SicariusSicariiStuff commited on
Commit
8f87ec7
·
verified ·
1 Parent(s): 865f2e5

Upload 9 files

Browse files
.gitattributes CHANGED
@@ -33,3 +33,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
 
 
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
36
+ tokenizer.json filter=lfs diff=lfs merge=lfs -text
config.json ADDED
@@ -0,0 +1,1000 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "architectures": [
3
+ "DeciLMForCausalLM"
4
+ ],
5
+ "attention_bias": false,
6
+ "attention_dropout": 0.0,
7
+ "auto_map": {
8
+ "AutoConfig": "configuration_decilm.DeciLMConfig",
9
+ "AutoModelForCausalLM": "modeling_decilm.DeciLMForCausalLM"
10
+ },
11
+ "block_configs": [
12
+ {
13
+ "attention": {
14
+ "n_heads_in_group": 8,
15
+ "no_op": false,
16
+ "replace_with_linear": false
17
+ },
18
+ "ffn": {
19
+ "ffn_mult": 1.3125,
20
+ "no_op": false,
21
+ "replace_with_linear": false
22
+ }
23
+ },
24
+ {
25
+ "attention": {
26
+ "n_heads_in_group": 16,
27
+ "no_op": false,
28
+ "replace_with_linear": false
29
+ },
30
+ "ffn": {
31
+ "ffn_mult": 2.625,
32
+ "no_op": false,
33
+ "replace_with_linear": false
34
+ }
35
+ },
36
+ {
37
+ "attention": {
38
+ "n_heads_in_group": 8,
39
+ "no_op": false,
40
+ "replace_with_linear": false
41
+ },
42
+ "ffn": {
43
+ "ffn_mult": 5.25,
44
+ "no_op": false,
45
+ "replace_with_linear": false
46
+ }
47
+ },
48
+ {
49
+ "attention": {
50
+ "n_heads_in_group": 8,
51
+ "no_op": false,
52
+ "replace_with_linear": false
53
+ },
54
+ "ffn": {
55
+ "ffn_mult": 5.25,
56
+ "no_op": false,
57
+ "replace_with_linear": false
58
+ }
59
+ },
60
+ {
61
+ "attention": {
62
+ "n_heads_in_group": 8,
63
+ "no_op": false,
64
+ "replace_with_linear": false
65
+ },
66
+ "ffn": {
67
+ "ffn_mult": 5.25,
68
+ "no_op": false,
69
+ "replace_with_linear": false
70
+ }
71
+ },
72
+ {
73
+ "attention": {
74
+ "n_heads_in_group": 32,
75
+ "no_op": false,
76
+ "replace_with_linear": false
77
+ },
78
+ "ffn": {
79
+ "ffn_mult": 2.625,
80
+ "no_op": false,
81
+ "replace_with_linear": false
82
+ }
83
+ },
84
+ {
85
+ "attention": {
86
+ "n_heads_in_group": 32,
87
+ "no_op": false,
88
+ "replace_with_linear": false
89
+ },
90
+ "ffn": {
91
+ "ffn_mult": 2.625,
92
+ "no_op": false,
93
+ "replace_with_linear": false
94
+ }
95
+ },
96
+ {
97
+ "attention": {
98
+ "n_heads_in_group": 64,
99
+ "no_op": false,
100
+ "replace_with_linear": false
101
+ },
102
+ "ffn": {
103
+ "ffn_mult": 2.625,
104
+ "no_op": false,
105
+ "replace_with_linear": false
106
+ }
107
+ },
108
+ {
109
+ "attention": {
110
+ "n_heads_in_group": 64,
111
+ "no_op": false,
112
+ "replace_with_linear": false
113
+ },
114
+ "ffn": {
115
+ "ffn_mult": 2.625,
116
+ "no_op": false,
117
+ "replace_with_linear": false
118
+ }
119
+ },
120
+ {
121
+ "attention": {
122
+ "n_heads_in_group": 32,
123
+ "no_op": false,
124
+ "replace_with_linear": false
125
+ },
126
+ "ffn": {
127
+ "ffn_mult": 2.625,
128
+ "no_op": false,
129
+ "replace_with_linear": false
130
+ }
131
+ },
132
+ {
133
+ "attention": {
134
+ "n_heads_in_group": 32,
135
+ "no_op": false,
136
+ "replace_with_linear": false
137
+ },
138
+ "ffn": {
139
+ "ffn_mult": 2.625,
140
+ "no_op": false,
141
+ "replace_with_linear": false
142
+ }
143
+ },
144
+ {
145
+ "attention": {
146
+ "n_heads_in_group": null,
147
+ "no_op": false,
148
+ "replace_with_linear": true
149
+ },
150
+ "ffn": {
151
+ "ffn_mult": 2.625,
152
+ "no_op": false,
153
+ "replace_with_linear": false
154
+ }
155
+ },
156
+ {
157
+ "attention": {
158
+ "n_heads_in_group": 64,
159
+ "no_op": false,
160
+ "replace_with_linear": false
161
+ },
162
+ "ffn": {
163
+ "ffn_mult": 2.625,
164
+ "no_op": false,
165
+ "replace_with_linear": false
166
+ }
167
+ },
168
+ {
169
+ "attention": {
170
+ "n_heads_in_group": 32,
171
+ "no_op": false,
172
+ "replace_with_linear": false
173
+ },
174
+ "ffn": {
175
+ "ffn_mult": 2.625,
176
+ "no_op": false,
177
+ "replace_with_linear": false
178
+ }
179
+ },
180
+ {
181
+ "attention": {
182
+ "n_heads_in_group": 32,
183
+ "no_op": false,
184
+ "replace_with_linear": false
185
+ },
186
+ "ffn": {
187
+ "ffn_mult": 2.625,
188
+ "no_op": false,
189
+ "replace_with_linear": false
190
+ }
191
+ },
192
+ {
193
+ "attention": {
194
+ "n_heads_in_group": null,
195
+ "no_op": false,
196
+ "replace_with_linear": true
197
+ },
198
+ "ffn": {
199
+ "ffn_mult": 1.3125,
200
+ "no_op": false,
201
+ "replace_with_linear": false
202
+ }
203
+ },
204
+ {
205
+ "attention": {
206
+ "n_heads_in_group": 8,
207
+ "no_op": false,
208
+ "replace_with_linear": false
209
+ },
210
+ "ffn": {
211
+ "ffn_mult": 5.25,
212
+ "no_op": false,
213
+ "replace_with_linear": false
214
+ }
215
+ },
216
+ {
217
+ "attention": {
218
+ "n_heads_in_group": 8,
219
+ "no_op": false,
220
+ "replace_with_linear": false
221
+ },
222
+ "ffn": {
223
+ "ffn_mult": 5.25,
224
+ "no_op": false,
225
+ "replace_with_linear": false
226
+ }
227
+ },
228
+ {
229
+ "attention": {
230
+ "n_heads_in_group": 8,
231
+ "no_op": false,
232
+ "replace_with_linear": false
233
+ },
234
+ "ffn": {
235
+ "ffn_mult": 5.25,
236
+ "no_op": false,
237
+ "replace_with_linear": false
238
+ }
239
+ },
240
+ {
241
+ "attention": {
242
+ "n_heads_in_group": 8,
243
+ "no_op": false,
244
+ "replace_with_linear": false
245
+ },
246
+ "ffn": {
247
+ "ffn_mult": 5.25,
248
+ "no_op": false,
249
+ "replace_with_linear": false
250
+ }
251
+ },
252
+ {
253
+ "attention": {
254
+ "n_heads_in_group": 8,
255
+ "no_op": false,
256
+ "replace_with_linear": false
257
+ },
258
+ "ffn": {
259
+ "ffn_mult": 5.25,
260
+ "no_op": false,
261
+ "replace_with_linear": false
262
+ }
263
+ },
264
+ {
265
+ "attention": {
266
+ "n_heads_in_group": 8,
267
+ "no_op": false,
268
+ "replace_with_linear": false
269
+ },
270
+ "ffn": {
271
+ "ffn_mult": 5.25,
272
+ "no_op": false,
273
+ "replace_with_linear": false
274
+ }
275
+ },
276
+ {
277
+ "attention": {
278
+ "n_heads_in_group": 8,
279
+ "no_op": false,
280
+ "replace_with_linear": false
281
+ },
282
+ "ffn": {
283
+ "ffn_mult": 5.25,
284
+ "no_op": false,
285
+ "replace_with_linear": false
286
+ }
287
+ },
288
+ {
289
+ "attention": {
290
+ "n_heads_in_group": 8,
291
+ "no_op": false,
292
+ "replace_with_linear": false
293
+ },
294
+ "ffn": {
295
+ "ffn_mult": 5.25,
296
+ "no_op": false,
297
+ "replace_with_linear": false
298
+ }
299
+ },
300
+ {
301
+ "attention": {
302
+ "n_heads_in_group": 8,
303
+ "no_op": false,
304
+ "replace_with_linear": false
305
+ },
306
+ "ffn": {
307
+ "ffn_mult": 5.25,
308
+ "no_op": false,
309
+ "replace_with_linear": false
310
+ }
311
+ },
312
+ {
313
+ "attention": {
314
+ "n_heads_in_group": 8,
315
+ "no_op": false,
316
+ "replace_with_linear": false
317
+ },
318
+ "ffn": {
319
+ "ffn_mult": 5.25,
320
+ "no_op": false,
321
+ "replace_with_linear": false
322
+ }
323
+ },
324
+ {
325
+ "attention": {
326
+ "n_heads_in_group": 8,
327
+ "no_op": false,
328
+ "replace_with_linear": false
329
+ },
330
+ "ffn": {
331
+ "ffn_mult": 5.25,
332
+ "no_op": false,
333
+ "replace_with_linear": false
334
+ }
335
+ },
336
+ {
337
+ "attention": {
338
+ "n_heads_in_group": 8,
339
+ "no_op": false,
340
+ "replace_with_linear": false
341
+ },
342
+ "ffn": {
343
+ "ffn_mult": 5.25,
344
+ "no_op": false,
345
+ "replace_with_linear": false
346
+ }
347
+ },
348
+ {
349
+ "attention": {
350
+ "n_heads_in_group": 8,
351
+ "no_op": false,
352
+ "replace_with_linear": false
353
+ },
354
+ "ffn": {
355
+ "ffn_mult": 5.25,
356
+ "no_op": false,
357
+ "replace_with_linear": false
358
+ }
359
+ },
360
+ {
361
+ "attention": {
362
+ "n_heads_in_group": 8,
363
+ "no_op": false,
364
+ "replace_with_linear": false
365
+ },
366
+ "ffn": {
367
+ "ffn_mult": 5.25,
368
+ "no_op": false,
369
+ "replace_with_linear": false
370
+ }
371
+ },
372
+ {
373
+ "attention": {
374
+ "n_heads_in_group": 8,
375
+ "no_op": false,
376
+ "replace_with_linear": false
377
+ },
378
+ "ffn": {
379
+ "ffn_mult": 5.25,
380
+ "no_op": false,
381
+ "replace_with_linear": false
382
+ }
383
+ },
384
+ {
385
+ "attention": {
386
+ "n_heads_in_group": 8,
387
+ "no_op": false,
388
+ "replace_with_linear": false
389
+ },
390
+ "ffn": {
391
+ "ffn_mult": 5.25,
392
+ "no_op": false,
393
+ "replace_with_linear": false
394
+ }
395
+ },
396
+ {
397
+ "attention": {
398
+ "n_heads_in_group": 8,
399
+ "no_op": false,
400
+ "replace_with_linear": false
401
+ },
402
+ "ffn": {
403
+ "ffn_mult": 5.25,
404
+ "no_op": false,
405
+ "replace_with_linear": false
406
+ }
407
+ },
408
+ {
409
+ "attention": {
410
+ "n_heads_in_group": 8,
411
+ "no_op": false,
412
+ "replace_with_linear": false
413
+ },
414
+ "ffn": {
415
+ "ffn_mult": 5.25,
416
+ "no_op": false,
417
+ "replace_with_linear": false
418
+ }
419
+ },
420
+ {
421
+ "attention": {
422
+ "n_heads_in_group": 8,
423
+ "no_op": false,
424
+ "replace_with_linear": false
425
+ },
426
+ "ffn": {
427
+ "ffn_mult": 5.25,
428
+ "no_op": false,
429
+ "replace_with_linear": false
430
+ }
431
+ },
432
+ {
433
+ "attention": {
434
+ "n_heads_in_group": 8,
435
+ "no_op": false,
436
+ "replace_with_linear": false
437
+ },
438
+ "ffn": {
439
+ "ffn_mult": 5.25,
440
+ "no_op": false,
441
+ "replace_with_linear": false
442
+ }
443
+ },
444
+ {
445
+ "attention": {
446
+ "n_heads_in_group": 8,
447
+ "no_op": false,
448
+ "replace_with_linear": false
449
+ },
450
+ "ffn": {
451
+ "ffn_mult": 5.25,
452
+ "no_op": false,
453
+ "replace_with_linear": false
454
+ }
455
+ },
456
+ {
457
+ "attention": {
458
+ "n_heads_in_group": 8,
459
+ "no_op": false,
460
+ "replace_with_linear": false
461
+ },
462
+ "ffn": {
463
+ "ffn_mult": 5.25,
464
+ "no_op": false,
465
+ "replace_with_linear": false
466
+ }
467
+ },
468
+ {
469
+ "attention": {
470
+ "n_heads_in_group": 8,
471
+ "no_op": false,
472
+ "replace_with_linear": false
473
+ },
474
+ "ffn": {
475
+ "ffn_mult": 5.25,
476
+ "no_op": false,
477
+ "replace_with_linear": false
478
+ }
479
+ },
480
+ {
481
+ "attention": {
482
+ "n_heads_in_group": 8,
483
+ "no_op": false,
484
+ "replace_with_linear": false
485
+ },
486
+ "ffn": {
487
+ "ffn_mult": 5.25,
488
+ "no_op": false,
489
+ "replace_with_linear": false
490
+ }
491
+ },
492
+ {
493
+ "attention": {
494
+ "n_heads_in_group": 8,
495
+ "no_op": false,
496
+ "replace_with_linear": false
497
+ },
498
+ "ffn": {
499
+ "ffn_mult": 5.25,
500
+ "no_op": false,
501
+ "replace_with_linear": false
502
+ }
503
+ },
504
+ {
505
+ "attention": {
506
+ "n_heads_in_group": 8,
507
+ "no_op": false,
508
+ "replace_with_linear": false
509
+ },
510
+ "ffn": {
511
+ "ffn_mult": 5.25,
512
+ "no_op": false,
513
+ "replace_with_linear": false
514
+ }
515
+ },
516
+ {
517
+ "attention": {
518
+ "n_heads_in_group": null,
519
+ "no_op": false,
520
+ "replace_with_linear": true
521
+ },
522
+ "ffn": {
523
+ "ffn_mult": 2.625,
524
+ "no_op": false,
525
+ "replace_with_linear": false
526
+ }
527
+ },
528
+ {
529
+ "attention": {
530
+ "n_heads_in_group": 8,
531
+ "no_op": false,
532
+ "replace_with_linear": false
533
+ },
534
+ "ffn": {
535
+ "ffn_mult": 5.25,
536
+ "no_op": false,
537
+ "replace_with_linear": false
538
+ }
539
+ },
540
+ {
541
+ "attention": {
542
+ "n_heads_in_group": 8,
543
+ "no_op": false,
544
+ "replace_with_linear": false
545
+ },
546
+ "ffn": {
547
+ "ffn_mult": 5.25,
548
+ "no_op": false,
549
+ "replace_with_linear": false
550
+ }
551
+ },
552
+ {
553
+ "attention": {
554
+ "n_heads_in_group": null,
555
+ "no_op": false,
556
+ "replace_with_linear": true
557
+ },
558
+ "ffn": {
559
+ "ffn_mult": 2.625,
560
+ "no_op": false,
561
+ "replace_with_linear": false
562
+ }
563
+ },
564
+ {
565
+ "attention": {
566
+ "n_heads_in_group": null,
567
+ "no_op": false,
568
+ "replace_with_linear": true
569
+ },
570
+ "ffn": {
571
+ "ffn_mult": 5.25,
572
+ "no_op": false,
573
+ "replace_with_linear": false
574
+ }
575
+ },
576
+ {
577
+ "attention": {
578
+ "n_heads_in_group": null,
579
+ "no_op": false,
580
+ "replace_with_linear": true
581
+ },
582
+ "ffn": {
583
+ "ffn_mult": 2.625,
584
+ "no_op": false,
585
+ "replace_with_linear": false
586
+ }
587
+ },
588
+ {
589
+ "attention": {
590
+ "n_heads_in_group": null,
591
+ "no_op": false,
592
+ "replace_with_linear": true
593
+ },
594
+ "ffn": {
595
+ "ffn_mult": 2.625,
596
+ "no_op": false,
597
+ "replace_with_linear": false
598
+ }
599
+ },
600
+ {
601
+ "attention": {
602
+ "n_heads_in_group": null,
603
+ "no_op": false,
604
+ "replace_with_linear": true
605
+ },
606
+ "ffn": {
607
+ "ffn_mult": 2.625,
608
+ "no_op": false,
609
+ "replace_with_linear": false
610
+ }
611
+ },
612
+ {
613
+ "attention": {
614
+ "n_heads_in_group": null,
615
+ "no_op": true,
616
+ "replace_with_linear": false
617
+ },
618
+ "ffn": {
619
+ "ffn_mult": 1.3125,
620
+ "no_op": false,
621
+ "replace_with_linear": false
622
+ }
623
+ },
624
+ {
625
+ "attention": {
626
+ "n_heads_in_group": null,
627
+ "no_op": false,
628
+ "replace_with_linear": true
629
+ },
630
+ "ffn": {
631
+ "ffn_mult": 1.3125,
632
+ "no_op": false,
633
+ "replace_with_linear": false
634
+ }
635
+ },
636
+ {
637
+ "attention": {
638
+ "n_heads_in_group": 8,
639
+ "no_op": false,
640
+ "replace_with_linear": false
641
+ },
642
+ "ffn": {
643
+ "ffn_mult": 5.25,
644
+ "no_op": false,
645
+ "replace_with_linear": false
646
+ }
647
+ },
648
+ {
649
+ "attention": {
650
+ "n_heads_in_group": null,
651
+ "no_op": true,
652
+ "replace_with_linear": false
653
+ },
654
+ "ffn": {
655
+ "ffn_mult": 1.3125,
656
+ "no_op": false,
657
+ "replace_with_linear": false
658
+ }
659
+ },
660
+ {
661
+ "attention": {
662
+ "n_heads_in_group": null,
663
+ "no_op": false,
664
+ "replace_with_linear": true
665
+ },
666
+ "ffn": {
667
+ "ffn_mult": 1.3125,
668
+ "no_op": false,
669
+ "replace_with_linear": false
670
+ }
671
+ },
672
+ {
673
+ "attention": {
674
+ "n_heads_in_group": null,
675
+ "no_op": true,
676
+ "replace_with_linear": false
677
+ },
678
+ "ffn": {
679
+ "ffn_mult": 1.3125,
680
+ "no_op": false,
681
+ "replace_with_linear": false
682
+ }
683
+ },
684
+ {
685
+ "attention": {
686
+ "n_heads_in_group": 8,
687
+ "no_op": false,
688
+ "replace_with_linear": false
689
+ },
690
+ "ffn": {
691
+ "ffn_mult": 5.25,
692
+ "no_op": false,
693
+ "replace_with_linear": false
694
+ }
695
+ },
696
+ {
697
+ "attention": {
698
+ "n_heads_in_group": null,
699
+ "no_op": false,
700
+ "replace_with_linear": true
701
+ },
702
+ "ffn": {
703
+ "ffn_mult": 1.3125,
704
+ "no_op": false,
705
+ "replace_with_linear": false
706
+ }
707
+ },
708
+ {
709
+ "attention": {
710
+ "n_heads_in_group": null,
711
+ "no_op": true,
712
+ "replace_with_linear": false
713
+ },
714
+ "ffn": {
715
+ "ffn_mult": 1.3125,
716
+ "no_op": false,
717
+ "replace_with_linear": false
718
+ }
719
+ },
720
+ {
721
+ "attention": {
722
+ "n_heads_in_group": null,
723
+ "no_op": false,
724
+ "replace_with_linear": true
725
+ },
726
+ "ffn": {
727
+ "ffn_mult": 1.3125,
728
+ "no_op": false,
729
+ "replace_with_linear": false
730
+ }
731
+ },
732
+ {
733
+ "attention": {
734
+ "n_heads_in_group": null,
735
+ "no_op": false,
736
+ "replace_with_linear": true
737
+ },
738
+ "ffn": {
739
+ "ffn_mult": 1.3125,
740
+ "no_op": false,
741
+ "replace_with_linear": false
742
+ }
743
+ },
744
+ {
745
+ "attention": {
746
+ "n_heads_in_group": null,
747
+ "no_op": true,
748
+ "replace_with_linear": false
749
+ },
750
+ "ffn": {
751
+ "ffn_mult": 1.3125,
752
+ "no_op": false,
753
+ "replace_with_linear": false
754
+ }
755
+ },
756
+ {
757
+ "attention": {
758
+ "n_heads_in_group": null,
759
+ "no_op": true,
760
+ "replace_with_linear": false
761
+ },
762
+ "ffn": {
763
+ "ffn_mult": 1.3125,
764
+ "no_op": false,
765
+ "replace_with_linear": false
766
+ }
767
+ },
768
+ {
769
+ "attention": {
770
+ "n_heads_in_group": null,
771
+ "no_op": false,
772
+ "replace_with_linear": true
773
+ },
774
+ "ffn": {
775
+ "ffn_mult": 1.3125,
776
+ "no_op": false,
777
+ "replace_with_linear": false
778
+ }
779
+ },
780
+ {
781
+ "attention": {
782
+ "n_heads_in_group": null,
783
+ "no_op": true,
784
+ "replace_with_linear": false
785
+ },
786
+ "ffn": {
787
+ "ffn_mult": 1.3125,
788
+ "no_op": false,
789
+ "replace_with_linear": false
790
+ }
791
+ },
792
+ {
793
+ "attention": {
794
+ "n_heads_in_group": null,
795
+ "no_op": true,
796
+ "replace_with_linear": false
797
+ },
798
+ "ffn": {
799
+ "ffn_mult": 1.3125,
800
+ "no_op": false,
801
+ "replace_with_linear": false
802
+ }
803
+ },
804
+ {
805
+ "attention": {
806
+ "n_heads_in_group": null,
807
+ "no_op": false,
808
+ "replace_with_linear": true
809
+ },
810
+ "ffn": {
811
+ "ffn_mult": 1.3125,
812
+ "no_op": false,
813
+ "replace_with_linear": false
814
+ }
815
+ },
816
+ {
817
+ "attention": {
818
+ "n_heads_in_group": null,
819
+ "no_op": false,
820
+ "replace_with_linear": true
821
+ },
822
+ "ffn": {
823
+ "ffn_mult": 1.3125,
824
+ "no_op": false,
825
+ "replace_with_linear": false
826
+ }
827
+ },
828
+ {
829
+ "attention": {
830
+ "n_heads_in_group": null,
831
+ "no_op": false,
832
+ "replace_with_linear": true
833
+ },
834
+ "ffn": {
835
+ "ffn_mult": 1.3125,
836
+ "no_op": false,
837
+ "replace_with_linear": false
838
+ }
839
+ },
840
+ {
841
+ "attention": {
842
+ "n_heads_in_group": null,
843
+ "no_op": false,
844
+ "replace_with_linear": true
845
+ },
846
+ "ffn": {
847
+ "ffn_mult": 1.3125,
848
+ "no_op": false,
849
+ "replace_with_linear": false
850
+ }
851
+ },
852
+ {
853
+ "attention": {
854
+ "n_heads_in_group": 8,
855
+ "no_op": false,
856
+ "replace_with_linear": false
857
+ },
858
+ "ffn": {
859
+ "ffn_mult": 5.25,
860
+ "no_op": false,
861
+ "replace_with_linear": false
862
+ }
863
+ },
864
+ {
865
+ "attention": {
866
+ "n_heads_in_group": 8,
867
+ "no_op": false,
868
+ "replace_with_linear": false
869
+ },
870
+ "ffn": {
871
+ "ffn_mult": 5.25,
872
+ "no_op": false,
873
+ "replace_with_linear": false
874
+ }
875
+ },
876
+ {
877
+ "attention": {
878
+ "n_heads_in_group": 8,
879
+ "no_op": false,
880
+ "replace_with_linear": false
881
+ },
882
+ "ffn": {
883
+ "ffn_mult": 5.25,
884
+ "no_op": false,
885
+ "replace_with_linear": false
886
+ }
887
+ },
888
+ {
889
+ "attention": {
890
+ "n_heads_in_group": 8,
891
+ "no_op": false,
892
+ "replace_with_linear": false
893
+ },
894
+ "ffn": {
895
+ "ffn_mult": 5.25,
896
+ "no_op": false,
897
+ "replace_with_linear": false
898
+ }
899
+ },
900
+ {
901
+ "attention": {
902
+ "n_heads_in_group": 8,
903
+ "no_op": false,
904
+ "replace_with_linear": false
905
+ },
906
+ "ffn": {
907
+ "ffn_mult": 5.25,
908
+ "no_op": false,
909
+ "replace_with_linear": false
910
+ }
911
+ },
912
+ {
913
+ "attention": {
914
+ "n_heads_in_group": 8,
915
+ "no_op": false,
916
+ "replace_with_linear": false
917
+ },
918
+ "ffn": {
919
+ "ffn_mult": 5.25,
920
+ "no_op": false,
921
+ "replace_with_linear": false
922
+ }
923
+ },
924
+ {
925
+ "attention": {
926
+ "n_heads_in_group": 8,
927
+ "no_op": false,
928
+ "replace_with_linear": false
929
+ },
930
+ "ffn": {
931
+ "ffn_mult": 5.25,
932
+ "no_op": false,
933
+ "replace_with_linear": false
934
+ }
935
+ },
936
+ {
937
+ "attention": {
938
+ "n_heads_in_group": 8,
939
+ "no_op": false,
940
+ "replace_with_linear": false
941
+ },
942
+ "ffn": {
943
+ "ffn_mult": 5.25,
944
+ "no_op": false,
945
+ "replace_with_linear": false
946
+ }
947
+ },
948
+ {
949
+ "attention": {
950
+ "n_heads_in_group": 8,
951
+ "no_op": false,
952
+ "replace_with_linear": false
953
+ },
954
+ "ffn": {
955
+ "ffn_mult": 5.25,
956
+ "no_op": false,
957
+ "replace_with_linear": false
958
+ }
959
+ },
960
+ {
961
+ "attention": {
962
+ "n_heads_in_group": 8,
963
+ "no_op": false,
964
+ "replace_with_linear": false
965
+ },
966
+ "ffn": {
967
+ "ffn_mult": 5.25,
968
+ "no_op": false,
969
+ "replace_with_linear": false
970
+ }
971
+ }
972
+ ],
973
+ "bos_token_id": 128000,
974
+ "eos_token_id": 128009,
975
+ "hidden_act": "silu",
976
+ "hidden_size": 8192,
977
+ "initializer_range": 0.02,
978
+ "intermediate_size": null,
979
+ "max_position_embeddings": 131072,
980
+ "mlp_bias": false,
981
+ "model_type": "nemotron-nas",
982
+ "num_attention_heads": 64,
983
+ "num_hidden_layers": 80,
984
+ "num_key_value_heads": null,
985
+ "pretraining_tp": 1,
986
+ "rms_norm_eps": 1e-05,
987
+ "rope_scaling": {
988
+ "factor": 8.0,
989
+ "high_freq_factor": 4.0,
990
+ "low_freq_factor": 1.0,
991
+ "original_max_position_embeddings": 8192,
992
+ "rope_type": "llama3"
993
+ },
994
+ "rope_theta": 500000.0,
995
+ "tie_word_embeddings": false,
996
+ "torch_dtype": "bfloat16",
997
+ "transformers_version": "4.51.3",
998
+ "use_cache": true,
999
+ "vocab_size": 128256
1000
+ }
configuration_decilm.py ADDED
@@ -0,0 +1,99 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # coding=utf-8
2
+ # Copyright 2024 Nvidia Corporation. All rights reserved.
