3.7036371259216994e-08, "epoch": 0.9651099541533918, "percentage": 96.51, "elapsed_time": "10:57:24", "remaining_time": "0:23:45"} +{"current_steps": 12430, "total_steps": 12869, "loss": 0.4403, "learning_rate": 3.540694355205099e-08, "epoch": 0.9658870153081047, "percentage": 96.59, "elapsed_time": "10:57:50", "remaining_time": "0:23:14"} +{"current_steps": 12440, "total_steps": 12869, "loss": 0.4446, "learning_rate": 3.381404301384117e-08, "epoch": 0.9666640764628176, "percentage": 96.67, "elapsed_time": "10:58:22", "remaining_time": "0:22:42"} +{"current_steps": 12450, "total_steps": 12869, "loss": 0.4588, "learning_rate": 3.225768136440821e-08, "epoch": 0.9674411376175305, "percentage": 96.74, "elapsed_time": "10:58:51", "remaining_time": "0:22:10"} +{"current_steps": 12460, "total_steps": 12869, "loss": 0.4643, "learning_rate": 3.0737870054739496e-08, "epoch": 0.9682181987722434, "percentage": 96.82, "elapsed_time": "10:59:26", "remaining_time": "0:21:38"} +{"current_steps": 12470, "total_steps": 12869, "loss": 0.4438, "learning_rate": 2.925462026689918e-08, "epoch": 0.9689952599269562, "percentage": 96.9, "elapsed_time": "10:59:57", "remaining_time": "0:21:06"} +{"current_steps": 12480, "total_steps": 12869, "loss": 0.4872, "learning_rate": 2.7807942913950504e-08, "epoch": 0.9697723210816691, "percentage": 96.98, "elapsed_time": "11:00:32", "remaining_time": "0:20:35"} +{"current_steps": 12490, "total_steps": 12869, "loss": 0.4828, "learning_rate": 2.6397848639874156e-08, "epoch": 0.970549382236382, "percentage": 97.05, "elapsed_time": "11:01:06", "remaining_time": "0:20:03"} +{"current_steps": 12500, "total_steps": 12869, "loss": 0.4754, "learning_rate": 2.502434781948726e-08, "epoch": 0.9713264433910949, "percentage": 97.13, "elapsed_time": "11:01:33", "remaining_time": "0:19:31"} +{"current_steps": 12510, "total_steps": 12869, "loss": 0.4425, "learning_rate": 2.3687450558370627e-08, "epoch": 0.9721035045458077, "percentage": 97.21, "elapsed_time": "11:02:05", "remaining_time": "0:18:59"} +{"current_steps": 12520, "total_steps": 12869, "loss": 0.4698, "learning_rate": 2.2387166692794392e-08, "epoch": 0.9728805657005206, "percentage": 97.29, "elapsed_time": "11:02:36", "remaining_time": "0:18:28"} +{"current_steps": 12530, "total_steps": 12869, "loss": 0.4746, "learning_rate": 2.1123505789642507e-08, "epoch": 0.9736576268552335, "percentage": 97.37, "elapsed_time": "11:03:05", "remaining_time": "0:17:56"} +{"current_steps": 12540, "total_steps": 12869, "loss": 0.4646, "learning_rate": 1.989647714634446e-08, "epoch": 0.9744346880099464, "percentage": 97.44, "elapsed_time": "11:03:36", "remaining_time": "0:17:24"} +{"current_steps": 12550, "total_steps": 12869, "loss": 0.4885, "learning_rate": 1.8706089790807014e-08, "epoch": 0.9752117491646592, "percentage": 97.52, "elapsed_time": "11:04:10", "remaining_time": "0:16:52"} +{"current_steps": 12560, "total_steps": 12869, "loss": 0.4495, "learning_rate": 1.7552352481347013e-08, "epoch": 0.9759888103193721, "percentage": 97.6, "elapsed_time": "11:04:41", "remaining_time": "0:16:21"} +{"current_steps": 12570, "total_steps": 12869, "loss": 0.4498, "learning_rate": 1.6435273706627564e-08, "epoch": 