3
+ #
4
+ # Licensed under the Apache License, Version 2.0 (the "License");
5
+ # you may not use this file except in compliance with the License.
6
+ # You may obtain a copy of the License at
7
+ #
8
+ # http://www.apache.org/licenses/LICENSE-2.0
9
+ #
10
+ # Unless required by applicable law or agreed to in writing, software
11
+ # distributed under the License is distributed on an "AS IS" BASIS,
12
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13
+ # See the License for the specific language governing permissions and
14
+ # limitations under the License.
15
+
16
+ import dataclasses
17
+ import warnings
18
+ from dataclasses import dataclass, MISSING
19
+ from functools import partial
20
+ from typing import Optional, Dict, Any
21
+
22
+ from .transformers_4_44_2__configuration_llama import LlamaConfig
23
+ from .transformers_4_44_2__modeling_rope_utils import \
24
+ rope_config_validation # fake import to make AutoConfig infer the dependency
25
+
26
+
27
+ class DeciLMConfig(LlamaConfig):
28
+ model_type = "nemotron-nas"
29
+
30
+ def __init__(
31
+ self,
32
+ block_configs: list[dict] | list["BlockConfig"] = None,
33
+ **kwargs,
34
+ ):
35
+ super().__init__(**kwargs)
36
+ self.intermediate_size = None
37
+ self.num_key_value_heads = None
38
+
39
+ if block_configs is not None:
40
+ assert len(block_configs) == self.num_hidden_layers
41
+ if isinstance(block_configs[0], dict):
42
+ block_configs = [BlockConfig(**conf) for conf in block_configs]
43
+ self.block_configs: list[BlockConfig] = block_configs
44
+
45
+ def to_dict(self) -> Dict[str, Any]:
46
+ self_dict = super().to_dict()
47
+ if self.block_configs is not None:
48
+ self_dict["block_configs"] = [dataclasses.asdict(conf) for conf in self.block_configs]
49
+ return self_dict
50
+
51
+
52
+ @partial(dataclass, frozen=True, eq=True, unsafe_hash=True, order=True)
53
+ class AttentionConfig:
54
+ no_op: bool = False
55
+ replace_with_linear: bool = False
56
+ n_heads_in_group: Optional[int] = None
57
+
58
+ def __post_init__(self):
59
+ assert not (self.no_op and self.replace_with_linear)
60
+ if self.no_op or self.replace_with_linear:
61
+ object.__setattr__(self, 'n_heads_in_group', None) # __setattr__ to overcome frozen=True
62
+ else:
63
+ assert self.n_heads_in_group is not None
64
+
65
+
66
+ @partial(dataclass, frozen=True, eq=True, unsafe_hash=True, order=True)
67
+ class FFNConfig:
68
+ no_op: bool = False
69
+ replace_with_linear: bool = False
70
+ ffn_mult: Optional[float] = None
71
+
72
+ def __post_init__(self):
73
+ assert not (self.no_op and self.replace_with_linear)
74
+ if self.no_op or self.replace_with_linear:
75
+ object.__setattr__(self, 'ffn_mult', None) # __setattr__ to overcome frozen=True
76
+ else:
77
+ assert self.ffn_mult is not None
78
+
79
+
80
+ @partial(dataclass, frozen=True, eq=True, unsafe_hash=True, order=True)
81
+ class BlockConfig:
82
+ attention: AttentionConfig = MISSING
83
+ ffn: FFNConfig = MISSING
84
+
85
+ def __post_init__(self):
86
+ """
87
+ Init subblock dataclasses from dicts
88
+ """
89
+ for subblock_name in dataclasses.fields(self):
90
+ subblock_config = getattr(self, subblock_name.name)
91
+ if isinstance(subblock_config, dict):
92
+ subblock_fields = [field.name for field in dataclasses.fields(subblock_name.type)]
93
+ unsupported_fields = [field_name for field_name in subblock_config.keys()
94
+ if field_name not in subblock_fields]
95
+ if len(unsupported_fields) > 0:
96
+ warnings.warn(f"Removed unsupported fields {unsupported_fields} from {subblock_name.type.__name__}")
97
+ subblock_config = {k: v for k, v in subblock_config.items() if k not in unsupported_fields}
98
+ object.__setattr__(self, subblock_name.name,
99
+ subblock_name.type(**subblock_config)) # __setattr__ to overcome frozen=True
generation_config.json ADDED
@@ -0,0 +1,11 @@
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_from_model_config": true,
3
+ "bos_token_id": 128000,
4
+ "do_sample": true,
5
+ "eos_token_id": [
6
+ 128001,
7
+ 128008,
8
+ 128009
9
+ ],
10
+ "transformers_version": "4.51.3"
11
+ }
model.safetensors.index.json ADDED
@@ -0,0 +1,636 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "metadata": {
3
+ "total_size": 103002030080
4
+ },
5
+ "weight_map": {
6
+ "lm_head.weight": "model-00022-of-00022.safetensors",
7
+ "model.embed_tokens.weight": "model-00001-of-00022.safetensors",
8
+ "model.layers.0.input_layernorm.weight": "model-00001-of-00022.safetensors",
9
+ "model.layers.0.mlp.down_proj.weight": "model-00001-of-00022.safetensors",
10
+ "model.layers.0.mlp.gate_proj.weight": "model-00001-of-00022.safetensors",
11
+ "model.layers.0.mlp.up_proj.weight": "model-00001-of-00022.safetensors",
12
+ "model.layers.0.post_attention_layernorm.weight": "model-00001-of-00022.safetensors",
13
+ "model.layers.0.self_attn.k_proj.weight": "model-00001-of-00022.safetensors",
14
+ "model.layers.0.self_attn.o_proj.weight": "model-00001-of-00022.safetensors",
15
+ "model.layers.0.self_attn.q_proj.weight": "model-00001-of-00022.safetensors",
16
+ "model.layers.0.self_attn.v_proj.weight": "model-00001-of-00022.safetensors",
17
+ "model.layers.1.input_layernorm.weight": "model-00001-of-00022.safetensors",
18
+ "model.layers.1.mlp.down_proj.weight": "model-00001-of-00022.safetensors",
19
+ "model.layers.1.mlp.gate_proj.weight": "model-00001-of-00022.safetensors",
20
+ "model.layers.1.mlp.up_proj.weight": "model-00001-of-00022.safetensors",
21
+ "model.layers.1.post_attention_layernorm.weight": "model-00001-of-00022.safetensors",
22
+ "model.layers.1.self_attn.k_proj.weight": "model-00001-of-00022.safetensors",
23
+ "model.layers.1.self_attn.o_proj.weight": "model-00001-of-00022.safetensors",
24
+ "model.layers.1.self_attn.q_proj.weight": "model-00001-of-00022.safetensors",
25
+ "model.layers.1.self_attn.v_proj.weight": "model-00001-of-00022.safetensors",
26
+ "model.layers.10.input_layernorm.weight": "model-00003-of-00022.safetensors",
27
+ "model.layers.10.mlp.down_proj.weight": "model-00003-of-00022.safetensors",
28
+ "model.layers.10.mlp.gate_proj.weight": "model-00003-of-00022.safetensors",
29
+ "model.layers.10.mlp.up_proj.weight": "model-00003-of-00022.safetensors",
30
+ "model.layers.10.post_attention_layernorm.weight": "model-00003-of-00022.safetensors",
31
+ "model.layers.10.self_attn.k_proj.weight": "model-00003-of-00022.safetensors",
32
+ "model.layers.10.self_attn.o_proj.weight": "model-00003-of-00022.safetensors",
33
+ "model.layers.10.self_attn.q_proj.weight": "model-00003-of-00022.safetensors",
34
+ "model.layers.10.self_attn.v_proj.weight": "model-00003-of-00022.safetensors",
35
+ "model.layers.11.input_layernorm.weight": "model-00003-of-00022.safetensors",
36
+ "model.layers.11.mlp.down_proj.weight": "model-00004-of-00022.safetensors",
37
+ "model.layers.11.mlp.gate_proj.weight": "model-00004-of-00022.safetensors",
38
+ "model.layers.11.mlp.up_proj.weight": "model-00004-of-00022.safetensors",
39
+ "model.layers.11.post_attention_layernorm.weight": "model-00004-of-00022.safetensors",
40
+ "model.layers.11.self_attn.linear_attn.weight": "model-00004-of-00022.safetensors",
41
+ "model.layers.12.input_layernorm.weight": "model-00004-of-00022.safetensors",
42
+ "model.layers.12.mlp.down_proj.weight": "model-00004-of-00022.safetensors",
43
+ "model.layers.12.mlp.gate_proj.weight": "model-00004-of-00022.safetensors",
44
+ "model.layers.12.mlp.up_proj.weight": "model-00004-of-00022.safetensors",
45
+ "model.layers.12.post_attention_layernorm.weight": "model-00004-of-00022.safetensors",
46
+ "model.layers.12.self_attn.k_proj.weight": "model-00004-of-00022.safetensors",
47
+ "model.layers.12.self_attn.o_proj.weight": "model-00004-of-00022.safetensors",
48
+ "model.layers.12.self_attn.q_proj.weight": "model-00004-of-00022.safetensors",
49
+ "model.layers.12.self_attn.v_proj.weight": "model-00004-of-00022.safetensors",
50
+ "model.layers.13.input_layernorm.weight": "model-00004-of-00022.safetensors",
51
+ "model.layers.13.mlp.down_proj.weight": "model-00004-of-00022.safetensors",
52
+ "model.layers.13.mlp.gate_proj.weight": "model-00004-of-00022.safetensors",
53
+ "model.layers.13.mlp.up_proj.weight": "model-00004-of-00022.safetensors",
54
+ "model.layers.13.post_attention_layernorm.weight": "model-00004-of-00022.safetensors",
55
+ "model.layers.13.self_attn.k_proj.weight": "model-00004-of-00022.safetensors",
56
+ "model.layers.13.self_attn.o_proj.weight": "model-00004-of-00022.safetensors",
57
+ "model.layers.13.self_attn.q_proj.weight": "model-00004-of-00022.safetensors",
58
+ "model.layers.13.self_attn.v_proj.weight": "model-00004-of-00022.safetensors",
59
+ "model.layers.14.input_layernorm.weight": "model-00004-of-00022.safetensors",
60
+ "model.layers.14.mlp.down_proj.weight": "model-00004-of-00022.safetensors",
61
+ "model.layers.14.mlp.gate_proj.weight": "model-00004-of-00022.safetensors",
62
+ "model.layers.14.mlp.up_proj.weight": "model-00004-of-00022.safetensors",
63
+ "model.layers.14.post_attention_layernorm.weight": "model-00004-of-00022.safetensors",
64
+ "model.layers.14.self_attn.k_proj.weight": "model-00004-of-00022.safetensors",
65
+ "model.layers.14.self_attn.o_proj.weight": "model-00004-of-00022.safetensors",
66
+ "model.layers.14.self_attn.q_proj.weight": "model-00004-of-00022.safetensors",
67
+ "model.layers.14.self_attn.v_proj.weight": "model-00004-of-00022.safetensors",
68
+ "model.layers.15.input_layernorm.weight": "model-00004-of-00022.safetensors",
69
+ "model.layers.15.mlp.down_proj.weight": "model-00004-of-00022.safetensors",
70
+ "model.layers.15.mlp.gate_proj.weight": "model-00004-of-00022.safetensors",
71
+ "model.layers.15.mlp.up_proj.weight": "model-00004-of-00022.safetensors",
72
+ "model.layers.15.post_attention_layernorm.weight": "model-00004-of-00022.safetensors",
73
+ "model.layers.15.self_attn.linear_attn.weight": "model-00004-of-00022.safetensors",
74
+ "model.layers.16.input_layernorm.weight": "model-00004-of-00022.safetensors",
75
+ "model.layers.16.mlp.down_proj.weight": "model-00005-of-00022.safetensors",
76
+ "model.layers.16.mlp.gate_proj.weight": "model-00005-of-00022.safetensors",
77
+ "model.layers.16.mlp.up_proj.weight": "model-00005-of-00022.safetensors",
78
+ "model.layers.16.post_attention_layernorm.weight": "model-00004-of-00022.safetensors",
79
+ "model.layers.16.self_attn.k_proj.weight": "model-00004-of-00022.safetensors",
80
+ "model.layers.16.self_attn.o_proj.weight": "model-00004-of-00022.safetensors",
81
+ "model.layers.16.self_attn.q_proj.weight": "model-00004-of-00022.safetensors",
82
+ "model.layers.16.self_attn.v_proj.weight": "model-00004-of-00022.safetensors",
83
+ "model.layers.17.input_layernorm.weight": "model-00005-of-00022.safetensors",
84
+ "model.layers.17.mlp.down_proj.weight": "model-00005-of-00022.safetensors",
85
+ "model.layers.17.mlp.gate_proj.weight": "model-00005-of-00022.safetensors",
86
+ "model.layers.17.mlp.up_proj.weight": "model-00005-of-00022.safetensors",
87
+ "model.layers.17.post_attention_layernorm.weight": "model-00005-of-00022.safetensors",
88
+ "model.layers.17.self_attn.k_proj.weight": "model-00005-of-00022.safetensors",
89
+ "model.layers.17.self_attn.o_proj.weight": "model-00005-of-00022.safetensors",
90
+ "model.layers.17.self_attn.q_proj.weight": "model-00005-of-00022.safetensors",
91
+ "model.layers.17.self_attn.v_proj.weight": "model-00005-of-00022.safetensors",
92
+ "model.layers.18.input_layernorm.weight": "model-00005-of-00022.safetensors",
93
+ "model.layers.18.mlp.down_proj.weight": "model-00005-of-00022.safetensors",
94
+ "model.layers.18.mlp.gate_proj.weight": "model-00005-of-00022.safetensors",
95
+ "model.layers.18.mlp.up_proj.weight": "model-00005-of-00022.safetensors",
96
+ "model.layers.18.post_attention_layernorm.weight": "model-00005-of-00022.safetensors",
97
+ "model.layers.18.self_attn.k_proj.weight": "model-00005-of-00022.safetensors",
98
+ "model.layers.18.self_attn.o_proj.weight": "model-00005-of-00022.safetensors",
99
+ "model.layers.18.self_attn.q_proj.weight": "model-00005-of-00022.safetensors",
100
+ "model.layers.18.self_attn.v_proj.weight": "model-00005-of-00022.safetensors",
101
+ "model.layers.19.input_layernorm.weight": "model-00005-of-00022.safetensors",
102
+ "model.layers.19.mlp.down_proj.weight": "model-00006-of-00022.safetensors",
103
+ "model.layers.19.mlp.gate_proj.weight": "model-00006-of-00022.safetensors",
104
+ "model.layers.19.mlp.up_proj.weight": "model-00006-of-00022.safetensors",
105
+ "model.layers.19.post_attention_layernorm.weight": "model-00006-of-00022.safetensors",
106
+ "model.layers.19.self_attn.k_proj.weight": "model-00005-of-00022.safetensors",
107
+ "model.layers.19.self_attn.o_proj.weight": "model-00006-of-00022.safetensors",
108
+ "model.layers.19.self_attn.q_proj.weight": "model-00005-of-00022.safetensors",
109
+ "model.layers.19.self_attn.v_proj.weight": "model-00005-of-00022.safetensors",
110
+ "model.layers.2.input_layernorm.weight": "model-00001-of-00022.safetensors",
111
+ "model.layers.2.mlp.down_proj.weight": "model-00002-of-00022.safetensors",
112
+ "model.layers.2.mlp.gate_proj.weight": "model-00001-of-00022.safetensors",
113
+ "model.layers.2.mlp.up_proj.weight": "model-00001-of-00022.safetensors",
114
+ "model.layers.2.post_attention_layernorm.weight": "model-00001-of-00022.safetensors",
115
+ "model.layers.2.self_attn.k_proj.weight": "model-00001-of-00022.safetensors",
116
+ "model.layers.2.self_attn.o_proj.weight": "model-00001-of-00022.safetensors",
117
+ "model.layers.2.self_attn.q_proj.weight": "model-00001-of-00022.safetensors",
118
+ "model.layers.2.self_attn.v_proj.weight": "model-00001-of-00022.safetensors",
119
+ "model.layers.20.input_layernorm.weight": "model-00006-of-00022.safetensors",
120
+ "model.layers.20.mlp.down_proj.weight": "model-00006-of-00022.safetensors",
121
+ "model.layers.20.mlp.gate_proj.weight": "model-00006-of-00022.safetensors",
122
+ "model.layers.20.mlp.up_proj.weight": "model-00006-of-00022.safetensors",
123
+ "model.layers.20.post_attention_layernorm.weight": "model-00006-of-00022.safetensors",
124
+ "model.layers.20.self_attn.k_proj.weight": "model-00006-of-00022.safetensors",
125
+ "model.layers.20.self_attn.o_proj.weight": "model-00006-of-00022.safetensors",
126
+ "model.layers.20.self_attn.q_proj.weight": "model-00006-of-00022.safetensors",
127
+ "model.layers.20.self_attn.v_proj.weight": "model-00006-of-00022.safetensors",
128
+ "model.layers.21.input_layernorm.weight": "model-00006-of-00022.safetensors",
129
+ "model.layers.21.mlp.down_proj.weight": "model-00006-of-00022.safetensors",
130
+ "model.layers.21.mlp.gate_proj.weight": "model-00006-of-00022.safetensors",
131
+ "model.layers.21.mlp.up_proj.weight": "model-00006-of-00022.safetensors",
132
+ "model.layers.21.post_attention_layernorm.weight": "model-00006-of-00022.safetensors",
133
+ "model.layers.21.self_attn.k_proj.weight": "model-00006-of-00022.safetensors",
134
+ "model.layers.21.self_attn.o_proj.weight": "model-00006-of-00022.safetensors",
135
+ "model.layers.21.self_attn.q_proj.weight": "model-00006-of-00022.safetensors",
136
+ "model.layers.21.self_attn.v_proj.weight": "model-00006-of-00022.safetensors",
137
+ "model.layers.22.input_layernorm.weight": "model-00006-of-00022.safetensors",
138
+ "model.layers.22.mlp.down_proj.weight": "model-00007-of-00022.safetensors",
139
+ "model.layers.22.mlp.gate_proj.weight": "model-00007-of-00022.safetensors",
140
+ "model.layers.22.mlp.up_proj.weight": "model-00007-of-00022.safetensors",
141
+ "model.layers.22.post_attention_layernorm.weight": "model-00007-of-00022.safetensors",
142
+ "model.layers.22.self_attn.k_proj.weight": "model-00007-of-00022.safetensors",
143
+ "model.layers.22.self_attn.o_proj.weight": "model-00007-of-00022.safetensors",
144
+ "model.layers.22.self_attn.q_proj.weight": "model-00007-of-00022.safetensors",
145
+ "model.layers.22.self_attn.v_proj.weight": "model-00007-of-00022.safetensors",
146
+ "model.layers.23.input_layernorm.weight": "model-00007-of-00022.safetensors",
147
+ "model.layers.23.mlp.down_proj.weight": "model-00007-of-00022.safetensors",
148
+ "model.layers.23.mlp.gate_proj.weight": "model-00007-of-00022.safetensors",
149
+ "model.layers.23.mlp.up_proj.weight": "model-00007-of-00022.safetensors",
150
+ "model.layers.23.post_attention_layernorm.weight": "model-00007-of-00022.safetensors",
151
+ "model.layers.23.self_attn.k_proj.weight": "model-00007-of-00022.safetensors",
152
+ "model.layers.23.self_attn.o_proj.weight": "model-00007-of-00022.safetensors",
153
+ "model.layers.23.self_attn.q_proj.weight": "model-00007-of-00022.safetensors",
154
+ "model.layers.23.self_attn.v_proj.weight": "model-00007-of-00022.safetensors",
155
+ "model.layers.24.input_layernorm.weight": "model-00007-of-00022.safetensors",
156
+ "model.layers.24.mlp.down_proj.weight": "model-00008-of-00022.safetensors",
157
+ "model.layers.24.mlp.gate_proj.weight": "model-00007-of-00022.safetensors",
158
+ "model.layers.24.mlp.up_proj.weight": "model-00007-of-00022.safetensors",
159
+ "model.layers.24.post_attention_layernorm.weight": "model-00007-of-00022.safetensors",
160
+ "model.layers.24.self_attn.k_proj.weight": "model-00007-of-00022.safetensors",
161
+ "model.layers.24.self_attn.o_proj.weight": "model-00007-of-00022.safetensors",
162
+ "model.layers.24.self_attn.q_proj.weight": "model-00007-of-00022.safetensors",
163
+ "model.layers.24.self_attn.v_proj.weight": "model-00007-of-00022.safetensors",
164
+ "model.layers.25.input_layernorm.weight": "model-00008-of-00022.safetensors",
165
+ "model.layers.25.mlp.down_proj.weight": "model-00008-of-00022.safetensors",
166
+ "model.layers.25.mlp.gate_proj.weight": "model-00008-of-00022.safetensors",
167
+ "model.layers.25.mlp.up_proj.weight": "model-00008-of-00022.safetensors",
168
+ "model.layers.25.post_attention_layernorm.weight": "model-00008-of-00022.safetensors",
169
+ "model.layers.25.self_attn.k_proj.weight": "model-00008-of-00022.safetensors",
170