0.976765871474085, "percentage": 97.68, "elapsed_time": "11:05:13", "remaining_time": "0:15:49"} +{"current_steps": 12580, "total_steps": 12869, "loss": 0.4679, "learning_rate": 1.5354861685595855e-08, "epoch": 0.9775429326287979, "percentage": 97.75, "elapsed_time": "11:05:43", "remaining_time": "0:15:17"} +{"current_steps": 12590, "total_steps": 12869, "loss": 0.424, "learning_rate": 1.4311124367420992e-08, "epoch": 0.9783199937835108, "percentage": 97.83, "elapsed_time": "11:06:15", "remaining_time": "0:14:45"} +{"current_steps": 12600, "total_steps": 12869, "loss": 0.4582, "learning_rate": 1.3304069431437362e-08, "epoch": 0.9790970549382236, "percentage": 97.91, "elapsed_time": "11:06:50", "remaining_time": "0:14:14"} +{"current_steps": 12610, "total_steps": 12869, "loss": 0.4733, "learning_rate": 1.2333704287087467e-08, "epoch": 0.9798741160929365, "percentage": 97.99, "elapsed_time": "11:07:17", "remaining_time": "0:13:42"} +{"current_steps": 12620, "total_steps": 12869, "loss": 0.46, "learning_rate": 1.1400036073866416e-08, "epoch": 0.9806511772476494, "percentage": 98.07, "elapsed_time": "11:07:46", "remaining_time": "0:13:10"} +{"current_steps": 12630, "total_steps": 12869, "loss": 0.4449, "learning_rate": 1.0503071661271957e-08, "epoch": 0.9814282384023623, "percentage": 98.14, "elapsed_time": "11:08:15", "remaining_time": "0:12:38"} +{"current_steps": 12640, "total_steps": 12869, "loss": 0.4644, "learning_rate": 9.642817648750636e-09, "epoch": 0.9822052995570751, "percentage": 98.22, "elapsed_time": "11:08:44", "remaining_time": "0:12:06"} +{"current_steps": 12650, "total_steps": 12869, "loss": 0.4525, "learning_rate": 8.819280365652827e-09, "epoch": 0.982982360711788, "percentage": 98.3, "elapsed_time": "11:09:11", "remaining_time": "0:11:35"} +{"current_steps": 12660, "total_steps": 12869, "loss": 0.4586, "learning_rate": 8.032465871182227e-09, "epoch": 0.9837594218665009, "percentage": 98.38, "elapsed_time": "11:09:47", "remaining_time": "0:11:03"} +{"current_steps": 12670, "total_steps": 12869, "loss": 0.4334, "learning_rate": 7.282379954354768e-09, "epoch": 0.9845364830212138, "percentage": 98.45, "elapsed_time": "11:10:13", "remaining_time": "0:10:31"} +{"current_steps": 12680, "total_steps": 12869, "loss": 0.4458, "learning_rate": 6.569028133954214e-09, "epoch": 0.9853135441759266, "percentage": 98.53, "elapsed_time": "11:10:41", "remaining_time": "0:09:59"} +{"current_steps": 12690, "total_steps": 12869, "loss": 0.4554, "learning_rate": 5.892415658491634e-09, "epoch": 0.9860906053306395, "percentage": 98.61, "elapsed_time": "11:11:16", "remaining_time": "0:09:28"} +{"current_steps": 12700, "total_steps": 12869, "loss": 0.4535, "learning_rate": 5.252547506167105e-09, "epoch": 0.9868676664853524, "percentage": 98.69, "elapsed_time": "11:11:52", "remaining_time": "0:08:56"} +{"current_steps": 12710, "total_steps": 12869, "loss": 0.4591, "learning_rate": 4.649428384833065e-09, "epoch": 0.9876447276400653, "percentage": 98.76, "elapsed_time": "11:12:24", "remaining_time": "0:08:24"} +{"current_steps": 12720, "total_steps": 12869, "loss": 0.4609, "learning_rate": 4.083062731960463e-09, "epoch": 