+ "model.layers.25.self_attn.o_proj.weight": "model-00008-of-00022.safetensors",
171
+ "model.layers.25.self_attn.q_proj.weight": "model-00008-of-00022.safetensors",
172
+ "model.layers.25.self_attn.v_proj.weight": "model-00008-of-00022.safetensors",
173
+ "model.layers.26.input_layernorm.weight": "model-00008-of-00022.safetensors",
174
+ "model.layers.26.mlp.down_proj.weight": "model-00008-of-00022.safetensors",
175
+ "model.layers.26.mlp.gate_proj.weight": "model-00008-of-00022.safetensors",
176
+ "model.layers.26.mlp.up_proj.weight": "model-00008-of-00022.safetensors",
177
+ "model.layers.26.post_attention_layernorm.weight": "model-00008-of-00022.safetensors",
178
+ "model.layers.26.self_attn.k_proj.weight": "model-00008-of-00022.safetensors",
179
+ "model.layers.26.self_attn.o_proj.weight": "model-00008-of-00022.safetensors",
180
+ "model.layers.26.self_attn.q_proj.weight": "model-00008-of-00022.safetensors",
181
+ "model.layers.26.self_attn.v_proj.weight": "model-00008-of-00022.safetensors",
182
+ "model.layers.27.input_layernorm.weight": "model-00008-of-00022.safetensors",
183
+ "model.layers.27.mlp.down_proj.weight": "model-00009-of-00022.safetensors",
184
+ "model.layers.27.mlp.gate_proj.weight": "model-00008-of-00022.safetensors",
185
+ "model.layers.27.mlp.up_proj.weight": "model-00009-of-00022.safetensors",
186
+ "model.layers.27.post_attention_layernorm.weight": "model-00008-of-00022.safetensors",
187
+ "model.layers.27.self_attn.k_proj.weight": "model-00008-of-00022.safetensors",
188
+ "model.layers.27.self_attn.o_proj.weight": "model-00008-of-00022.safetensors",
189
+ "model.layers.27.self_attn.q_proj.weight": "model-00008-of-00022.safetensors",
190
+ "model.layers.27.self_attn.v_proj.weight": "model-00008-of-00022.safetensors",
191
+ "model.layers.28.input_layernorm.weight": "model-00009-of-00022.safetensors",
192
+ "model.layers.28.mlp.down_proj.weight": "model-00009-of-00022.safetensors",
193
+ "model.layers.28.mlp.gate_proj.weight": "model-00009-of-00022.safetensors",
194
+ "model.layers.28.mlp.up_proj.weight": "model-00009-of-00022.safetensors",
195
+ "model.layers.28.post_attention_layernorm.weight": "model-00009-of-00022.safetensors",
196
+ "model.layers.28.self_attn.k_proj.weight": "model-00009-of-00022.safetensors",
197
+ "model.layers.28.self_attn.o_proj.weight": "model-00009-of-00022.safetensors",
198
+ "model.layers.28.self_attn.q_proj.weight": "model-00009-of-00022.safetensors",
199
+ "model.layers.28.self_attn.v_proj.weight": "model-00009-of-00022.safetensors",
200
+ "model.layers.29.input_layernorm.weight": "model-00009-of-00022.safetensors",
201
+ "model.layers.29.mlp.down_proj.weight": "model-00009-of-00022.safetensors",
202
+ "model.layers.29.mlp.gate_proj.weight": "model-00009-of-00022.safetensors",
203
+ "model.layers.29.mlp.up_proj.weight": "model-00009-of-00022.safetensors",
204
+ "model.layers.29.post_attention_layernorm.weight": "model-00009-of-00022.safetensors",
205
+ "model.layers.29.self_attn.k_proj.weight": "model-00009-of-00022.safetensors",
206
+ "model.layers.29.self_attn.o_proj.weight": "model-00009-of-00022.safetensors",
207
+ "model.layers.29.self_attn.q_proj.weight": "model-00009-of-00022.safetensors",
208
+ "model.layers.29.self_attn.v_proj.weight": "model-00009-of-00022.safetensors",
209
+ "model.layers.3.input_layernorm.weight": "model-00002-of-00022.safetensors",
210
+ "model.layers.3.mlp.down_proj.weight": "model-00002-of-00022.safetensors",
211
+ "model.layers.3.mlp.gate_proj.weight": "model-00002-of-00022.safetensors",
212
+ "model.layers.3.mlp.up_proj.weight": "model-00002-of-00022.safetensors",
213
+ "model.layers.3.post_attention_layernorm.weight": "model-00002-of-00022.safetensors",
214
+ "model.layers.3.self_attn.k_proj.weight": "model-00002-of-00022.safetensors",
215
+ "model.layers.3.self_attn.o_proj.weight": "model-00002-of-00022.safetensors",
216
+ "model.layers.3.self_attn.q_proj.weight": "model-00002-of-00022.safetensors",
217
+ "model.layers.3.self_attn.v_proj.weight": "model-00002-of-00022.safetensors",
218
+ "model.layers.30.input_layernorm.weight": "model-00009-of-00022.safetensors",
219
+ "model.layers.30.mlp.down_proj.weight": "model-00010-of-00022.safetensors",
220
+ "model.layers.30.mlp.gate_proj.weight": "model-00010-of-00022.safetensors",
221
+ "model.layers.30.mlp.up_proj.weight": "model-00010-of-00022.safetensors",
222
+ "model.layers.30.post_attention_layernorm.weight": "model-00009-of-00022.safetensors",
223
+ "model.layers.30.self_attn.k_proj.weight": "model-00009-of-00022.safetensors",
224
+ "model.layers.30.self_attn.o_proj.weight": "model-00009-of-00022.safetensors",
225
+ "model.layers.30.self_attn.q_proj.weight": "model-00009-of-00022.safetensors",
226
+ "model.layers.30.self_attn.v_proj.weight": "model-00009-of-00022.safetensors",
227
+ "model.layers.31.input_layernorm.weight": "model-00010-of-00022.safetensors",
228
+ "model.layers.31.mlp.down_proj.weight": "model-00010-of-00022.safetensors",
229
+ "model.layers.31.mlp.gate_proj.weight": "model-00010-of-00022.safetensors",
230
+ "model.layers.31.mlp.up_proj.weight": "model-00010-of-00022.safetensors",
231
+ "model.layers.31.post_attention_layernorm.weight": "model-00010-of-00022.safetensors",
232
+ "model.layers.31.self_attn.k_proj.weight": "model-00010-of-00022.safetensors",
233
+ "model.layers.31.self_attn.o_proj.weight": "model-00010-of-00022.safetensors",
234
+ "model.layers.31.self_attn.q_proj.weight": "model-00010-of-00022.safetensors",
235
+ "model.layers.31.self_attn.v_proj.weight": "model-00010-of-00022.safetensors",
236
+ "model.layers.32.input_layernorm.weight": "model-00010-of-00022.safetensors",
237
+ "model.layers.32.mlp.down_proj.weight": "model-00010-of-00022.safetensors",
238
+ "model.layers.32.mlp.gate_proj.weight": "model-00010-of-00022.safetensors",
239
+ "model.layers.32.mlp.up_proj.weight": "model-00010-of-00022.safetensors",
240
+ "model.layers.32.post_attention_layernorm.weight": "model-00010-of-00022.safetensors",
241
+ "model.layers.32.self_attn.k_proj.weight": "model-00010-of-00022.safetensors",
242
+ "model.layers.32.self_attn.o_proj.weight": "model-00010-of-00022.safetensors",
243
+ "model.layers.32.self_attn.q_proj.weight": "model-00010-of-00022.safetensors",
244
+ "model.layers.32.self_attn.v_proj.weight": "model-00010-of-00022.safetensors",
245
+ "model.layers.33.input_layernorm.weight": "model-00010-of-00022.safetensors",
246
+ "model.layers.33.mlp.down_proj.weight": "model-00011-of-00022.safetensors",
247
+ "model.layers.33.mlp.gate_proj.weight": "model-00011-of-00022.safetensors",
248
+ "model.layers.33.mlp.up_proj.weight": "model-00011-of-00022.safetensors",
249
+ "model.layers.33.post_attention_layernorm.weight": "model-00011-of-00022.safetensors",
250
+ "model.layers.33.self_attn.k_proj.weight": "model-00010-of-00022.safetensors",
251
+ "model.layers.33.self_attn.o_proj.weight": "model-00011-of-00022.safetensors",
252
+ "model.layers.33.self_attn.q_proj.weight": "model-00010-of-00022.safetensors",
253
+ "model.layers.33.self_attn.v_proj.weight": "model-00010-of-00022.safetensors",
254
+ "model.layers.34.input_layernorm.weight": "model-00011-of-00022.safetensors",
255
+ "model.layers.34.mlp.down_proj.weight": "model-00011-of-00022.safetensors",
256
+ "model.layers.34.mlp.gate_proj.weight": "model-00011-of-00022.safetensors",
257
+ "model.layers.34.mlp.up_proj.weight": "model-00011-of-00022.safetensors",
258
+ "model.layers.34.post_attention_layernorm.weight": "model-00011-of-00022.safetensors",
259
+ "model.layers.34.self_attn.k_proj.weight": "model-00011-of-00022.safetensors",
260
+ "model.layers.34.self_attn.o_proj.weight": "model-00011-of-00022.safetensors",
261
+ "model.layers.34.self_attn.q_proj.weight": "model-00011-of-00022.safetensors",
262
+ "model.layers.34.self_attn.v_proj.weight": "model-00011-of-00022.safetensors",
263
+ "model.layers.35.input_layernorm.weight": "model-00011-of-00022.safetensors",
264
+ "model.layers.35.mlp.down_proj.weight": "model-00011-of-00022.safetensors",
265
+ "model.layers.35.mlp.gate_proj.weight": "model-00011-of-00022.safetensors",
266
+ "model.layers.35.mlp.up_proj.weight": "model-00011-of-00022.safetensors",
267
+ "model.layers.35.post_attention_layernorm.weight": "model-00011-of-00022.safetensors",
268
+ "model.layers.35.self_attn.k_proj.weight": "model-00011-of-00022.safetensors",
269
+ "model.layers.35.self_attn.o_proj.weight": "model-00011-of-00022.safetensors",
270
+ "model.layers.35.self_attn.q_proj.weight": "model-00011-of-00022.safetensors",
271
+ "model.layers.35.self_attn.v_proj.weight": "model-00011-of-00022.safetensors",
272
+ "model.layers.36.input_layernorm.weight": "model-00011-of-00022.safetensors",
273
+ "model.layers.36.mlp.down_proj.weight": "model-00012-of-00022.safetensors",
274
+ "model.layers.36.mlp.gate_proj.weight": "model-00012-of-00022.safetensors",
275
+ "model.layers.36.mlp.up_proj.weight": "model-00012-of-00022.safetensors",
276
+ "model.layers.36.post_attention_layernorm.weight": "model-00012-of-00022.safetensors",
277
+ "model.layers.36.self_attn.k_proj.weight": "model-00012-of-00022.safetensors",
278
+ "model.layers.36.self_attn.o_proj.weight": "model-00012-of-00022.safetensors",
279
+ "model.layers.36.self_attn.q_proj.weight": "model-00012-of-00022.safetensors",
280
+ "model.layers.36.self_attn.v_proj.weight": "model-00012-of-00022.safetensors",
281
+ "model.layers.37.input_layernorm.weight": "model-00012-of-00022.safetensors",
282
+ "model.layers.37.mlp.down_proj.weight": "model-00012-of-00022.safetensors",
283
+ "model.layers.37.mlp.gate_proj.weight": "model-00012-of-00022.safetensors",
284
+ "model.layers.37.mlp.up_proj.weight": "model-00012-of-00022.safetensors",
285
+ "model.layers.37.post_attention_layernorm.weight": "model-00012-of-00022.safetensors",
286
+ "model.layers.37.self_attn.k_proj.weight": "model-00012-of-00022.safetensors",
287
+ "model.layers.37.self_attn.o_proj.weight": "model-00012-of-00022.safetensors",
288
+ "model.layers.37.self_attn.q_proj.weight": "model-00012-of-00022.safetensors",
289
+ "model.layers.37.self_attn.v_proj.weight": "model-00012-of-00022.safetensors",
290
+ "model.layers.38.input_layernorm.weight": "model-00012-of-00022.safetensors",
291
+ "model.layers.38.mlp.down_proj.weight": "model-00013-of-00022.safetensors",
292
+ "model.layers.38.mlp.gate_proj.weight": "model-00012-of-00022.safetensors",
293
+ "model.layers.38.mlp.up_proj.weight": "model-00012-of-00022.safetensors",
294
+ "model.layers.38.post_attention_layernorm.weight": "model-00012-of-00022.safetensors",
295
+ "model.layers.38.self_attn.k_proj.weight": "model-00012-of-00022.safetensors",
296
+ "model.layers.38.self_attn.o_proj.weight": "model-00012-of-00022.safetensors",
297
+ "model.layers.38.self_attn.q_proj.weight": "model-00012-of-00022.safetensors",
298
+ "model.layers.38.self_attn.v_proj.weight": "model-00012-of-00022.safetensors",
299
+ "model.layers.39.input_layernorm.weight": "model-00013-of-00022.safetensors",
300
+ "model.layers.39.mlp.down_proj.weight": "model-00013-of-00022.safetensors",
301
+ "model.layers.39.mlp.gate_proj.weight": "model-00013-of-00022.safetensors",
302
+ "model.layers.39.mlp.up_proj.weight": "model-00013-of-00022.safetensors",
303
+ "model.layers.39.post_attention_layernorm.weight": "model-00013-of-00022.safetensors",
304
+ "model.layers.39.self_attn.k_proj.weight": "model-00013-of-00022.safetensors",
305
+ "model.layers.39.self_attn.o_proj.weight": "model-00013-of-00022.safetensors",
306
+ "model.layers.39.self_attn.q_proj.weight": "model-00013-of-00022.safetensors",
307
+ "model.layers.39.self_attn.v_proj.weight": "model-00013-of-00022.safetensors",
308
+ "model.layers.4.input_layernorm.weight": "model-00002-of-00022.safetensors",
309
+ "model.layers.4.mlp.down_proj.weight": "model-00002-of-00022.safetensors",
310
+ "model.layers.4.mlp.gate_proj.weight": "model-00002-of-00022.safetensors",
311
+ "model.layers.4.mlp.up_proj.weight": "model-00002-of-00022.safetensors",
312
+ "model.layers.4.post_attention_layernorm.weight": "model-00002-of-00022.safetensors",
313
+ "model.layers.4.self_attn.k_proj.weight": "model-00002-of-00022.safetensors",
314
+ "model.layers.4.self_attn.o_proj.weight": "model-00002-of-00022.safetensors",
315
+ "model.layers.4.self_attn.q_proj.weight": "model-00002-of-00022.safetensors",
316
+ "model.layers.4.self_attn.v_proj.weight": "model-00002-of-00022.safetensors",
317
+ "model.layers.40.input_layernorm.weight": "model-00013-of-00022.safetensors",
318
+ "model.layers.40.mlp.down_proj.weight": "model-00013-of-00022.safetensors",
319
+ "model.layers.40.mlp.gate_proj.weight": "model-00013-of-00022.safetensors",
320
+ "model.layers.40.mlp.up_proj.weight": "model-00013-of-00022.safetensors",
321
+ "model.layers.40.post_attention_layernorm.weight": "model-00013-of-00022.safetensors",
322
+ "model.layers.40.self_attn.k_proj.weight": "model-00013-of-00022.safetensors",
323
+ "model.layers.40.self_attn.o_proj.weight": "model-00013-of-00022.safetensors",
324
+ "model.layers.40.self_attn.q_proj.weight": "model-00013-of-00022.safetensors",
325
+ "model.layers.40.self_attn.v_proj.weight": "model-00013-of-00022.safetensors",
326
+ "model.layers.41.input_layernorm.weight": "model-00013-of-00022.safetensors",
327
+ "model.layers.41.mlp.down_proj.weight": "model-00014-of-00022.safetensors",
328
+ "model.layers.41.mlp.gate_proj.weight": "model-00013-of-00022.safetensors",
329
+ "model.layers.41.mlp.up_proj.weight": "model-00014-of-00022.safetensors",
330
+ "model.layers.41.post_attention_layernorm.weight": "model-00013-of-00022.safetensors",
331
+ "model.layers.41.self_attn.k_proj.weight": "model-00013-of-00022.safetensors",
332
+ "model.layers.41.self_attn.o_proj.weight": "model-00013-of-00022.safetensors",
333
+ "model.layers.41.self_attn.q_proj.weight": "model-00013-of-00022.safetensors",
334
+ "model.layers.41.self_attn.v_proj.weight": "model-00013-of-00022.safetensors",
335
+ "model.layers.42.input_layernorm.weight": "model-00014-of-00022.safetensors",
336
+ "model.layers.42.mlp.down_proj.weight": "model-00014-of-00022.safetensors",
337
+ "model.layers.42.mlp.gate_proj.weight": "model-00014-of-00022.safetensors",
338
+ "model.layers.42.mlp.up_proj.weight": "model-00014-of-00022.safetensors",
339
+ "model.layers.42.post_attention_layernorm.weight": "model-00014-of-00022.safetensors",
340
+ "model.layers.42.self_attn.linear_attn.weight": "model-00014-of-00022.safetensors",
341
+ "model.layers.43.input_layernorm.weight": "model-00014-of-00022.safetensors",
342
+ "model.layers.43.mlp.down_proj.weight": "model-00014-of-00022.safetensors",
343
+ "model.layers.43.mlp.gate_proj.weight": "model-00014-of-00022.safetensors",
344
+ "model.layers.43.mlp.up_proj.weight": "model-00014-of-00022.safetensors",
345
+ "model.layers.43.post_attention_layernorm.weight": "model-00014-of-00022.safetensors",
346
+ "model.layers.43.self_attn.k_proj.weight": "model-00014-of-00022.safetensors",
347
+ "model.layers.43.self_attn.o_proj.weight": "model-00014-of-00022.safetensors",
348
+ "model.layers.43.self_attn.q_proj.weight": "model-00014-of-00022.safetensors",
349
+ "model.layers.43.self_attn.v_proj.weight": "model-00014-of-00022.safetensors",
350
+ "model.layers.44.input_layernorm.weight": "model-00014-of-00022.safetensors",
351
+ "model.layers.44.mlp.down_proj.weight": "model-00015-of-00022.safetensors",
352
+ "model.layers.44.mlp.gate_proj.weight": "model-00014-of-00022.safetensors",
353
+ "model.layers.44.mlp.up_proj.weight": "model-00014-of-00022.safetensors",
354
+ "model.layers.44.post_attention_layernorm.weight": "model-00014-of-00022.safetensors",
355
+ "model.layers.44.self_attn.k_proj.weight": "model-00014-of-00022.safetensors",
356
+ "model.layers.44.self_attn.o_proj.weight": "model-00014-of-00022.safetensors",
357
+ "model.layers.44.self_attn.q_proj.weight": "model-00014-of-00022.safetensors",
358
+ "model.layers.44.self_attn.v_proj.weight": "model-00014-of-00022.safetensors",
359
+ "model.layers.45.input_layernorm.weight": "model-00015-of-00022.safetensors",
360
+ "model.layers.45.mlp.down_proj.weight": "model-00015-of-00022.safetensors",
361
+ "model.layers.45.mlp.gate_proj.weight": "model-00015-of-00022.safetensors",
362
+ "model.layers.45.mlp.up_proj.weight": "model-00015-of-00022.safetensors",
363
+ "model.layers.45.post_attention_layernorm.weight": "model-00015-of-00022.safetensors",
364
+ "model.layers.45.self_attn.linear_attn.weight": "model-00015-of-00022.safetensors",
365
+ "model.layers.46.input_layernorm.weight": "model-00015-of-00022.safetensors",
366
+ "model.layers.46.mlp.down_proj.weight": "model-00015-of-00022.safetensors",
367
+ "model.layers.46.mlp.gate_proj.weight": "model-00015-of-00022.safetensors",
368
+ "model.layers.46.mlp.up_proj.weight": "model-00015-of-00022.safetensors",
369
+ "model.layers.46.post_attention_layernorm.weight": "model-00015-of-00022.safetensors",
370
+ "model.layers.46.self_attn.linear_attn.weight": "model-00015-of-00022.safetensors",
371
+ "model.layers.47.input_layernorm.weight": "model-00015-of-00022.safetensors",
372
+ "model.layers.47.mlp.down_proj.weight": "model-00015-of-00022.safetensors",
373
+ "model.layers.47.mlp.gate_proj.weight": "model-00015-of-00022.safetensors",
374
+ "model.layers.47.mlp.up_proj.weight": "model-00015-of-00022.safetensors",
375
+ "model.layers.47.post_attention_layernorm.weight": "model-00015-of-00022.safetensors",
376
+ "model.layers.47.self_attn.linear_attn.weight": "model-00015-of-00022.safetensors",
377
+ "model.layers.48.input_layernorm.weight": "model-00015-of-00022.safetensors",
378
+ "model.layers.48.mlp.down_proj.weight": "model-00015-of-00022.safetensors",
379
+ "model.layers.48.mlp.gate_proj.weight": "model-00015-of-00022.safetensors",
380
+ "model.layers.48.mlp.up_proj.weight": "model-00015-of-00022.safetensors",
381
+ "model.layers.48.post_attention_layernorm.weight": "model-00015-of-00022.safetensors",
382
+ "model.layers.48.self_attn.linear_attn.weight": "model-00015-of-00022.safetensors",
383
+ "model.layers.49.input_layernorm.weight": "model-00015-of-00022.safetensors",
384
+ "model.layers.49.mlp.down_proj.weight": "model-00016-of-00022.safetensors",
385
+ "model.layers.49.mlp.gate_proj.weight": "model-00015-of-00022.safetensors",
386
+ "model.layers.49.mlp.up_proj.weight": "model-00016-of-00022.safetensors",
387
+ "model.layers.49.post_attention_layernorm.weight": "model-00015-of-00022.safetensors",
388
+ "model.layers.49.self_attn.linear_attn.weight": "model-00015-of-00022.safetensors",
389
+ "model.layers.5.input_layernorm.weight": "model-00002-of-00022.safetensors",
390
+ "model.layers.5.mlp.down_proj.weight": "model-00002-of-00022.safetensors",
391
+ "model.layers.5.mlp.gate_proj.weight": "model-00002-of-00022.safetensors",
392
+ "model.layers.5.mlp.up_proj.weight": "model-00002-of-00022.safetensors",
393
+ "model.layers.5.post_attention_layernorm.weight": "model-00002-of-00022.safetensors",
394
+ "model.layers.5.self_attn.k_proj.weight": "model-00002-of-00022.safetensors",
395
+ "model.layers.5.self_attn.o_proj.weight": "model-00002-of-00022.safetensors",
396
+ "model.layers.5.self_attn.q_proj.weight": "model-00002-of-00022.safetensors",
397
+ "model.layers.5.self_attn.v_proj.weight": "model-00002-of-00022.safetensors",
398
+ "model.layers.50.mlp.down_proj.weight": "model-00016-of-00022.safetensors",
399
+ "model.layers.50.mlp.gate_proj.weight": "model-00016-of-00022.safetensors",
400
+ "model.layers.50.mlp.up_proj.weight": "model-00016-of-00022.safetensors",
401
+ "model.layers.50.post_attention_layernorm.weight": "model-00016-of-00022.safetensors",
402
+ "model.layers.51.input_layernorm.weight": "model-00016-of-00022.safetensors",
403
+ "model.layers.51.mlp.down_proj.weight": "model-00016-of-00022.safetensors",
404
+ "model.layers.51.mlp.gate_proj.weight": "model-00016-of-00022.safetensors",
405
+ "model.layers.51.mlp.up_proj.weight": "model-00016-of-00022.safetensors",
406
+ "model.layers.51.post_attention_layernorm.weight": "model-00016-of-00022.safetensors",
407
+ "model.layers.51.self_attn.linear_attn.weight": "model-00016-of-00022.safetensors",
408
+ "model.layers.52.input_layernorm.weight": "model-00016-of-00022.safetensors",
409
+ "model.layers.52.mlp.down_proj.weight": "model-00016-of-00022.safetensors",
410
+ "model.layers.52.mlp.gate_proj.weight": "model-00016-of-00022.safetensors",
411
+ "model.layers.52.mlp.up_proj.weight": "model-00016-of-00022.safetensors",
412
+ "model.layers.52.post_attention_layernorm.weight": "model-00016-of-00022.safetensors",
413
+ "model.layers.52.self_attn.k_proj.weight": "model-00016-of-00022.safetensors",
414
+ "model.layers.52.self_attn.o_proj.weight": "model-00016-of-00022.safetensors",
415
+ "model.layers.52.self_attn.q_proj.weight": "model-00016-of-00022.safetensors",
416
+ "model.layers.52.self_attn.v_proj.weight": "model-00016-of-00022.safetensors",
417
+ "model.layers.53.mlp.down_proj.weight": "model-00016-of-00022.safetensors",
418
+ "model.layers.53.mlp.gate_proj.weight": "model-00016-of-00022.safetensors",
419
+ "model.layers.53.mlp.up_proj.weight": "model-00016-of-00022.safetensors",
420
+ "model.layers.53.post_attention_layernorm.weight": "model-00016-of-00022.safetensors",
421
+ "model.layers.54.input_layernorm.weight": "model-00016-of-00022.safetensors",
422
+ "model.layers.54.mlp.down_proj.weight": "model-00016-of-00022.safetensors",
423
+ "model.layers.54.mlp.gate_proj.weight": "model-00016-of-00022.safetensors",
424
+ "model.layers.54.mlp.up_proj.weight": "model-00016-of-00022.safetensors",
425
+ "model.layers.54.post_attention_layernorm.weight": "model-00016-of-00022.safetensors",
426
+ "model.layers.54.self_attn.linear_attn.weight": "model-00016-of-00022.safetensors",
427
+ "model.layers.55.mlp.down_proj.weight": "model-00016-of-00022.safetensors",
428
+ "model.layers.55.mlp.gate_proj.weight": "model-00016-of-00022.safetensors",
429
+ "model.layers.55.mlp.up_proj.weight": "model-00016-of-00022.safetensors",
430
+ "model.layers.55.post_attention_layernorm.weight": "model-00016-of-00022.safetensors",
431
+ "model.layers.56.input_layernorm.weight": "model-00016-of-00022.safetensors",
432
+ "model.layers.56.mlp.down_proj.weight": "model-00017-of-00022.safetensors",
433
+ "model.layers.56.mlp.gate_proj.weight": "model-00016-of-00022.safetensors",
434
+ "model.layers.56.mlp.up_proj.weight": "model-00017-of-00022.safetensors",
435
+ "model.layers.56.post_attention_layernorm.weight": "model-00016-of-00022.safetensors",
436
+ "model.layers.56.self_attn.k_proj.weight": "model-00016-of-00022.safetensors",
437
+ "model.layers.56.self_attn.o_proj.weight": "model-00016-of-00022.safetensors",
438
+ "model.layers.56.self_attn.q_proj.weight": "model-00016-of-00022.safetensors",
439
+ "model.layers.56.self_attn.v_proj.weight": "model-00016-of-00022.safetensors",
440
+ "model.layers.57.input_layernorm.weight": "model-00017-of-00022.safetensors",
441
+ "model.layers.57.mlp.down_proj.weight": "model-00017-of-00022.safetensors",
442
+ "model.layers.57.mlp.gate_proj.weight": "model-00017-of-00022.safetensors",
443
+ "model.layers.57.mlp.up_proj.weight": "model-00017-of-00022.safetensors",
444
+ "model.layers.57.post_attention_layernorm.weight": "model-00017-of-00022.safetensors",
445
+ "model.layers.57.self_attn.linear_attn.weight": "model-00017-of-00022.safetensors",
446
+ "model.layers.58.mlp.down_proj.weight": "model-00017-of-00022.safetensors",
447
+ "model.layers.58.mlp.gate_proj.weight": "model-00017-of-00022.safetensors",
448
+ "model.layers.58.mlp.up_proj.weight": "model-00017-of-00022.safetensors",
449
+ "model.layers.58.post_attention_layernorm.weight": "model-00017-of-00022.safetensors",
450
+ "model.layers.59.input_layernorm.weight": "model-00017-of-00022.safetensors",
451
+ "model.layers.59.mlp.down_proj.weight": "model-00017-of-00022.safetensors",
452
+ "model.layers.59.mlp.gate_proj.weight": "model-00017-of-00022.safetensors",
453
+ "model.layers.59.mlp.up_proj.weight": "model-00017-of-00022.safetensors",
454
+ "model.layers.59.post_attention_layernorm.weight": "model-00017-of-00022.safetensors",
455
+ "model.layers.59.self_attn.linear_attn.weight": "model-00017-of-00022.safetensors",
456
+ "model.layers.6.input_layernorm.weight": "model-00002-of-00022.safetensors",
457
+ "model.layers.6.mlp.down_proj.weight": "model-00003-of-00022.safetensors",
458
+ "model.layers.6.mlp.gate_proj.weight": "model-00003-of-00022.safetensors",
459
+ "model.layers.6.mlp.up_proj.weight": "model-00003-of-00022.safetensors",
460
+ "model.layers.6.post_attention_layernorm.weight": "model-00003-of-00022.safetensors",
461
+ "model.layers.6.self_attn.k_proj.weight": "model-00003-of-00022.safetensors",
462
+ "model.layers.6.self_attn.o_proj.weight": "model-00003-of-00022.safetensors",
463
+ "model.layers.6.self_attn.q_proj.weight": "model-00003-of-00022.safetensors",
464
+ "model.layers.6.self_attn.v_proj.weight": "model-00003-of-00022.safetensors",
465
+ "model.layers.60.input_layernorm.weight": "model-00017-of-00022.safetensors",
466
+ "model.layers.60.mlp.down_proj.weight": "model-00017-of-00022.safetensors",
467
+ "model.layers.60.mlp.gate_proj.weight": "model-00017-of-00022.safetensors",
468
+ "model.layers.60.mlp.up_proj.weight": "model-00017-of-00022.safetensors",
469
+ "model.layers.60.post_attention_layernorm.weight": "model-00017-of-00022.safetensors",
470
+ "model.layers.60.self_attn.linear_attn.weight": "model-00017-of-00022.safetensors",
471
+ "model.layers.61.mlp.down_proj.weight": "model-00017-of-00022.safetensors",
472
+ "model.layers.61.mlp.gate_proj.weight": "model-00017-of-00022.safetensors",
473
+ "model.layers.61.mlp.up_proj.weight": "model-00017-of-00022.safetensors",
474
+ "model.layers.61.post_attention_layernorm.weight": "model-00017-of-00022.safetensors",
475
+ "model.layers.62.mlp.down_proj.weight": "model-00017-of-00022.safetensors",
476
+ "model.layers.62.mlp.gate_proj.weight": "model-00017-of-00022.safetensors",
477
+ "model.layers.62.mlp.up_proj.weight": "model-00017-of-00022.safetensors",
478
+ "model.layers.62.post_attention_layernorm.weight": "model-00017-of-00022.safetensors",
479
+ "model.layers.63.input_layernorm.weight": "model-00017-of-00022.safetensors",
480
+ "model.layers.63.mlp.down_proj.weight": "model-00017-of-00022.safetensors",
481
+ "model.layers.63.mlp.gate_proj.weight": "model-00017-of-00022.safetensors",
482
+ "model.layers.63.mlp.up_proj.weight": "model-00017-of-00022.safetensors",
483
+ "model.layers.63.post_attention_layernorm.weight": "model-00017-of-00022.safetensors",
484
+ "model.layers.63.self_attn.linear_attn.weight": "model-00017-of-00022.safetensors",
485
+ "model.layers.64.mlp.down_proj.weight": "model-00017-of-00022.safetensors",
486
+ "model.layers.64.mlp.gate_proj.weight": "model-00017-of-00022.safetensors",
487
+ "model.layers.64.mlp.up_proj.weight": "model-00017-of-00022.safetensors",
488
+ "model.layers.64.post_attention_layernorm.weight": "model-00017-of-00022.safetensors",
489
+ "model.layers.65.mlp.down_proj.weight": "model-00017-of-00022.safetensors",
490
+ "model.layers.65.mlp.gate_proj.weight": "model-00017-of-00022.safetensors",
491
+ "model.layers.65.mlp.up_proj.weight": "model-00017-of-00022.safetensors",
492
+ "model.layers.65.post_attention_layernorm.weight": "model-00017-of-00022.safetensors",
493
+ "model.layers.66.input_layernorm.weight": "model-00017-of-00022.safetensors",
494
+ "model.layers.66.mlp.down_proj.weight": "model-00018-of-00022.safetensors",
495
+ "model.layers.66.mlp.gate_proj.weight": "model-00017-of-00022.safetensors",
496
+ "model.layers.66.mlp.up_proj.weight": "model-00018-of-00022.safetensors",
497
+ "model.layers.66.post_attention_layernorm.weight": "model-00017-of-00022.safetensors",
498
+ "model.layers.66.self_attn.linear_attn.weight": "model-00017-of-00022.safetensors",
499
+ "model.layers.67.input_layernorm.weight": "model-00018-of-00022.safetensors",
500
+ "model.layers.67.mlp.down_proj.weight": "model-00018-of-00022.safetensors",
501
+ "model.layers.67.mlp.gate_proj.weight": "model-00018-of-00022.safetensors",
502
+ "model.layers.67.mlp.up_proj.weight": "model-00018-of-00022.safetensors",
503
+ "model.layers.67.post_attention_layernorm.weight": "model-00018-of-00022.safetensors",
504
+ "model.layers.67.self_attn.linear_attn.weight": "model-00018-of-00022.safetensors",
505
+ "model.layers.68.input_layernorm.weight": "model-00018-of-00022.safetensors",
506
+ "model.layers.68.mlp.down_proj.weight": "model-00018-of-00022.safetensors",
507
+ "model.layers.68.mlp.gate_proj.weight": "model-00018-of-00022.safetensors",
508
+ "model.layers.68.mlp.up_proj.weight": "model-00018-of-00022.safetensors",
509
+ "model.layers.68.post_attention_layernorm.weight": "model-00018-of-00022.safetensors",
510
+ "model.layers.68.self_attn.linear_attn.weight": "model-00018-of-00022.safetensors",
511
+ "model.layers.69.input_layernorm.weight": "model-00018-of-00022.safetensors",
512
+ "model.layers.69.mlp.down_proj.weight": "model-00018-of-00022.safetensors",
513
+ "model.layers.69.mlp.gate_proj.weight": "model-00018-of-00022.safetensors",
514
+ "model.layers.69.mlp.up_proj.weight": "model-00018-of-00022.safetensors",
515
+ "model.layers.69.post_attention_layernorm.weight": "model-00018-of-00022.safetensors",
516
+ "model.layers.69.self_attn.linear_attn.weight": "model-00018-of-00022.safetensors",
517
+ "model.layers.7.input_layernorm.weight": "model-00003-of-00022.safetensors",
518
+ "model.layers.7.mlp.down_proj.weight": "model-00003-of-00022.safetensors",
519
+ "model.layers.7.mlp.gate_proj.weight": "model-00003-of-00022.safetensors",
520
+ "model.layers.7.mlp.up_proj.weight": "model-00003-of-00022.safetensors",
521
+ "model.layers.7.post_attention_layernorm.weight": "model-00003-of-00022.safetensors",
522
+ "model.layers.7.self_attn.k_proj.weight": "model-00003-of-00022.safetensors",
523
+ "model.layers.7.self_attn.o_proj.weight": "model-00003-of-00022.safetensors",
524
+ "model.layers.7.self_attn.q_proj.weight": "model-00003-of-00022.safetensors",
525
+ "model.layers.7.self_attn.v_proj.weight": "model-00003-of-00022.safetensors",
526
+ "model.layers.70.input_layernorm.weight": "model-00018-of-00022.safetensors",
527
+ "model.layers.70.mlp.down_proj.weight": "model-00018-of-00022.safetensors",
528
+ "model.layers.70.mlp.gate_proj.weight": "model-00018-of-00022.safetensors",
529
+ "model.layers.70.mlp.up_proj.weight": "model-00018-of-00022.safetensors",
530
+ "model.layers.70.post_attention_layernorm.weight": "model-00018-of-00022.safetensors",
531
+ "model.layers.70.self_attn.k_proj.weight": "model-00018-of-00022.safetensors",
532
+ "model.layers.70.self_attn.o_proj.weight": "model-00018-of-00022.safetensors",
533
+ "model.layers.70.self_attn.q_proj.weight": "model-00018-of-00022.safetensors",
534
+ "model.layers.70.self_attn.v_proj.weight": "model-00018-of-00022.safetensors",
535
+ "model.layers.71.input_layernorm.weight": "model-00018-of-00022.safetensors",
536
+ "model.layers.71.mlp.down_proj.weight": "model-00019-of-00022.safetensors",
537
+ "model.layers.71.mlp.gate_proj.weight": "model-00018-of-00022.safetensors",
538
+ "model.layers.71.mlp.up_proj.weight": "model-00018-of-00022.safetensors",
539
+ "model.layers.71.post_attention_layernorm.weight": "model-00018-of-00022.safetensors",
540
+ "model.layers.71.self_attn.k_proj.weight": "model-00018-of-00022.safetensors",
541
+ "model.layers.71.self_attn.o_proj.weight": "model-00018-of-00022.safetensors",
542
+ "model.layers.71.self_attn.q_proj.weight": "model-00018-of-00022.safetensors",
543
+ "model.layers.71.self_attn.v_proj.weight": "model-00018-of-00022.safetensors",
544
+ "model.layers.72.input_layernorm.weight": "model-00019-of-00022.safetensors",
545
+ "model.layers.72.mlp.down_proj.weight": "model-00019-of-00022.safetensors",
546
+ "model.layers.72.mlp.gate_proj.weight": "model-00019-of-00022.safetensors",
547
+ "model.layers.72.mlp.up_proj.weight": "model-00019-of-00022.safetensors",
548
+ "model.layers.72.post_attention_layernorm.weight": "model-00019-of-00022.safetensors",
549
+ "model.layers.72.self_attn.k_proj.weight": "model-00019-of-00022.safetensors",
550
+ "model.layers.72.self_attn.o_proj.weight": "model-00019-of-00022.safetensors",
551
+ "model.layers.72.self_attn.q_proj.weight": "model-00019-of-00022.safetensors",
552
+ "model.layers.72.self_attn.v_proj.weight": "model-00019-of-00022.safetensors",
553
+ "model.layers.73.input_layernorm.weight": "model-00019-of-00022.safetensors",
554
+ "model.layers.73.mlp.down_proj.weight": "model-00019-of-00022.safetensors",
555
+ "model.layers.73.mlp.gate_proj.weight": "model-00019-of-00022.safetensors",
556
+ "model.layers.73.mlp.up_proj.weight": "model-00019-of-00022.safetensors",
557
+ "model.layers.73.post_attention_layernorm.weight": "model-00019-of-00022.safetensors",
558
+ "model.layers.73.self_attn.k_proj.weight": "model-00019-of-00022.safetensors",
559
+ "model.layers.73.self_attn.o_proj.weight": "model-00019-of-00022.safetensors",
560
+ "model.layers.73.self_attn.q_proj.weight": "model-00019-of-00022.safetensors",
561
+ "model.layers.73.self_attn.v_proj.weight": "model-00019-of-00022.safetensors",
562
+ "model.layers.74.input_layernorm.weight": "model-00019-of-00022.safetensors",
563
+ "model.layers.74.mlp.down_proj.weight": "model-00020-of-00022.safetensors",
564
+ "model.layers.74.mlp.gate_proj.weight": "model-00019-of-00022.safetensors",
565
+ "model.layers.74.mlp.up_proj.weight": "model-00020-of-00022.safetensors",
566
+ "model.layers.74.post_attention_layernorm.weight": "model-00019-of-00022.safetensors",
567
+ "model.layers.74.self_attn.k_proj.weight": "model-00019-of-00022.safetensors",
568
+ "model.layers.74.self_attn.o_proj.weight": "model-00019-of-00022.safetensors",
569
+ "model.layers.74.self_attn.q_proj.weight": "model-00019-of-00022.safetensors",
570
+ "model.layers.74.self_attn.v_proj.weight": "model-00019-of-00022.safetensors",
571
+ "model.layers.75.input_layernorm.weight": "model-00020-of-00022.safetensors",
572
+ "model.layers.75.mlp.down_proj.weight": "model-00020-of-00022.safetensors",
573
+ "model.layers.75.mlp.gate_proj.weight": "model-00020-of-00022.safetensors",
574
+ "model.layers.75.mlp.up_proj.weight": "model-00020-of-00022.safetensors",
575
+ "model.layers.75.post_attention_layernorm.weight": "model-00020-of-00022.safetensors",
576
+ "model.layers.75.self_attn.k_proj.weight": "model-00020-of-00022.safetensors",
577
+ "model.layers.75.self_attn.o_proj.weight": "model-00020-of-00022.safetensors",
578
+ "model.layers.75.self_attn.q_proj.weight": "model-00020-of-00022.safetensors",
579
+ "model.layers.75.self_attn.v_proj.weight": "model-00020-of-00022.safetensors",
580
+ "model.layers.76.input_layernorm.weight": "model-00020-of-00022.safetensors",
581
+ "model.layers.76.mlp.down_proj.weight": "model-00020-of-00022.safetensors",
582
+ "model.layers.76.mlp.gate_proj.weight": "model-00020-of-00022.safetensors",
583
+ "model.layers.76.mlp.up_proj.weight": "model-00020-of-00022.safetensors",
584
+ "model.layers.76.post_attention_layernorm.weight": "model-00020-of-00022.safetensors",
585
+ "model.layers.76.self_attn.k_proj.weight": "model-00020-of-00022.safetensors",
586
+ "model.layers.76.self_attn.o_proj.weight": "model-00020-of-00022.safetensors",
587
+ "model.layers.76.self_attn.q_proj.weight": "model-00020-of-00022.safetensors",
588
+ "model.layers.76.self_attn.v_proj.weight": "model-00020-of-00022.safetensors",
589
+ "model.layers.77.input_layernorm.weight": "model-00020-of-00022.safetensors",
590
+ "model.layers.77.mlp.down_proj.weight": "model-00021-of-00022.safetensors",
591
+ "model.layers.77.mlp.gate_proj.weight": "model-00021-of-00022.safetensors",
592
+ "model.layers.77.mlp.up_proj.weight": "model-00021-of-00022.safetensors",
593
+ "model.layers.77.post_attention_layernorm.weight": "model-00020-of-00022.safetensors",
594
+ "model.layers.77.self_attn.k_proj.weight": "model-00020-of-00022.safetensors",
595
+ "model.layers.77.self_attn.o_proj.weight": "model-00020-of-00022.safetensors",