0.9884217887947782, "percentage": 98.84, "elapsed_time": "11:12:59", "remaining_time": "0:07:52"} +{"current_steps": 12730, "total_steps": 12869, "loss": 0.4601, "learning_rate": 3.5534547146043318e-09, "epoch": 0.989198849949491, "percentage": 98.92, "elapsed_time": "11:13:34", "remaining_time": "0:07:21"} +{"current_steps": 12740, "total_steps": 12869, "loss": 0.4578, "learning_rate": 3.060608229373818e-09, "epoch": 0.9899759111042039, "percentage": 99.0, "elapsed_time": "11:14:02", "remaining_time": "0:06:49"} +{"current_steps": 12750, "total_steps": 12869, "loss": 0.4564, "learning_rate": 2.6045269024049802e-09, "epoch": 0.9907529722589168, "percentage": 99.08, "elapsed_time": "11:14:37", "remaining_time": "0:06:17"} +{"current_steps": 12760, "total_steps": 12869, "loss": 0.4291, "learning_rate": 2.1852140893319218e-09, "epoch": 0.9915300334136297, "percentage": 99.15, "elapsed_time": "11:15:05", "remaining_time": "0:05:46"} +{"current_steps": 12770, "total_steps": 12869, "loss": 0.4726, "learning_rate": 1.8026728752634781e-09, "epoch": 0.9923070945683425, "percentage": 99.23, "elapsed_time": "11:15:37", "remaining_time": "0:05:14"} +{"current_steps": 12780, "total_steps": 12869, "loss": 0.4655, "learning_rate": 1.4569060747610109e-09, "epoch": 0.9930841557230554, "percentage": 99.31, "elapsed_time": "11:16:14", "remaining_time": "0:04:42"} +{"current_steps": 12790, "total_steps": 12869, "loss": 0.4136, "learning_rate": 1.1479162318150939e-09, "epoch": 0.9938612168777683, "percentage": 99.39, "elapsed_time": "11:16:48", "remaining_time": "0:04:10"} +{"current_steps": 12800, "total_steps": 12869, "loss": 0.4866, "learning_rate": 8.757056198294145e-10, "epoch": 0.9946382780324812, "percentage": 99.46, "elapsed_time": "11:17:15", "remaining_time": "0:03:39"} +{"current_steps": 12810, "total_steps": 12869, "loss": 0.4361, "learning_rate": 6.402762416035657e-10, "epoch": 0.995415339187194, "percentage": 99.54, "elapsed_time": "11:17:48", "remaining_time": "0:03:07"} +{"current_steps": 12820, "total_steps": 12869, "loss": 0.4366, "learning_rate": 4.4162982931750255e-10, "epoch": 0.9961924003419069, "percentage": 99.62, "elapsed_time": "11:18:21", "remaining_time": "0:02:35"} +{"current_steps": 12830, "total_steps": 12869, "loss": 0.5075, "learning_rate": 2.7976784451877457e-10, "epoch": 0.9969694614966198, "percentage": 99.7, "elapsed_time": "11:18:53", "remaining_time": "0:02:03"} +{"current_steps": 12840, "total_steps": 12869, "loss": 0.438, "learning_rate": 1.5469147811308926e-10, "epoch": 0.9977465226513327, "percentage": 99.77, "elapsed_time": "11:19:28", "remaining_time": "0:01:32"} +{"current_steps": 12850, "total_steps": 12869, "loss": 0.4643, "learning_rate": 6.640165035431967e-11, "epoch": 0.9985235838060456, "percentage": 99.85, "elapsed_time": "11:20:03", "remaining_time": "0:01:00"} +{"current_steps": 12860, "total_steps": 12869, "loss": 0.4825, "learning_rate": 1.4899010837288174e-11, "epoch": 0.9993006449607584, "percentage": 99.93, "elapsed_time": "11:20:34", "remaining_time": "0:00:28"} +{"current_steps": 12869, "total_steps": 12869, "epoch": 1.0, "percentage": 100.0, "elapsed_time": "11:22:37", "remaining_time": "0:00:00"}