596
+ "model.layers.77.self_attn.q_proj.weight": "model-00020-of-00022.safetensors",
597
+ "model.layers.77.self_attn.v_proj.weight": "model-00020-of-00022.safetensors",
598
+ "model.layers.78.input_layernorm.weight": "model-00021-of-00022.safetensors",
599
+ "model.layers.78.mlp.down_proj.weight": "model-00021-of-00022.safetensors",
600
+ "model.layers.78.mlp.gate_proj.weight": "model-00021-of-00022.safetensors",
601
+ "model.layers.78.mlp.up_proj.weight": "model-00021-of-00022.safetensors",
602
+ "model.layers.78.post_attention_layernorm.weight": "model-00021-of-00022.safetensors",
603
+ "model.layers.78.self_attn.k_proj.weight": "model-00021-of-00022.safetensors",
604
+ "model.layers.78.self_attn.o_proj.weight": "model-00021-of-00022.safetensors",
605
+ "model.layers.78.self_attn.q_proj.weight": "model-00021-of-00022.safetensors",
606
+ "model.layers.78.self_attn.v_proj.weight": "model-00021-of-00022.safetensors",
607
+ "model.layers.79.input_layernorm.weight": "model-00021-of-00022.safetensors",
608
+ "model.layers.79.mlp.down_proj.weight": "model-00021-of-00022.safetensors",
609
+ "model.layers.79.mlp.gate_proj.weight": "model-00021-of-00022.safetensors",
610
+ "model.layers.79.mlp.up_proj.weight": "model-00021-of-00022.safetensors",
611
+ "model.layers.79.post_attention_layernorm.weight": "model-00021-of-00022.safetensors",
612
+ "model.layers.79.self_attn.k_proj.weight": "model-00021-of-00022.safetensors",
613
+ "model.layers.79.self_attn.o_proj.weight": "model-00021-of-00022.safetensors",
614
+ "model.layers.79.self_attn.q_proj.weight": "model-00021-of-00022.safetensors",
615
+ "model.layers.79.self_attn.v_proj.weight": "model-00021-of-00022.safetensors",
616
+ "model.layers.8.input_layernorm.weight": "model-00003-of-00022.safetensors",
617
+ "model.layers.8.mlp.down_proj.weight": "model-00003-of-00022.safetensors",
618
+ "model.layers.8.mlp.gate_proj.weight": "model-00003-of-00022.safetensors",
619
+ "model.layers.8.mlp.up_proj.weight": "model-00003-of-00022.safetensors",
620
+ "model.layers.8.post_attention_layernorm.weight": "model-00003-of-00022.safetensors",
621
+ "model.layers.8.self_attn.k_proj.weight": "model-00003-of-00022.safetensors",
622
+ "model.layers.8.self_attn.o_proj.weight": "model-00003-of-00022.safetensors",
623
+ "model.layers.8.self_attn.q_proj.weight": "model-00003-of-00022.safetensors",
624
+ "model.layers.8.self_attn.v_proj.weight": "model-00003-of-00022.safetensors",
625
+ "model.layers.9.input_layernorm.weight": "model-00003-of-00022.safetensors",
626
+ "model.layers.9.mlp.down_proj.weight": "model-00003-of-00022.safetensors",
627
+ "model.layers.9.mlp.gate_proj.weight": "model-00003-of-00022.safetensors",
628
+ "model.layers.9.mlp.up_proj.weight": "model-00003-of-00022.safetensors",
629
+ "model.layers.9.post_attention_layernorm.weight": "model-00003-of-00022.safetensors",
630
+ "model.layers.9.self_attn.k_proj.weight": "model-00003-of-00022.safetensors",
631
+ "model.layers.9.self_attn.o_proj.weight": "model-00003-of-00022.safetensors",
632
+ "model.layers.9.self_attn.q_proj.weight": "model-00003-of-00022.safetensors",
633
+ "model.layers.9.self_attn.v_proj.weight": "model-00003-of-00022.safetensors",
634
+ "model.norm.weight": "model-00021-of-00022.safetensors"
635
+ }
636
+ }
special_tokens_map.json ADDED
@@ -0,0 +1,23 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token": {
3
+ "content": "<|begin_of_text|>",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "eos_token": {
10
+ "content": "<|eot_id|>",
11
+ "lstrip": false,
12
+ "normalized": false,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "pad_token": {
17
+ "content": "<|end_of_text|>",
18
+ "lstrip": false,
19
+ "normalized": false,
20
+ "rstrip": false,
21
+ "single_word": false
22
+ }
23
+ }
tokenizer.json ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:cb46edf6ecfb53e620af2687d3aea9faee9038924b264033c32683c7d9e9891f
3
+ size 17209921
tokenizer_config.json ADDED
@@ -0,0 +1,2064 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "added_tokens_decoder": {
3
+ "128000": {
4
+ "content": "<|begin_of_text|>",
5
+ "lstrip": false,
6
+ "normalized": false,
7
+ "rstrip": false,
8
+ "single_word": false,
9
+ "special": true
10
+ },
11
+ "128001": {
12
+ "content": "<|end_of_text|>",
13
+ "lstrip": false,
14
+ "normalized": false,
15
+ "rstrip": false,
16
+ "single_word": false,
17
+ "special": true
18
+ },
19
+ "128002": {
20
+ "content": "<|reserved_special_token_0|>",
21
+ "lstrip": false,
22
+ "normalized": false,
23
+ "rstrip": false,
24
+ "single_word": false,
25
+ "special": true
26
+ },
27
+ "128003": {
28
+ "content": "<|reserved_special_token_1|>",
29
+ "lstrip": false,
30
+ "normalized": false,
31
+ "rstrip": false,
32
+ "single_word": false,
33
+ "special": true
34
+ },
35
+ "128004": {
36
+ "content": "<|finetune_right_pad_id|>",
37
+ "lstrip": false,
38
+ "normalized": false,
39
+ "rstrip": false,
40
+ "single_word": false,
41
+ "special": true
42
+ },
43
+ "128005": {
44
+ "content": "<|reserved_special_token_2|>",
45
+ "lstrip": false,
46
+ "normalized": false,
47
+ "rstrip": false,
48
+ "single_word": false,
49
+ "special": true
50
+ },
51
+ "128006": {
52
+ "content": "<|start_header_id|>",
53
+ "lstrip": false,
54
+ "normalized": false,
55
+ "rstrip": false,
56
+ "single_word": false,
57
+ "special": true
58
+ },
59
+ "128007": {
60
+ "content": "<|end_header_id|>",
61
+ "lstrip": false,
62
+ "normalized": false,
63
+ "rstrip": false,
64
+ "single_word": false,
65
+ "special": true
66
+ },
67
+ "128008": {
68
+ "content": "<|eom_id|>",
69
+ "lstrip": false,
70
+ "normalized": false,
71
+ "rstrip": false,
72
+ "single_word": false,
73
+ "special": true
74
+ },
75
+ "128009": {
76
+ "content": "<|eot_id|>",
77
+ "lstrip": false,
78
+ "normalized": false,
79
+ "rstrip": false,
80
+ "single_word": false,
81
+ "special": true
82
+ },
83
+ "128010": {
84
+ "content": "<|python_tag|>",
85
+ "lstrip": false,
86
+ "normalized": false,
87
+ "rstrip": false,
88
+ "single_word": false,
89
+ "special": true
90
+ },
91
+ "128011": {
92
+ "content": "<|reserved_special_token_3|>",
93
+ "lstrip": false,
94
+ "normalized": false,
95
+ "rstrip": false,
96
+ "single_word": false,
97
+ "special": true
98
+ },
99
+ "128012": {
100
+ "content": "<|reserved_special_token_4|>",
101
+ "lstrip": false,
102
+ "normalized": false,
103
+ "rstrip": false,
104
+ "single_word": false,
105
+ "special": true
106
+ },
107
+ "128013": {
108
+ "content": "<|reserved_special_token_5|>",
109
+ "lstrip": false,
110
+ "normalized": false,
111
+ "rstrip": false,
112
+ "single_word": false,
113
+ "special": true
114
+ },
115
+ "128014": {
116
+ "content": "<|reserved_special_token_6|>",
117
+ "lstrip": false,
118
+ "normalized": false,
119
+ "rstrip": false,
120
+ "single_word": false,
121
+ "special": true
122
+ },
123
+ "128015": {
124
+ "content": "<|reserved_special_token_7|>",
125
+ "lstrip": false,
126
+ "normalized": false,
127
+ "rstrip": false,
128
+ "single_word": false,
129
+ "special": true
130
+ },
131
+ "128016": {
132
+ "content": "<|reserved_special_token_8|>",
133
+ "lstrip": false,
134
+ "normalized": false,
135
+ "rstrip": false,
136
+ "single_word": false,
137
+ "special": true
138
+ },
139
+ "128017": {
140
+ "content": "<|reserved_special_token_9|>",
141
+ "lstrip": false,
142
+ "normalized": false,
143
+ "rstrip": false,
144
+ "single_word": false,
145
+ "special": true
146
+ },
147
+ "128018": {
148
+ "content": "<|reserved_special_token_10|>",
149
+ "lstrip": false,
150
+ "normalized": false,
151
+ "rstrip": false,
152
+ "single_word": false,
153
+ "special": true
154
+ },
155
+ "128019": {
156
+ "content": "<|reserved_special_token_11|>",
157
+ "lstrip": false,
158
+ "normalized": false,
159
+ "rstrip": false,
160
+ "single_word": false,
161
+ "special": true
162
+ },
163
+ "128020": {
164
+ "content": "<|reserved_special_token_12|>",
165
+ "lstrip": false,
166
+ "normalized": false,
167
+ "rstrip": false,
168
+ "single_word": false,
169
+ "special": true
170
+ },
171
+ "128021": {
172
+ "content": "<|reserved_special_token_13|>",
173
+ "lstrip": false,
174
+ "normalized": false,
175
+ "rstrip": false,
176
+ "single_word": false,
177
+ "special": true
178
+ },
179
+ "128022": {
180
+ "content": "<|reserved_special_token_14|>",
181
+ "lstrip": false,
182
+ "normalized": false,
183
+ "rstrip": false,
184
+ "single_word": false,
185
+ "special": true
186
+ },
187
+ "128023": {
188
+ "content": "<|reserved_special_token_15|>",
189
+ "lstrip": false,
190
+ "normalized": false,
191
+ "rstrip": false,
192
+ "single_word": false,
193
+ "special": true
194
+ },
195
+ "128024": {
196
+ "content": "<|reserved_special_token_16|>",
197
+ "lstrip": false,
198
+ "normalized": false,
199
+ "rstrip": false,
200
+ "single_word": false,
201
+ "special": true
202
+ },
203
+ "128025": {
204
+ "content": "<|reserved_special_token_17|>",
205
+ "lstrip": false,
206
+ "normalized": false,
207
+ "rstrip": false,
208
+ "single_word": false,
209
+ "special": true
210
+ },
211
+ "128026": {
212
+ "content": "<|reserved_special_token_18|>",
213
+ "lstrip": false,
214
+ "normalized": false,
215
+ "rstrip": false,
216
+ "single_word": false,
217
+ "special": true
218
+ },
219
+ "128027": {
220
+ "content": "<|reserved_special_token_19|>",
221
+ "lstrip": false,
222
+ "normalized": false,
223
+ "rstrip": false,
224
+ "single_word": false,
225
+ "special": true
226
+ },
227
+ "128028": {
228
+ "content": "<|reserved_special_token_20|>",
229
+ "lstrip": false,
230
+ "normalized": false,
231
+ "rstrip": false,
232
+ "single_word": false,
233
+ "special": true
234
+ },
235
+ "128029": {
236
+ "content": "<|reserved_special_token_21|>",
237
+ "lstrip": false,
238
+ "normalized": false,
239
+ "rstrip": false,
240
+ "single_word": false,
241
+ "special": true
242
+ },
243
+ "128030": {
244
+ "content": "<|reserved_special_token_22|>",
245
+ "lstrip": false,
246
+ "normalized": false,
247
+ "rstrip": false,
248
+ "single_word": false,
249
+ "special": true
250
+ },
251
+ "128031": {
252
+ "content": "<|reserved_special_token_23|>",
253
+ "lstrip": false,
254
+ "normalized": false,
255
+ "rstrip": false,
256
+ "single_word": false,
257
+ "special": true
258
+ },
259
+ "128032": {
260
+ "content": "<|reserved_special_token_24|>",
261
+ "lstrip": false,
262
+ "normalized": false,
263
+ "rstrip": false,
264
+ "single_word": false,
265
+ "special": true
266
+ },
267
+ "128033": {
268
+ "content": "<|reserved_special_token_25|>",
269
+ "lstrip": false,
270
+ "normalized": false,
271
+ "rstrip": false,
272
+ "single_word": false,
273
+ "special": true
274
+ },
275
+ "128034": {
276
+ "content": "<|reserved_special_token_26|>",
277
+ "lstrip": false,
278
+ "normalized": false,
279
+ "rstrip": false,
280
+ "single_word": false,
281
+ "special": true
282
+ },
283
+ "128035": {
284
+ "content": "<|reserved_special_token_27|>",
285
+ "lstrip": false,
286
+ "normalized": false,
287
+ "rstrip": false,
288
+ "single_word": false,
289
+ "special": true
290
+ },
291
+ "128036": {
292
+ "content": "<|reserved_special_token_28|>",
293
+ "lstrip": false,
294
+ "normalized": false,
295
+ "rstrip": false,
296
+ "single_word": false,
297
+ "special": true
298
+ },
299
+ "128037": {
300
+ "content": "<|reserved_special_token_29|>",
301
+ "lstrip": false,
302
+ "normalized": false,
303
+ "rstrip": false,
304
+ "single_word": false,
305
+ "special": true
306
+ },
307
+ "128038": {
308
+ "content": "<|reserved_special_token_30|>",
309
+ "lstrip": false,
310
+ "normalized": false,
311
+ "rstrip": false,
312
+ "single_word": false,
313
+ "special": true
314
+ },
315
+ "128039": {
316
+ "content": "<|reserved_special_token_31|>",
317
+ "lstrip": false,
318
+ "normalized": false,
319
+ "rstrip": false,
320
+ "single_word": false,
321
+ "special": true
322
+ },
323
+ "128040": {
324
+ "content": "<|reserved_special_token_32|>",
325
+ "lstrip": false,
326
+ "normalized": false,
327
+ "rstrip": false,
328
+ "single_word": false,
329
+ "special": true
330
+ },
331
+ "128041": {
332
+ "content": "<|reserved_special_token_33|>",
333
+ "lstrip": false,
334
+ "normalized": false,
335
+ "rstrip": false,
336
+ "single_word": false,
337
+ "special": true
338
+ },
339
+ "128042": {
340
+ "content": "<|reserved_special_token_34|>",
341
+ "lstrip": false,
342
+ "normalized": false,
343
+ "rstrip": false,
344
+ "single_word": false,
345
+ "special": true
346
+ },
347
+ "128043": {
348
+ "content": "<|reserved_special_token_35|>",
349
+ "lstrip": false,
350
+ "normalized": false,
351
+ "rstrip": false,
352
+ "single_word": false,
353
+ "special": true
354
+ },
355
+ "128044": {
356
+ "content": "<|reserved_special_token_36|>",
357
+ "lstrip": false,
358
+ "normalized": false,
359
+ "rstrip": false,
360
+ "single_word": false,
361
+ "special": true
362
+ },
363
+ "128045": {
364
+ "content": "<|reserved_special_token_37|>",
365
+ "lstrip": false,
366
+ "normalized": false,
367
+ "rstrip": false,
368
+ "single_word": false,
369
+ "special": true
370
+ },
371
+ "128046": {
372
+ "content": "<|reserved_special_token_38|>",
373
+ "lstrip": false,
374
+ "normalized": false,
375
+ "rstrip": false,
376
+ "single_word": false,
377
+ "special": true
378
+ },
379
+ "128047": {
380
+ "content": "<|reserved_special_token_39|>",
381
+ "lstrip": false,
382
+ "normalized": false,
383
+ "rstrip": false,
384
+ "single_word": false,
385
+ "special": true
386
+ },
387
+ "128048": {
388
+ "content": "<|reserved_special_token_40|>",
389
+ "lstrip": false,
390
+ "normalized": false,
391
+ "rstrip": false,
392
+ "single_word": false,
393
+ "special": true
394
+ },
395
+ "128049": {
396
+ "content": "<|reserved_special_token_41|>",
397
+ "lstrip": false,
398
+ "normalized": false,
399
+ "rstrip": false,
400
+ "single_word": false,
401
+ "special": true
402
+ },
403
+ "128050": {
404
+ "content": "<|reserved_special_token_42|>",
405
+ "lstrip": false,
406
+ "normalized": false,
407
+ "rstrip": false,
408
+ "single_word": false,
409
+ "special": true
410
+ },
411
+ "128051": {
412
+ "content": "<|reserved_special_token_43|>",
413
+ "lstrip": false,
414
+ "normalized": false,
415
+ "rstrip": false,
416
+ "single_word": false,
417
+ "special": true
418
+ },
419
+ "128052": {
420
+ "content": "<|reserved_special_token_44|>",
421
+ "lstrip": false,
422
+ "normalized": false,
423
+ "rstrip": false,
424
+ "single_word": false,
425
+ "special": true
426
+ },
427
+ "128053": {
428
+ "content": "<|reserved_special_token_45|>",
429
+ "lstrip": false,
430
+ "normalized": false,
431
+ "rstrip": false,
432
+ "single_word": false,
433
+ "special": true
434
+ },
435
+ "128054": {
436
+ "content": "<|reserved_special_token_46|>",
437
+ "lstrip": false,
438
+ "normalized": false,
439
+ "rstrip": false,
440
+ "single_word": false,
441
+ "special": true
442
+ },
443
+ "128055": {
444
+ "content": "<|reserved_special_token_47|>",
445
+ "lstrip": false,
446
+ "normalized": false,
447
+ "rstrip": false,
448
+ "single_word": false,
449
+ "special": true
450
+ },
451
+ "128056": {
452
+ "content": "<|reserved_special_token_48|>",
453
+ "lstrip": false,
454
+ "normalized": false,
455
+ "rstrip": false,
456
+ "single_word": false,
457
+ "special": true
458
+ },
459
+ "128057": {
460
+ "content": "<|reserved_special_token_49|>",
461
+ "lstrip": false,
462
+ "normalized": false,
463
+ "rstrip": false,
464
+ "single_word": false,
465
+ "special": true
466
+ },
467
+ "128058": {
468
+ "content": "<|reserved_special_token_50|>",
469
+ "lstrip": false,
470
+ "normalized": false,
471
+ "rstrip": false,
472
+ "single_word": false,
473
+ "special": true
474
+ },
475
+ "128059": {
476
+ "content": "<|reserved_special_token_51|>",
477
+ "lstrip": false,
478
+ "normalized": false,
479
+ "rstrip": false,
480
+ "single_word": false,
481
+ "special": true
482
+ },
483
+ "128060": {
484
+ "content": "<|reserved_special_token_52|>",
485
+ "lstrip": false,
486
+ "normalized": false,
487
+ "rstrip": false,
488
+ "single_word": false,
489
+ "special": true
490
+ },
491
+ "128061": {
492
+ "content": "<|reserved_special_token_53|>",
493
+ "lstrip": false,
494
+ "normalized": false,
495
+ "rstrip": false,
496
+ "single_word": false,
497
+ "special": true
498
+ },
499
+ "128062": {
500
+ "content": "<|reserved_special_token_54|>",
501
+ "lstrip": false,
502
+ "normalized": false,
503
+ "rstrip": false,
504
+ "single_word": false,
505
+ "special": true
506
+ },
507
+ "128063": {
508
+ "content": "<|reserved_special_token_55|>",
509
+ "lstrip": false,
510
+ "normalized": false,
511
+ "rstrip": false,
512
+ "single_word": false,
513
+ "special": true
514
+ },
515
+ "128064": {
516
+ "content": "<|reserved_special_token_56|>",
517
+ "lstrip": false,
518
+ "normalized": false,
519
+ "rstrip": false,
520
+ "single_word": false,
521
+ "special": true
522
+ },
523
+ "128065": {
524
+ "content": "<|reserved_special_token_57|>",
525
+ "lstrip": false,
526
+ "normalized": false,
527
+ "rstrip": false,
528
+ "single_word": false,
529
+ "special": true
530
+ },
531
+ "128066": {
532
+ "content": "<|reserved_special_token_58|>",
533
+ "lstrip": false,
534
+ "normalized": false,
535
+ "rstrip": false,
536
+ "single_word": false,
537
+ "special": true
538
+ },
539
+ "128067": {
540
+ "content": "<|reserved_special_token_59|>",
541
+ "lstrip": false,
542
+ "normalized": false,
543
+ "rstrip": false,
544
+ "single_word": false,
545
+ "special": true
546
+ },
547
+ "128068": {
548
+ "content": "<|reserved_special_token_60|>",
549
+ "lstrip": false,
550
+ "normalized": false,
551
+ "rstrip": false,
552
+ "single_word": false,
553
+ "special": true
554
+ },
555
+ "128069": {
556
+ "content": "<|reserved_special_token_61|>",
557
+ "lstrip": false,
558
+ "normalized": false,
559
+ "rstrip": false,
560
+ "single_word": false,
561
+ "special": true
562
+ },
563
+ "128070": {
564
+ "content": "<|reserved_special_token_62|>",
565
+ "lstrip": false,
566
+ "normalized": false,
567
+ "rstrip": false,
568
+ "single_word": false,
569
+ "special": true
570
+ },
571
+ "128071": {
572
+ "content": "<|reserved_special_token_63|>",
573
+ "lstrip": false,
574
+ "normalized": false,
575
+ "rstrip": false,
576
+ "single_word": false,
577
+ "special": true
578
+ },
579
+ "128072": {
580
+ "content": "<|reserved_special_token_64|>",
581
+ "lstrip": false,
582
+ "normalized": false,
583
+ "rstrip": false,
584
+ "single_word": false,
585
+ "special": true
586
+ },
587
+ "128073": {
588
+ "content": "<|reserved_special_token_65|>",
589
+ "lstrip": false,
590
+ "normalized": false,
591
+ "rstrip": false,
592
+ "single_word": false,
593
+ "special": true
594
+ },
595
+ "128074": {
596
+ "content": "<|reserved_special_token_66|>",
597
+ "lstrip": false,
598
+ "normalized": false,
599
+ "rstrip": false,
600
+ "single_word": false,
601
+ "special": true
602
+ },
603
+ "128075": {
604
+ "content": "<|reserved_special_token_67|>",
605
+ "lstrip": false,
606
+ "normalized": false,
607
+ "rstrip": false,
608
+ "single_word": false,
609
+ "special": true
610
+ },
611
+ "128076": {
612
+ "content": "<|reserved_special_token_68|>",
613
+ "lstrip": false,
614
+ "normalized": false,
615
+ "rstrip": false,
616
+ "single_word": false,
617
+ "special": true
618
+ },
619
+ "128077": {
620
+ "content": "<|reserved_special_token_69|>",
621
+ "lstrip": false,
622
+ "normalized": false,
623
+ "rstrip": false,
624
+ "single_word": false,
625
+ "special": true
626
+ },
627
+ "128078": {
628
+ "content": "<|reserved_special_token_70|>",
629
+ "lstrip": false,
630
+ "normalized": false,
631
+ "rstrip": false,
632
+ "single_word": false,
633
+ "special": true
634
+ },
635
+ "128079": {
636
+ "content": "<|reserved_special_token_71|>",
637
+ "lstrip": false,
638
+ "normalized": false,
639
+ "rstrip": false,
640
+ "single_word": false,
641
+ "special": true
642
+ },
643
+ "128080": {
644
+ "content": "<|reserved_special_token_72|>",
645
+ "lstrip": false,
646
+ "normalized": false,
647
+ "rstrip": false,
648
+ "single_word": false,
649
+ "special": true
650
+ },
651
+ "128081": {
652
+ "content": "<|reserved_special_token_73|>",
653
+ "lstrip": false,
654
+ "normalized": false,
655
+ "rstrip": false,
656
+ "single_word": false,
657
+ "special": true
658
+ },
659
+ "128082": {
660
+ "content": "<|reserved_special_token_74|>",
661
+ "lstrip": false,
662
+ "normalized": false,
663
+ "rstrip": false,
664
+ "single_word": false,
665
+ "special": true
666
+ },
667
+ "128083": {
668
+ "content": "<|reserved_special_token_75|>",
669
+ "lstrip": false,
670
+ "normalized": false,
671
+ "rstrip": false,
672
+ "single_word": false,
673
+ "special": true
674
+ },
675
+ "128084": {
676
+ "content": "<|reserved_special_token_76|>",
677
+ "lstrip": false,
678
+ "normalized": false,
679
+ "rstrip": false,
680
+ "single_word": false,
681
+ "special": true
682
+ },
683
+ "128085": {
684
+ "content": "<|reserved_special_token_77|>",
685
+ "lstrip": false,
686
+ "normalized": false,
687
+ "rstrip": false,
688
+ "single_word": false,
689
+ "special": true
690
+ },
691
+ "128086": {
692
+ "content": "<|reserved_special_token_78|>",
693
+ "lstrip": false,
694
+ "normalized": false,
695
+ "rstrip": false,
696
+ "single_word": false,
697
+ "special": true
698
+ },
699
+ "128087": {
700
+ "content": "<|reserved_special_token_79|>",
701
+ "lstrip": false,
702
+ "normalized": false,
703
+ "rstrip": false,
704
+ "single_word": false,
705
+ "special": true
706
+ },
707
+ "128088": {
708
+ "content": "<|reserved_special_token_80|>",
709
+ "lstrip": false,
710
+ "normalized": false,
711
+ "rstrip": false,
712
+ "single_word": false,
713
+ "special": true
714
+ },
715
+ "128089": {
716
+ "content": "<|reserved_special_token_81|>",
717
+ "lstrip": false,
718
+ "normalized": false,
719
+ "rstrip": false,
720
+ "single_word": false,
721
+ "special": true
722
+ },
723
+ "128090": {
724
+ "content": "<|reserved_special_token_82|>",
725
+ "lstrip": false,
726
+ "normalized": false,
727
+ "rstrip": false,
728
+ "single_word": false,
729
+ "special": true
730
+ },
731
+ "128091": {
732
+ "content": "<|reserved_special_token_83|>",
733
+ "lstrip": false,
734
+ "normalized": false,
735
+ "rstrip": false,
736
+ "single_word": false,
737
+ "special": true
738
+ },
739
+ "128092": {
740
+ "content": "<|reserved_special_token_84|>",
741
+ "lstrip": false,
742
+ "normalized": false,
743
+ "rstrip": false,
744
+ "single_word": false,
745
+ "special": true
746
+ },
747
+ "128093": {
748
+ "content": "<|reserved_special_token_85|>",
749
+ "lstrip": false,
750
+ "normalized": false,
751
+ "rstrip": false,
752
+ "single_word": false,
753
+ "special": true
754
+ },
755
+ "128094": {
756
+ "content": "<|reserved_special_token_86|>",
757
+ "lstrip": false,
758
+ "normalized": false,
759
+ "rstrip": false,
760
+ "single_word": false,
761
+ "special": true
762
+ },
763
+ "128095": {
764
+ "content": "<|reserved_special_token_87|>",
765
+ "lstrip": false,
766
+ "normalized": false,
767
+ "rstrip": false,
768
+ "single_word": false,
769
+ "special": true
770
+ },
771
+ "128096": {
772
+ "content": "<|reserved_special_token_88|>",
773
+ "lstrip": false,
774
+ "normalized": false,
775
+ "rstrip": false,
776
+ "single_word": false,
777
+ "special": true
778
+ },
779
+ "128097": {
780
+ "content": "<|reserved_special_token_89|>",
781
+ "lstrip": false,
782
+ "normalized": false,
783
+ "rstrip": false,
784
+ "single_word": false,
785
+ "special": true
786
+ },
787
+ "128098": {
788
+ "content": "<|reserved_special_token_90|>",
789
+ "lstrip": false,
790
+ "normalized": false,
791
+ "rstrip": false,
792
+ "single_word": false,
793
+ "special": true
794
+ },
795
+ "128099": {
796
+ "content": "<|reserved_special_token_91|>",
797
+ "lstrip": false,
798
+ "normalized": false,
799
+ "rstrip": false,
800
+ "single_word": false,
801
+ "special": true
802
+ },
803
+ "128100": {
804
+ "content": "<|reserved_special_token_92|>",
805
+ "lstrip": false,
806
+ "normalized": false,
807
+ "rstrip": false,
808
+ "single_word": false,
809
+ "special": true
810
+ },
811
+ "128101": {
812
+ "content": "<|reserved_special_token_93|>",
813
+ "lstrip": false,
814
+ "normalized": false,
815
+ "rstrip": false,
816
+ "single_word": false,
817
+ "special": true
818
+ },
819
+ "128102": {
820
+ "content": "<|reserved_special_token_94|>",
821
+ "lstrip": false,
822
+ "normalized": false,
823
+ "rstrip": false,
824
+ "single_word": false,
825
+ "special": true
826
+ },
827
+ "128103": {
828
+ "content": "<|reserved_special_token_95|>",
829
+ "lstrip": false,
830
+ "normalized": false,
831
+ "rstrip": false,
832
+ "single_word": false,
833
+ "special": true
834
+ },
835
+ "128104": {
836
+ "content": "<|reserved_special_token_96|>",
837
+ "lstrip": false,
838
+ "normalized": false,
839
+ "rstrip": false,
840
+ "single_word": false,
841
+ "special": true
842
+ },
843
+ "128105": {
844
+ "content": "<|reserved_special_token_97|>",
845
+ "lstrip": false,
846
+ "normalized": false,
847
+ "rstrip": false,
848
+ "single_word": false,
849
+ "special": true
850
+ },
851
+ "128106": {
852
+ "content": "<|reserved_special_token_98|>",
853
+ "lstrip": false,
854
+ "normalized": false,
855
+ "rstrip": false,
856
+ "single_word": false,
857
+ "special": true
858
+ },
859
+ "128107": {
860
+ "content": "<|reserved_special_token_99|>",
861
+ "lstrip": false,
862
+ "normalized": false,
863
+ "rstrip": false,
864
+ "single_word": false,
865
+ "special": true
866
+ },
867
+ "128108": {
868
+ "content": "<|reserved_special_token_100|>",
869
+ "lstrip": false,
870
+ "normalized": false,
871
+ "rstrip": false,
872
+ "single_word": false,
873
+ "special": true
874
+ },
875
+ "128109": {
876
+ "content": "<|reserved_special_token_101|>",
877
+ "lstrip": false,
878
+ "normalized": false,
879
+ "rstrip": false,
880
+ "single_word": false,
881
+ "special": true
882
+ },
883
+ "128110": {
884
+ "content": "<|reserved_special_token_102|>",
885
+ "lstrip": false,
886
+ "normalized": false,
887
+ "rstrip": false,
888
+ "single_word": false,
889
+ "special": true
890
+ },
891
+ "128111": {
892
+ "content": "<|reserved_special_token_103|>",
893
+ "lstrip": false,
894
+ "normalized": false,
895
+ "rstrip": false,
896
+ "single_word": false,
897
+ "special": true
898
+ },
899
+ "128112": {
900
+ "content": "<|reserved_special_token_104|>",
901
+ "lstrip": false,
902
+ "normalized": false,
903
+ "rstrip": false,
904
+ "single_word": false,
905
+ "special": true
906
+ },
907
+ "128113": {
908
+ "content": "<|reserved_special_token_105|>",
909
+ "lstrip": false,
910
+ "normalized": false,
911
+ "rstrip": false,
912
+ "single_word": false,
913
+ "special": true
914
+ },
915
+ "128114": {
916
+ "content": "<|reserved_special_token_106|>",
917
+ "lstrip": false,
918
+ "normalized": false,
919
+ "rstrip": false,
920
+ "single_word": false,
921
+ "special": true
922
+ },
923
+ "128115": {
924
+ "content": "<|reserved_special_token_107|>",
925
+ "lstrip": false,
926
+ "normalized": false,
927
+ "rstrip": false,
928
+ "single_word": false,
929
+ "special": true
930
+ },
931
+ "128116": {
932
+ "content": "<|reserved_special_token_108|>",
933
+ "lstrip": false,
934
+ "normalized": false,
935
+ "rstrip": false,
936
+ "single_word": false,
937
+ "special": true
938
+ },
939
+ "128117": {
940
+ "content": "<|reserved_special_token_109|>",
941
+ "lstrip": false,
942
+ "normalized": false,
943
+ "rstrip": false,
944
+ "single_word": false,
945
+ "special": true
946
+ },
947
+ "128118": {
948
+ "content": "<|reserved_special_token_110|>",
949
+ "lstrip": false,
950
+ "normalized": false,
951
+ "rstrip": false,
952
+ "single_word": false,
953
+ "special": true
954
+ },
955
+ "128119": {
956
+ "content": "<|reserved_special_token_111|>",
957
+ "lstrip": false,
958
+ "normalized": false,
959
+ "rstrip": false,
960
+ "single_word": false,
961
+ "special": true
962
+ },
963
+ "128120": {
964
+ "content": "<|reserved_special_token_112|>",
965
+ "lstrip": false,
966
+ "normalized": false,
967
+ "rstrip": false,
968
+ "single_word": false,
969
+ "special": true
970
+ },
971
+ "128121": {
972
+ "content": "<|reserved_special_token_113|>",
973
+ "lstrip": false,
974
+ "normalized": false,
975
+ "rstrip": false,
976
+ "single_word": false,
977
+ "special": true
978
+ },
979
+ "128122": {
980
+ "content": "<|reserved_special_token_114|>",
981
+ "lstrip": false,
982
+ "normalized": false,
983
+ "rstrip": false,
984
+ "single_word": false,
985
+ "special": true
986
+ },
987
+ "128123": {
988
+ "content": "<|reserved_special_token_115|>",
989
+ "lstrip": false,
990
+ "normalized": false,
991
+ "rstrip": false,
992
+ "single_word": false,
993
+ "special": true
994
+ },
995
+ "128124": {
996
+ "content": "<|reserved_special_token_116|>",
997
+ "lstrip": false,
998
+ "normalized": false,
999
+ "rstrip": false,
1000
+ "single_word": false,
1001
+ "special": true
1002
+ },
1003
+ "128125": {
1004
+ "content": "<|reserved_special_token_117|>",
1005
+ "lstrip": false,
1006
+ "normalized": false,
1007
+ "rstrip": false,
1008
+ "single_word": false,
1009
+ "special": true
1010
+ },
1011
+ "128126": {
1012
+ "content": "<|reserved_special_token_118|>",
1013
+ "lstrip": false,
1014
+ "normalized": false,
1015
+ "rstrip": false,
1016
+ "single_word": false,
1017
+ "special": true
1018
+ },
1019
+ "128127": {
1020
+ "content": "<|reserved_special_token_119|>",
1021
+ "lstrip": false,
1022
+ "normalized": false,
1023
+ "rstrip": false,
1024
+ "single_word": false,
1025
+ "special": true
1026
+ },
1027
+ "128128": {
1028
+ "content": "<|reserved_special_token_120|>",
1029
+ "lstrip": false,
1030
+ "normalized": false,
1031
+ "rstrip": false,
1032
+ "single_word": false,
1033
+ "special": true
1034
+ },
1035
+ "128129": {
1036
+ "content": "<|reserved_special_token_121|>",
1037
+ "lstrip": false,
1038
+ "normalized": false,
1039
+ "rstrip": false,
1040
+ "single_word": false,
1041
+ "special": true
1042
+ },
1043
+ "128130": {
1044
+ "content": "<|reserved_special_token_122|>",
1045
+ "lstrip": false,
1046
+ "normalized": false,
1047
+ "rstrip": false,
1048
+ "single_word": false,
1049
+ "special": true
1050
+ },
1051
+ "128131": {
1052
+ "content": "<|reserved_special_token_123|>",
1053
+ "lstrip": false,
1054
+ "normalized": false,
1055
+ "rstrip": false,
1056
+ "single_word": false,
1057
+ "special": true
1058
+ },
1059
+ "128132": {
1060
+ "content": "<|reserved_special_token_124|>",
1061
+ "lstrip": false,
1062
+ "normalized": false,
1063
+ "rstrip": false,
1064
+ "single_word": false,
1065
+ "special": true
1066
+ },
1067
+ "128133": {
1068
+ "content": "<|reserved_special_token_125|>",
1069
+ "lstrip": false,
1070
+ "normalized": false,
1071
+ "rstrip": false,
1072
+ "single_word": false,
1073
+ "special": true
1074
+ },
1075
+ "128134": {
1076
+ "content": "<|reserved_special_token_126|>",
1077
+ "lstrip": false,
1078
+ "normalized": false,
1079
+ "rstrip": false,
1080
+ "single_word": false,
1081
+ "special": true
1082
+ },
1083
+ "128135": {
1084
+ "content": "<|reserved_special_token_127|>",
1085
+ "lstrip": false,
1086
+ "normalized": false,
1087
+ "rstrip": false,
1088
+ "single_word": false,
1089
+ "special": true
1090
+ },
1091
+ "128136": {
1092
+ "content": "<|reserved_special_token_128|>",
1093
+ "lstrip": false,
1094
+ "normalized": false,
1095
+ "rstrip": false,
1096
+ "single_word": false,
1097
+ "special": true
1098
+ },
1099
+ "128137": {
1100
+ "content": "<|reserved_special_token_129|>",
1101
+ "lstrip": false,
1102
+ "normalized": false,
1103
+ "rstrip": false,
1104
+ "single_word": false,
1105
+ "special": true
1106
+ },
1107
+ "128138": {
1108
+ "content": "<|reserved_special_token_130|>",
1109
+ "lstrip": false,
1110
+ "normalized": false,
1111
+ "rstrip": false,
1112
+ "single_word": false,
1113
+ "special": true
1114
+ },
1115
+ "128139": {
1116
+ "content": "<|reserved_special_token_131|>",
1117
+ "lstrip": false,
1118
+ "normalized": false,
1119
+ "rstrip": false,
1120
+ "single_word": false,
1121
+ "special": true
1122
+ },
1123
+ "128140": {
1124
+ "content": "<|reserved_special_token_132|>",
1125
+ "lstrip": false,
1126
+ "normalized": false,
1127
+ "rstrip": false,
1128
+ "single_word": false,
1129
+ "special": true
1130
+ },
1131
+ "128141": {
1132
+ "content": "<|reserved_special_token_133|>",
1133
+ "lstrip": false,
1134
+ "normalized": false,
1135
+ "rstrip": false,
1136
+ "single_word": false,
1137
+ "special": true
1138
+ },
1139
+ "128142": {
1140
+ "content": "<|reserved_special_token_134|>",
1141
+ "lstrip": false,
1142
+ "normalized": false,
1143
+ "rstrip": false,
1144
+ "single_word": false,
1145
+ "special": true
1146
+ },
1147
+ "128143": {
1148
+ "content": "<|reserved_special_token_135|>",
1149
+ "lstrip": false,
1150
+ "normalized": false,
1151
+ "rstrip": false,
1152
+ "single_word": false,
1153
+ "special": true
1154
+ },
1155
+ "128144": {
1156
+ "content": "<|reserved_special_token_136|>",
1157
+ "lstrip": false,
1158
+ "normalized": false,
1159
+ "rstrip": false,
1160
+ "single_word": false,
1161
+ "special": true
1162
+ },
1163
+ "128145": {
1164
+ "content": "<|reserved_special_token_137|>",
1165
+ "lstrip": false,
1166
+ "normalized": false,
1167
+ "rstrip": false,
1168
+ "single_word": false,
1169
+ "special": true
1170
+ },
1171
+ "128146": {
1172
+ "content": "<|reserved_special_token_138|>",
1173
+ "lstrip": false,
1174
+ "normalized": false,
1175
+ "rstrip": false,
1176
+ "single_word": false,
1177
+ "special": true
1178
+ },
1179
+ "128147": {
1180
+ "content": "<|reserved_special_token_139|>",
1181
+ "lstrip": false,
1182
+ "normalized": false,
1183
+ "rstrip": false,
1184
+ "single_word": false,
1185
+ "special": true
1186
+ },
1187
+ "128148": {
1188
+ "content": "<|reserved_special_token_140|>",
1189
+ "lstrip": false,
1190
+ "normalized": false,
1191
+ "rstrip": false,
1192
+ "single_word": false,
1193
+ "special": true
1194
+ },
1195
+ "128149": {
1196
+ "content": "<|reserved_special_token_141|>",
1197
+ "lstrip": false,
1198
+ "normalized": false,
1199
+ "rstrip": false,
1200
+ "single_word": false,
1201
+ "special": true
1202
+ },
1203
+ "128150": {
1204
+ "content": "<|reserved_special_token_142|>",
1205
+ "lstrip": false,
1206
+ "normalized": false,
1207
+ "rstrip": false,
1208
+ "single_word": false,
1209
+ "special": true
1210
+ },
1211
+ "128151": {
1212
+ "content": "<|reserved_special_token_143|>",
1213
+ "lstrip": false,
1214
+ "normalized": false,
1215
+ "rstrip": false,
1216
+ "single_word": false,
1217
+ "special": true
1218
+ },
1219
+ "128152": {
1220
+ "content": "<|reserved_special_token_144|>",
1221
+ "lstrip": false,
1222
+ "normalized": false,
1223
+ "rstrip": false,
1224
+ "single_word": false,
1225
+ "special": true
1226
+ },
1227
+ "128153": {
1228
+ "content": "<|reserved_special_token_145|>",
1229
+ "lstrip": false,
1230
+ "normalized": false,
1231
+ "rstrip": false,
1232
+ "single_word": false,
1233
+ "special": true
1234
+ },
1235
+ "128154": {
1236
+ "content": "<|reserved_special_token_146|>",
1237
+ "lstrip": false,
1238
+ "normalized": false,
1239
+ "rstrip": false,
1240
+ "single_word": false,
1241
+ "special": true
1242
+ },
1243
+ "128155": {
1244
+ "content": "<|reserved_special_token_147|>",
1245
+ "lstrip": false,
1246
+ "normalized": false,
1247
+ "rstrip": false,
1248
+ "single_word": false,
1249
+ "special": true
1250
+ },
1251
+ "128156": {
1252
+ "content": "<|reserved_special_token_148|>",
1253
+ "lstrip": false,
1254
+ "normalized": false,
1255
+ "rstrip": false,
1256
+ "single_word": false,
1257
+ "special": true
1258
+ },
1259
+ "128157": {
1260
+ "content": "<|reserved_special_token_149|>",
1261
+ "lstrip": false,
1262
+ "normalized": false,
1263
+ "rstrip": false,
1264
+ "single_word": false,
1265
+ "special": true
1266
+ },
1267
+ "128158": {
1268
+ "content": "<|reserved_special_token_150|>",
1269
+ "lstrip": false,
1270
+ "normalized": false,
1271
+ "rstrip": false,
1272
+ "single_word": false,
1273
+ "special": true
1274
+ },
1275
+ "128159": {
1276
+ "content": "<|reserved_special_token_151|>",
1277
+ "lstrip": false,
1278
+ "normalized": false,
1279
+ "rstrip": false,
1280
+ "single_word": false,
1281
+ "special": true
1282
+ },
1283
+ "128160": {
1284
+ "content": "<|reserved_special_token_152|>",
1285
+ "lstrip": false,
1286
+ "normalized": false,
1287
+ "rstrip": false,
1288
+ "single_word": false,
1289
+ "special": true
1290
+ },
1291
+ "128161": {
1292
+ "content": "<|reserved_special_token_153|>",
1293
+ "lstrip": false,
1294
+ "normalized": false,
1295
+ "rstrip": false,
1296
+ "single_word": false,
1297
+ "special": true
1298
+ },
1299
+ "128162": {
1300
+ "content": "<|reserved_special_token_154|>",
1301
+ "lstrip": false,
1302
+ "normalized": false,
1303
+ "rstrip": false,
1304
+ "single_word": false,
1305
+ "special": true
1306
+ },
1307
+ "128163": {
1308
+ "content": "<|reserved_special_token_155|>",
1309
+ "lstrip": false,
1310
+ "normalized": false,
1311
+ "rstrip": false,
1312
+ "single_word": false,
1313
+ "special": true
1314
+ },
1315
+ "128164": {
1316
+ "content": "<|reserved_special_token_156|>",
1317
+ "lstrip": false,
1318
+ "normalized": false,
1319
+ "rstrip": false,
1320
+ "single_word": false,
1321
+ "special": true
1322
+ },
1323
+ "128165": {
1324
+ "content": "<|reserved_special_token_157|>",
1325
+ "lstrip": false,
1326
+ "normalized": false,
1327
+ "rstrip": false,
1328
+ "single_word": false,
1329
+ "special": true
1330
+ },
1331
+ "128166": {
1332
+ "content": "<|reserved_special_token_158|>",
1333
+ "lstrip": false,
1334
+ "normalized": false,
1335
+ "rstrip": false,
1336
+ "single_word": false,
1337
+ "special": true
1338
+ },
1339
+ "128167": {
1340
+ "content": "<|reserved_special_token_159|>",
1341
+ "lstrip": false,
1342
+ "normalized": false,
1343
+ "rstrip": false,
1344
+ "single_word": false,
1345
+ "special": true
1346
+ },
1347
+ "128168": {
1348
+ "content": "<|reserved_special_token_160|>",
1349
+ "lstrip": false,
1350
+ "normalized": false,
1351
+ "rstrip": false,
1352
+ "single_word": false,
1353
+ "special": true
1354
+ },
1355
+ "128169": {
1356
+ "content": "<|reserved_special_token_161|>",
1357
+ "lstrip": false,
1358
+ "normalized": false,
1359
+ "rstrip": false,
1360
+ "single_word": false,
1361
+ "special": true
1362
+ },
1363
+ "128170": {
1364
+ "content": "<|reserved_special_token_162|>",
1365
+ "lstrip": false,
1366
+ "normalized": false,
1367
+ "rstrip": false,
1368
+ "single_word": false,
1369
+ "special": true
1370
+ },
1371
+ "128171": {
1372
+ "content": "<|reserved_special_token_163|>",
1373
+ "lstrip": false,
1374
+ "normalized": false,
1375
+ "rstrip": false,
1376
+ "single_word": false,
1377
+ "special": true
1378
+ },
1379
+ "128172": {
1380
+ "content": "<|reserved_special_token_164|>",
1381
+ "lstrip": false,
1382
+ "normalized": false,
1383
+ "rstrip": false,
1384
+ "single_word": false,
1385
+ "special": true
1386
+ },
1387
+ "128173": {
1388
+ "content": "<|reserved_special_token_165|>",
1389
+ "lstrip": false,
1390
+ "normalized": false,
1391
+ "rstrip": false,
1392
+ "single_word": false,
1393
+ "special": true
1394
+ },
1395
+ "128174": {
1396
+ "content": "<|reserved_special_token_166|>",
1397
+ "lstrip": false,
1398
+ "normalized": false,
1399
+ "rstrip": false,
1400
+ "single_word": false,
1401
+ "special": true
1402
+ },
1403
+ "128175": {
1404
+ "content": "<|reserved_special_token_167|>",
1405
+ "lstrip": false,
1406
+ "normalized": false,
1407
+ "rstrip": false,
1408
+ "single_word": false,
1409
+ "special": true
1410
+ },
1411
+ "128176": {
1412
+ "content": "<|reserved_special_token_168|>",
1413
+ "lstrip": false,
1414
+ "normalized": false,
1415
+ "rstrip": false,
1416
+ "single_word": false,
1417
+ "special": true
1418
+ },
1419
+ "128177": {
1420
+ "content": "<|reserved_special_token_169|>",
1421
+ "lstrip": false,
1422
+ "normalized": false,
1423
+ "rstrip": false,
1424
+ "single_word": false,
1425
+ "special": true
1426
+ },
1427
+ "128178": {
1428
+ "content": "<|reserved_special_token_170|>",
1429
+ "lstrip": false,
1430
+ "normalized": false,
1431
+ "rstrip": false,
1432
+ "single_word": false,
1433
+ "special": true
1434
+ },
1435
+ "128179": {
1436
+ "content": "<|reserved_special_token_171|>",
1437
+ "lstrip": false,
1438
+ "normalized": false,
1439
+ "rstrip": false,
1440
+ "single_word": false,
1441
+ "special": true
1442
+ },
1443
+ "128180": {
1444
+ "content": "<|reserved_special_token_172|>",
1445
+ "lstrip": false,
1446
+ "normalized": false,
1447
+ "rstrip": false,
1448
+ "single_word": false,
1449
+ "special": true
1450
+ },
1451
+ "128181": {
1452
+ "content": "<|reserved_special_token_173|>",
1453
+ "lstrip": false,
1454
+ "normalized": false,
1455
+ "rstrip": false,
1456
+ "single_word": false,
1457
+ "special": true
1458
+ },
1459
+ "128182": {
1460
+ "content": "<|reserved_special_token_174|>",
1461
+ "lstrip": false,
1462
+ "normalized": false,
1463
+ "rstrip": false,
1464
+ "single_word": false,
1465
+ "special": true
1466
+ },
1467
+ "128183": {
1468
+ "content": "<|reserved_special_token_175|>",
1469
+ "lstrip": false,
1470
+ "normalized": false,
1471
+ "rstrip": false,
1472
+ "single_word": false,
1473
+ "special": true
1474
+ },
1475
+ "128184": {
1476
+ "content": "<|reserved_special_token_176|>",
1477
+ "lstrip": false,
1478
+ "normalized": false,
1479
+ "rstrip": false,
1480
+ "single_word": false,
1481
+ "special": true
1482
+ },
1483
+ "128185": {
1484
+ "content": "<|reserved_special_token_177|>",
1485
+ "lstrip": false,
1486
+ "normalized": false,
1487
+ "rstrip": false,
1488
+ "single_word": false,
1489
+ "special": true
1490
+ },
1491
+ "128186": {
1492
+ "content": "<|reserved_special_token_178|>",
1493
+ "lstrip": false,
1494
+ "normalized": false,
1495
+ "rstrip": false,
1496
+ "single_word": false,
1497
+ "special": true
1498
+ },
1499
+ "128187": {
1500
+ "content": "<|reserved_special_token_179|>",
1501
+ "lstrip": false,
1502
+ "normalized": false,
1503
+ "rstrip": false,
1504
+ "single_word": false,
1505
+ "special": true
1506
+ },
1507
+ "128188": {
1508
+ "content": "<|reserved_special_token_180|>",
1509
+ "lstrip": false,
1510
+ "normalized": false,
1511
+ "rstrip": false,
1512
+ "single_word": false,
1513
+ "special": true
1514
+ },
1515
+ "128189": {
1516
+ "content": "<|reserved_special_token_181|>",
1517
+ "lstrip": false,
1518
+ "normalized": false,
1519
+ "rstrip": false,
1520
+ "single_word": false,
1521
+ "special": true
1522
+ },
1523
+ "128190": {
1524
+ "content": "<|reserved_special_token_182|>",
1525
+ "lstrip": false,
1526
+ "normalized": false,
1527
+ "rstrip": false,
1528
+ "single_word": false,
1529
+ "special": true
1530
+ },
1531
+ "128191": {
1532
+ "content": "<|reserved_special_token_183|>",
1533
+ "lstrip": false,
1534
+ "normalized": false,
1535
+ "rstrip": false,
1536
+ "single_word": false,
1537
+ "special": true
1538
+ },
1539
+ "128192": {
1540
+ "content": "<|reserved_special_token_184|>",
1541
+ "lstrip": false,
1542
+ "normalized": false,
1543
+ "rstrip": false,
1544
+ "single_word": false,
1545
+ "special": true
1546
+ },
1547
+ "128193": {
1548
+ "content": "<|reserved_special_token_185|>",
1549
+ "lstrip": false,
1550
+ "normalized": false,
1551
+ "rstrip": false,
1552
+ "single_word": false,
1553
+ "special": true
1554
+ },
1555
+ "128194": {
1556
+ "content": "<|reserved_special_token_186|>",
1557
+ "lstrip": false,
1558
+ "normalized": false,
1559
+ "rstrip": false,
1560
+ "single_word": false,
1561
+ "special": true
1562
+ },
1563
+ "128195": {
1564
+ "content": "<|reserved_special_token_187|>",
1565
+ "lstrip": false,
1566
+ "normalized": false,
1567
+ "rstrip": false,
1568
+ "single_word": false,
1569
+ "special": true
1570
+ },
1571
+ "128196": {
1572
+ "content": "<|reserved_special_token_188|>",
1573
+ "lstrip": false,
1574
+ "normalized": false,
1575
+ "rstrip": false,
1576
+ "single_word": false,
1577
+ "special": true
1578
+ },
1579
+ "128197": {
1580
+ "content": "<|reserved_special_token_189|>",
1581
+ "lstrip": false,
1582
+ "normalized": false,
1583
+ "rstrip": false,
1584
+ "single_word": false,
1585
+ "special": true
1586
+ },
1587
+ "128198": {
1588
+ "content": "<|reserved_special_token_190|>",
1589
+ "lstrip": false,
1590
+ "normalized": false,
1591
+ "rstrip": false,
1592
+ "single_word": false,
1593
+ "special": true
1594
+ },
1595
+ "128199": {
1596
+ "content": "<|reserved_special_token_191|>",
1597
+ "lstrip": false,
1598
+ "normalized": false,
1599
+ "rstrip": false,
1600
+ "single_word": false,
1601
+ "special": true
1602
+ },
1603
+ "128200": {
1604
+ "content": "<|reserved_special_token_192|>",
1605
+ "lstrip": false,
1606
+ "normalized": false,
1607
+ "rstrip": false,
1608
+ "single_word": false,
1609
+ "special": true
1610
+ },
1611
+ "128201": {
1612
+ "content": "<|reserved_special_token_193|>",
1613
+ "lstrip": false,
1614
+ "normalized": false,
1615
+ "rstrip": false,
1616
+ "single_word": false,
1617
+ "special": true
1618
+ },
1619
+ "128202": {
1620
+ "content": "<|reserved_special_token_194|>",
1621
+ "lstrip": false,
1622
+ "normalized": false,
1623
+ "rstrip": false,
1624
+ "single_word": false,
1625
+ "special": true
1626
+ },
1627
+ "128203": {
1628
+ "content": "<|reserved_special_token_195|>",
1629
+ "lstrip": false,
1630
+ "normalized": false,
1631
+ "rstrip": false,
1632
+ "single_word": false,
1633
+ "special": true
1634
+ },
1635
+ "128204": {
1636
+ "content": "<|reserved_special_token_196|>",
1637
+ "lstrip": false,
1638
+ "normalized": false,
1639
+ "rstrip": false,
1640
+ "single_word": false,
1641
+ "special": true
1642
+ },
1643
+ "128205": {
1644
+ "content": "<|reserved_special_token_197|>",
1645
+ "lstrip": false,
1646
+ "normalized": false,
1647
+ "rstrip": false,
1648
+ "single_word": false,
1649
+ "special": true
1650
+ },
1651
+ "128206": {
1652
+ "content": "<|reserved_special_token_198|>",
1653
+ "lstrip": false,
1654
+ "normalized": false,
1655
+ "rstrip": false,
1656
+ "single_word": false,
1657
+ "special": true
1658
+ },
1659
+ "128207": {
1660
+ "content": "<|reserved_special_token_199|>",
1661
+ "lstrip": false,
1662
+ "normalized": false,
1663
+ "rstrip": false,
1664
+ "single_word": false,
1665
+ "special": true
1666
+ },
1667
+ "128208": {
1668
+ "content": "<|reserved_special_token_200|>",
1669
+ "lstrip": false,
1670
+ "normalized": false,
1671
+ "rstrip": false,
1672
+ "single_word": false,
1673
+ "special": true
1674
+ },
1675
+ "128209": {
1676
+ "content": "<|reserved_special_token_201|>",
1677
+ "lstrip": false,
1678
+ "normalized": false,
1679
+ "rstrip": false,
1680
+ "single_word": false,
1681
+ "special": true
1682
+ },
1683
+ "128210": {
1684
+ "content": "<|reserved_special_token_202|>",
1685
+ "lstrip": false,
1686
+ "normalized": false,
1687
+ "rstrip": false,
1688
+ "single_word": false,
1689
+ "special": true
1690
+ },
1691
+ "128211": {
1692
+ "content": "<|reserved_special_token_203|>",
1693
+ "lstrip": false,
1694
+ "normalized": false,
1695
+ "rstrip": false,
1696
+ "single_word": false,
1697
+ "special": true
1698
+ },
1699
+ "128212": {
1700
+ "content": "<|reserved_special_token_204|>",
1701
+ "lstrip": false,
1702
+ "normalized": false,
1703
+ "rstrip": false,
1704
+ "single_word": false,
1705
+ "special": true
1706
+ },
1707
+ "128213": {
1708
+ "content": "<|reserved_special_token_205|>",
1709
+ "lstrip": false,
1710
+ "normalized": false,
1711
+ "rstrip": false,
1712
+ "single_word": false,
1713
+ "special": true
1714
+ },
1715
+ "128214": {
1716
+ "content": "<|reserved_special_token_206|>",
1717
+ "lstrip": false,
1718
+ "normalized": false,
1719
+ "rstrip": false,
1720
+ "single_word": false,
1721
+ "special": true
1722
+ },
1723
+ "128215": {
1724
+ "content": "<|reserved_special_token_207|>",
1725
+ "lstrip": false,
1726
+ "normalized": false,
1727
+ "rstrip": false,
1728
+ "single_word": false,
1729
+ "special": true
1730
+ },
1731
+ "128216": {
1732
+ "content": "<|reserved_special_token_208|>",
1733
+ "lstrip": false,
1734
+ "normalized": false,
1735
+ "rstrip": false,
1736
+ "single_word": false,
1737
+ "special": true
1738
+ },
1739
+ "128217": {
1740
+ "content": "<|reserved_special_token_209|>",
1741
+ "lstrip": false,
1742
+ "normalized": false,
1743
+ "rstrip": false,
1744
+ "single_word": false,
1745
+ "special": true
1746
+ },
1747
+ "128218": {
1748
+ "content": "<|reserved_special_token_210|>",
1749
+ "lstrip": false,
1750
+ "normalized": false,
1751
+ "rstrip": false,
1752
+ "single_word": false,
1753
+ "special": true
1754
+ },
1755
+ "128219": {
1756
+ "content": "<|reserved_special_token_211|>",
1757
+ "lstrip": false,
1758
+ "normalized": false,
1759
+ "rstrip": false,
1760
+ "single_word": false,
1761
+ "special": true
1762
+ },
1763
+ "128220": {
1764
+ "content": "<|reserved_special_token_212|>",
1765
+ "lstrip": false,
1766
+ "normalized": false,
1767
+ "rstrip": false,
1768
+ "single_word": false,
1769
+ "special": true
1770
+ },
1771
+ "128221": {
1772
+ "content": "<|reserved_special_token_213|>",
1773
+ "lstrip": false,
1774
+ "normalized": false,
1775
+ "rstrip": false,
1776
+ "single_word": false,
1777
+ "special": true
1778
+ },
1779
+ "128222": {
1780
+ "content": "<|reserved_special_token_214|>",
1781
+ "lstrip": false,
1782
+ "normalized": false,
1783
+ "rstrip": false,
1784
+ "single_word": false,
1785
+ "special": true
1786
+ },
1787
+ "128223": {
1788
+ "content": "<|reserved_special_token_215|>",
1789
+ "lstrip": false,
1790
+ "normalized": false,
1791
+ "rstrip": false,
1792
+ "single_word": false,
1793
+ "special": true
1794
+ },
1795
+ "128224": {
1796
+ "content": "<|reserved_special_token_216|>",
1797
+ "lstrip": false,
1798
+ "normalized": false,
1799
+ "rstrip": false,
1800
+ "single_word": false,
1801
+ "special": true
1802
+ },
1803
+ "128225": {
1804
+ "content": "<|reserved_special_token_217|>",
1805
+ "lstrip": false,
1806
+ "normalized": false,
1807
+ "rstrip": false,
1808
+ "single_word": false,
1809
+ "special": true
1810
+ },
1811
+ "128226": {
1812
+ "content": "<|reserved_special_token_218|>",
1813
+ "lstrip": false,
1814
+ "normalized": false,
1815
+ "rstrip": false,
1816
+ "single_word": false,
1817
+ "special": true
1818
+ },
1819
+ "128227": {
1820
+ "content": "<|reserved_special_token_219|>",
1821
+ "lstrip": false,
1822
+ "normalized": false,
1823
+ "rstrip": false,
1824
+ "single_word": false,
1825
+ "special": true
1826
+ },
1827
+ "128228": {
1828
+ "content": "<|reserved_special_token_220|>",
1829
+ "lstrip": false,
1830
+ "normalized": false,
1831
+ "rstrip": false,
1832
+ "single_word": false,
1833
+ "special": true
1834
+ },
1835
+ "128229": {
1836
+ "content": "<|reserved_special_token_221|>",
1837
+ "lstrip": false,
1838
+ "normalized": false,
1839
+ "rstrip": false,
1840
+ "single_word": false,
1841
+ "special": true
1842
+ },
1843
+ "128230": {
1844
+ "content": "<|reserved_special_token_222|>",
1845
+ "lstrip": false,
1846
+ "normalized": false,
1847
+ "rstrip": false,
1848
+ "single_word": false,
1849
+ "special": true
1850
+ },
1851
+ "128231": {
1852
+ "content": "<|reserved_special_token_223|>",
1853
+ "lstrip": false,
1854
+ "normalized": false,
1855
+ "rstrip": false,
1856
+ "single_word": false,
1857
+ "special": true
1858
+ },
1859
+ "128232": {
1860
+ "content": "<|reserved_special_token_224|>",
1861
+ "lstrip": false,
1862
+ "normalized": false,
1863
+ "rstrip": false,
1864
+ "single_word": false,
1865
+ "special": true
1866
+ },
1867
+ "128233": {
1868
+ "content": "<|reserved_special_token_225|>",
1869
+ "lstrip": false,
1870
+ "normalized": false,
1871
+ "rstrip": false,
1872
+ "single_word": false,
1873
+ "special": true
1874
+ },
1875
+ "128234": {
1876
+ "content": "<|reserved_special_token_226|>",
1877
+ "lstrip": false,
1878
+ "normalized": false,
1879
+ "rstrip": false,
1880
+ "single_word": false,
1881
+ "special": true
1882
+ },
1883
+ "128235": {
1884
+ "content": "<|reserved_special_token_227|>",
1885
+ "lstrip": false,
1886
+ "normalized": false,
1887
+ "rstrip": false,
1888
+ "single_word": false,
1889
+ "special": true
1890
+ },
1891
+ "128236": {
1892
+ "content": "<|reserved_special_token_228|>",
1893
+ "lstrip": false,
1894
+ "normalized": false,
1895
+ "rstrip": false,
1896
+ "single_word": false,
1897
+ "special": true
1898
+ },
1899
+ "128237": {
1900
+ "content": "<|reserved_special_token_229|>",
1901
+ "lstrip": false,
1902
+ "normalized": false,
1903
+ "rstrip": false,
1904
+ "single_word": false,
1905
+ "special": true
1906
+ },
1907
+ "128238": {
1908
+ "content": "<|reserved_special_token_230|>",
1909
+ "lstrip": false,
1910
+ "normalized": false,
1911
+ "rstrip": false,
1912
+ "single_word": false,
1913
+ "special": true
1914
+ },
1915
+ "128239": {
1916
+ "content": "<|reserved_special_token_231|>",
1917
+ "lstrip": false,
1918
+ "normalized": false,
1919
+ "rstrip": false,
1920
+ "single_word": false,
1921
+ "special": true
1922
+ },
1923
+ "128240": {
1924
+ "content": "<|reserved_special_token_232|>",
1925
+ "lstrip": false,
1926
+ "normalized": false,
1927
+ "rstrip": false,
1928
+ "single_word": false,
1929
+ "special": true
1930
+ },
1931
+ "128241": {
1932
+ "content": "<|reserved_special_token_233|>",
1933
+ "lstrip": false,
1934
+ "normalized": false,
1935
+ "rstrip": false,
1936
+ "single_word": false,
1937
+ "special": true
1938
+ },
1939
+ "128242": {
1940
+ "content": "<|reserved_special_token_234|>",
1941
+ "lstrip": false,
1942
+ "normalized": false,
1943
+ "rstrip": false,
1944
+ "single_word": false,
1945
+ "special": true
1946
+ },
1947
+ "128243": {
1948
+ "content": "<|reserved_special_token_235|>",
1949
+ "lstrip": false,
1950
+ "normalized": false,
1951
+ "rstrip": false,
1952
+ "single_word": false,
1953
+ "special": true
1954
+ },
1955
+ "128244": {
1956
+ "content": "<|reserved_special_token_236|>",
1957
+ "lstrip": false,
1958
+ "normalized": false,
1959
+ "rstrip": false,
1960
+ "single_word": false,
1961
+ "special": true
1962
+ },
1963
+ "128245": {
1964
+ "content": "<|reserved_special_token_237|>",
1965
+ "lstrip": false,
1966
+ "normalized": false,
1967
+ "rstrip": false,
1968
+ "single_word": false,
1969
+ "special": true
1970
+ },
1971
+ "128246": {
1972
+ "content": "<|reserved_special_token_238|>",
1973
+ "lstrip": false,
1974
+ "normalized": false,
1975
+ "rstrip": false,
1976
+ "single_word": false,
1977
+ "special": true
1978
+ },
1979
+ "128247": {
1980
+ "content": "<|reserved_special_token_239|>",
1981
+ "lstrip": false,
1982
+ "normalized": false,
1983
+ "rstrip": false,
1984
+ "single_word": false,
1985
+ "special": true
1986
+ },
1987
+ "128248": {
1988
+ "content": "<|reserved_special_token_240|>",
1989
+ "lstrip": false,
1990
+ "normalized": false,
1991
+ "rstrip": false,
1992
+ "single_word": false,
1993
+ "special": true
1994
+ },
1995
+ "128249": {
1996
+ "content": "<|reserved_special_token_241|>",
1997
+ "lstrip": false,
1998
+ "normalized": false,
1999
+ "rstrip": false,
2000
+ "single_word": false,
2001
+ "special": true
2002
+ },
2003
+ "128250": {
2004
+ "content": "<|reserved_special_token_242|>",
2005
+ "lstrip": false,
2006
+ "normalized": false,
2007
+ "rstrip": false,
2008
+ "single_word": false,
2009
+ "special": true
2010
+ },
2011
+ "128251": {
2012
+ "content": "<|reserved_special_token_243|>",
2013
+ "lstrip": false,
2014
+ "normalized": false,
2015
+ "rstrip": false,
2016
+ "single_word": false,
2017
+ "special": true
2018
+ },
2019
+ "128252": {
2020
+ "content": "<|reserved_special_token_244|>",
2021
+ "lstrip": false,
2022
+ "normalized": false,
2023
+ "rstrip": false,
2024
+ "single_word": false,
2025
+ "special": true
2026
+ },
2027
+ "128253": {
2028
+ "content": "<|reserved_special_token_245|>",
2029
+ "lstrip": false,
2030
+ "normalized": false,
2031
+ "rstrip": false,
2032
+ "single_word": false,
2033
+ "special": true
2034
+ },
2035
+ "128254": {
2036
+ "content": "<|reserved_special_token_246|>",
2037
+ "lstrip": false,
2038
+ "normalized": false,
2039
+ "rstrip": false,
2040
+ "single_word": false,
2041
+ "special": true
2042
+ },
2043
+ "128255": {
2044
+ "content": "<|reserved_special_token_247|>",
2045
+ "lstrip": false,
2046
+ "normalized": false,
2047
+ "rstrip": false,
2048
+ "single_word": false,
2049
+ "special": true
2050
+ }
2051
+ },
2052
+ "bos_token": "<|begin_of_text|>",
2053
+ "chat_template": "{% if not add_generation_prompt is defined %}{% set add_generation_prompt = false %}{% endif %}{% set loop_messages = messages %}{% for message in loop_messages %}{% set content = '<|start_header_id|>' + message['role'] + '<|end_header_id|>\n\n'+ message['content'] | trim + '<|eot_id|>' %}{% if loop.index0 == 0 %}{% set content = bos_token + content %}{% endif %}{{ content }}{% endfor %}{% if add_generation_prompt %}{{ '<|start_header_id|>assistant<|end_header_id|>\n\n' }}{% endif %}",
2054
+ "clean_up_tokenization_spaces": true,
2055
+ "eos_token": "<|eot_id|>",
2056
+ "extra_special_tokens": {},
2057
+ "model_input_names": [
2058
+ "input_ids",
2059
+ "attention_mask"
2060
+ ],
2061
+ "model_max_length": 131072,
2062
+ "pad_token": "<|end_of_text|>",
2063
+ "tokenizer_class": "PreTrainedTokenizer"
2064
+ }
transformers_4_44_2__configuration_llama.py ADDED
@@ -0,0 +1,203 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # coding=utf-8
2
+ # Copyright 2022 EleutherAI and the HuggingFace Inc. team. All rights reserved.
3
+ #
4
+ # This code is based on EleutherAI's GPT-NeoX library and the GPT-NeoX
5
+ # and OPT implementations in this library. It has been modified from its
6
+ # original forms to accommodate minor architectural differences compared
7
+ # to GPT-NeoX and OPT used by the Meta AI team that trained the model.
8
+ #
9
+ # Licensed under the Apache License, Version 2.0 (the "License");
10
+ # you may not use this file except in compliance with the License.
11
+ # You may obtain a copy of the License at
12
+ #
13
+ # http://www.apache.org/licenses/LICENSE-2.0
14
+ #
15
+ # Unless required by applicable law or agreed to in writing, software
16
+ # distributed under the License is distributed on an "AS IS" BASIS,
17
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
18
+ # See the License for the specific language governing permissions and
19
+ # limitations under the License.
20
+ """LLaMA model configuration"""
21
+
22
+ from transformers.configuration_utils import PretrainedConfig
23
+ from .transformers_4_44_2__modeling_rope_utils import rope_config_validation
24
+
25
+
26
+ class LlamaConfig(PretrainedConfig):
27
+ r"""
28
+ This is the configuration class to store the configuration of a [`LlamaModel`]. It is used to instantiate an LLaMA
29
+ model according to the specified arguments, defining the model architecture. Instantiating a configuration with the
30
+ defaults will yield a similar configuration to that of the LLaMA-7B.
31
+
32
+ Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
33
+ documentation from [`PretrainedConfig`] for more information.
34
+
35
+
36
+ Args:
37
+ vocab_size (`int`, *optional*, defaults to 32000):
38
+ Vocabulary size of the LLaMA model. Defines the number of different tokens that can be represented by the
39
+ `inputs_ids` passed when calling [`LlamaModel`]
40
+ hidden_size (`int`, *optional*, defaults to 4096):
41
+ Dimension of the hidden representations.
42
+ intermediate_size (`int`, *optional*, defaults to 11008):
43
+ Dimension of the MLP representations.
44
+ num_hidden_layers (`int`, *optional*, defaults to 32):
45
+ Number of hidden layers in the Transformer decoder.
46
+ num_attention_heads (`int`, *optional*, defaults to 32):
47
+ Number of attention heads for each attention layer in the Transformer decoder.
48
+ num_key_value_heads (`int`, *optional*):
49
+ This is the number of key_value heads that should be used to implement Grouped Query Attention. If
50
+ `num_key_value_heads=num_attention_heads`, the model will use Multi Head Attention (MHA), if
51
+ `num_key_value_heads=1` the model will use Multi Query Attention (MQA) otherwise GQA is used. When
52
+ converting a multi-head checkpoint to a GQA checkpoint, each group key and value head should be constructed
53
+ by meanpooling all the original heads within that group. For more details checkout [this
54
+ paper](https://arxiv.org/pdf/2305.13245.pdf). If it is not specified, will default to
55
+ `num_attention_heads`.
56
+ hidden_act (`str` or `function`, *optional*, defaults to `"silu"`):
57
+ The non-linear activation function (function or string) in the decoder.
58
+ max_position_embeddings (`int`, *optional*, defaults to 2048):
59
+ The maximum sequence length that this model might ever be used with. Llama 1 supports up to 2048 tokens,
60
+ Llama 2 up to 4096, CodeLlama up to 16384.
61
+ initializer_range (`float`, *optional*, defaults to 0.02):
62
+ The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
63
+ rms_norm_eps (`float`, *optional*, defaults to 1e-06):
64
+ The epsilon used by the rms normalization layers.
65
+ use_cache (`bool`, *optional*, defaults to `True`):
66
+ Whether or not the model should return the last key/values attentions (not used by all models). Only
67
+ relevant if `config.is_decoder=True`.
68
+ pad_token_id (`int`, *optional*):
69
+ Padding token id.
70
+ bos_token_id (`int`, *optional*, defaults to 1):
71
+ Beginning of stream token id.
72
+ eos_token_id (`int`, *optional*, defaults to 2):
73
+ End of stream token id.
74
+ pretraining_tp (`int`, *optional*, defaults to 1):
75
+ Experimental feature. Tensor parallelism rank used during pretraining. Please refer to [this
76
+ document](https://huggingface.co/docs/transformers/main/perf_train_gpu_many#tensor-parallelism) to
77
+ understand more about it. This value is necessary to ensure exact reproducibility of the pretraining
78
+ results. Please refer to [this issue](https://github.com/pytorch/pytorch/issues/76232).
79
+ tie_word_embeddings (`bool`, *optional*, defaults to `False`):
80
+ Whether to tie weight embeddings
81
+ rope_theta (`float`, *optional*, defaults to 10000.0):
82
+ The base period of the RoPE embeddings.
83
+ rope_scaling (`Dict`, *optional*):
84
+ Dictionary containing the scaling configuration for the RoPE embeddings. NOTE: if you apply new rope type
85
+ and you expect the model to work on longer `max_position_embeddings`, we recommend you to update this value
86
+ accordingly.
87
+ Expected contents:
88
+ `rope_type` (`str`):
89
+ The sub-variant of RoPE to use. Can be one of ['default', 'linear', 'dynamic', 'yarn', 'longrope',
90
+ 'llama3'], with 'default' being the original RoPE implementation.
91
+ `factor` (`float`, *optional*):
92
+ Used with all rope types except 'default'. The scaling factor to apply to the RoPE embeddings. In
93
+ most scaling types, a `factor` of x will enable the model to handle sequences of length x *
94
+ original maximum pre-trained length.
95
+ `original_max_position_embeddings` (`int`, *optional*):
96
+ Used with 'dynamic', 'longrope' and 'llama3'. The original max position embeddings used during
97
+ pretraining.
98
+ `attention_factor` (`float`, *optional*):
99
+ Used with 'yarn' and 'longrope'. The scaling factor to be applied on the attention
100
+ computation. If unspecified, it defaults to value recommended by the implementation, using the
101
+ `factor` field to infer the suggested value.
102
+ `beta_fast` (`float`, *optional*):
103
+ Only used with 'yarn'. Parameter to set the boundary for extrapolation (only) in the linear
104
+ ramp function. If unspecified, it defaults to 32.
105
+ `beta_slow` (`float`, *optional*):
106
+ Only used with 'yarn'. Parameter to set the boundary for interpolation (only) in the linear
107
+ ramp function. If unspecified, it defaults to 1.
108
+ `short_factor` (`List[float]`, *optional*):
109
+ Only used with 'longrope'. The scaling factor to be applied to short contexts (<
110
+ `original_max_position_embeddings`). Must be a list of numbers with the same length as the hidden
111
+ size divided by the number of attention heads divided by 2
112
+ `long_factor` (`List[float]`, *optional*):
113
+ Only used with 'longrope'. The scaling factor to be applied to long contexts (<
114
+ `original_max_position_embeddings`). Must be a list of numbers with the same length as the hidden
115
+ size divided by the number of attention heads divided by 2
116
+ `low_freq_factor` (`float`, *optional*):
117
+ Only used with 'llama3'. Scaling factor applied to low frequency components of the RoPE
118
+ `high_freq_factor` (`float`, *optional*):
119
+ Only used with 'llama3'. Scaling factor applied to high frequency components of the RoPE
120
+ attention_bias (`bool`, *optional*, defaults to `False`):
121
+ Whether to use a bias in the query, key, value and output projection layers during self-attention.
122
+ attention_dropout (`float`, *optional*, defaults to 0.0):
123
+ The dropout ratio for the attention probabilities.
124
+ mlp_bias (`bool`, *optional*, defaults to `False`):
125
+ Whether to use a bias in up_proj, down_proj and gate_proj layers in the MLP layers.
126
+
127
+ ```python
128
+ >>> from transformers import LlamaModel, LlamaConfig
129
+
130
+ >>> # Initializing a LLaMA llama-7b style configuration
131
+ >>> configuration = LlamaConfig()
132
+
133
+ >>> # Initializing a model from the llama-7b style configuration
134
+ >>> model = LlamaModel(configuration)
135
+
136
+ >>> # Accessing the model configuration
137
+ >>> configuration = model.config
138
+ ```"""
139
+
140
+ model_type = "llama"
141
+ keys_to_ignore_at_inference = ["past_key_values"]
142
+
143
+ def __init__(
144
+ self,
145
+ vocab_size=32000,
146
+ hidden_size=4096,
147
+ intermediate_size=11008,
148
+ num_hidden_layers=32,
149
+ num_attention_heads=32,
150
+ num_key_value_heads=None,
151
+ hidden_act="silu",
152
+ max_position_embeddings=2048,
153
+ initializer_range=0.02,
154
+ rms_norm_eps=1e-6,
155
+ use_cache=True,
156
+ pad_token_id=None,
157
+ bos_token_id=1,
158
+ eos_token_id=2,
159
+ pretraining_tp=1,
160
+ tie_word_embeddings=False,
161
+ rope_theta=10000.0,
162
+ rope_scaling=None,
163
+ attention_bias=False,
164
+ attention_dropout=0.0,
165
+ mlp_bias=False,
166
+ **kwargs,
167
+ ):
168
+ self.vocab_size = vocab_size
169
+ self.max_position_embeddings = max_position_embeddings
170
+ self.hidden_size = hidden_size
171
+ self.intermediate_size = intermediate_size
172
+ self.num_hidden_layers = num_hidden_layers
173
+ self.num_attention_heads = num_attention_heads
174
+
175
+ # for backward compatibility
176
+ if num_key_value_heads is None:
177
+ num_key_value_heads = num_attention_heads
178
+
179
+ self.num_key_value_heads = num_key_value_heads
180
+ self.hidden_act = hidden_act
181
+ self.initializer_range = initializer_range
182
+ self.rms_norm_eps = rms_norm_eps
183
+ self.pretraining_tp = pretraining_tp
184
+ self.use_cache = use_cache
185
+ self.rope_theta = rope_theta
186
+ self.rope_scaling = rope_scaling
187
+ self.attention_bias = attention_bias
188
+ self.attention_dropout = attention_dropout
189
+ self.mlp_bias = mlp_bias
190
+
191
+ # Validate the correctness of rotary position embeddings parameters
192
+ # BC: if there is a 'type' field, move it to 'rope_type'.
193
+ if self.rope_scaling is not None and "type" in self.rope_scaling:
194
+ self.rope_scaling["rope_type"] = self.rope_scaling["type"]
195
+ rope_config_validation(self)
196
+
197
+ super().__init__(
198
+ pad_token_id=pad_token_id,
199
+ bos_token_id=bos_token_id,
200
+ eos_token_id=eos_token_id,
201
+ tie_word_embeddings=tie_word_embeddings,
202
+ **kwargs,
203
+ )
transformers_4_44_2__modeling_rope_utils.py ADDED
@@ -0,0 +1,559 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright 2024 The HuggingFace Team. All rights reserved.
2
+ #
3
+ # Licensed under the Apache License, Version 2.0 (the "License");
4
+ # you may not use this file except in compliance with the License.
5
+ # You may obtain a copy of the License at
6
+ #
7
+ # http://www.apache.org/licenses/LICENSE-2.0
8
+ #
9
+ # Unless required by applicable law or agreed to in writing, software
10
+ # distributed under the License is distributed on an "AS IS" BASIS,
11
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
+ # See the License for the specific language governing permissions and
13
+ # limitations under the License.
14
+
15
+ import math
16
+ from typing import Optional, Tuple
17
+
18
+ from transformers.configuration_utils import PretrainedConfig
19
+ from transformers.utils import is_torch_available, logging
20
+
21
+
22
+ logger = logging.get_logger(__name__)
23
+
24
+
25
+ if is_torch_available():
26
+ import torch
27
+
28
+
29
+ def _compute_default_rope_parameters(
30
+ config: Optional[PretrainedConfig] = None,
31
+ device: Optional["torch.device"] = None,
32
+ seq_len: Optional[int] = None,
33
+ **rope_kwargs,
34
+ ) -> Tuple["torch.Tensor", float]:
35
+ """
36
+ Computes the inverse frequencies according to the original RoPE implementation
37
+ Args:
38
+ config ([`~transformers.PretrainedConfig`]):
39
+ The model configuration.
40
+ device (`torch.device`):
41
+ The device to use for initialization of the inverse frequencies.
42
+ seq_len (`int`, *optional*):
43
+ The current sequence length. Unused for this type of RoPE.
44
+ rope_kwargs (`Dict`, *optional*):
45
+ BC compatibility with the previous RoPE class instantiation, will be removed in v4.45.
46
+ Returns:
47
+ Tuple of (`torch.Tensor`, `float`), containing the inverse frequencies for the RoPE embeddings and the
48
+ post-processing scaling factor applied to the computed cos/sin (unused in this type of RoPE).
49
+ """
50
+ if config is not None and len(rope_kwargs) > 0:
51
+ raise ValueError(
52
+ "Unexpected arguments: `**rope_kwargs` and `config` are mutually exclusive in "
53
+ f"`_compute_default_rope_parameters`, got `rope_kwargs`={rope_kwargs} and `config`={config}"
54
+ )
55
+ if len(rope_kwargs) > 0:
56
+ base = rope_kwargs["base"]
57
+ dim = rope_kwargs["dim"]
58
+ elif config is not None:
59
+ base = config.rope_theta
60
+ partial_rotary_factor = config.partial_rotary_factor if hasattr(config, "partial_rotary_factor") else 1.0
61
+ head_dim = getattr(config, "head_dim", config.hidden_size // config.num_attention_heads)
62
+ dim = int(head_dim * partial_rotary_factor)
63
+
64
+ attention_factor = 1.0 # Unused in this type of RoPE
65
+
66
+ # Compute the inverse frequencies
67
+ inv_freq = 1.0 / (base ** (torch.arange(0, dim, 2, dtype=torch.int64).float().to(device) / dim))
68
+ return inv_freq, attention_factor
69
+
70
+
71
+ def _compute_linear_scaling_rope_parameters(
72
+ config: Optional[PretrainedConfig] = None,
73
+ device: Optional["torch.device"] = None,
74
+ seq_len: Optional[int] = None,
75
+ **rope_kwargs,
76
+ ) -> Tuple["torch.Tensor", float]:
77
+ """
78
+ Computes the inverse frequencies with linear scaling. Credits to the Reddit user /u/kaiokendev
79
+ Args:
80
+ config ([`~transformers.PretrainedConfig`]):
81
+ The model configuration.
82
+ device (`torch.device`):
83
+ The device to use for initialization of the inverse frequencies.
84
+ seq_len (`int`, *optional*):
85
+ The current sequence length. Unused for this type of RoPE.
86
+ rope_kwargs (`Dict`, *optional*):
87
+ BC compatibility with the previous RoPE class instantiation, will be removed in v4.45.
88
+ Returns:
89
+ Tuple of (`torch.Tensor`, `float`), containing the inverse frequencies for the RoPE embeddings and the
90
+ post-processing scaling factor applied to the computed cos/sin (unused in this type of RoPE).
91
+ """
92
+ if config is not None and len(rope_kwargs) > 0:
93
+ raise ValueError(
94
+ "Unexpected arguments: `**rope_kwargs` and `config` are mutually exclusive in "
95
+ f"`_compute_linear_scaling_rope_parameters`, got `rope_kwargs`={rope_kwargs} and `config`={config}"
96
+ )
97
+ if len(rope_kwargs) > 0:
98
+ factor = rope_kwargs["factor"]
99
+ elif config is not None:
100
+ factor = config.rope_scaling["factor"]
101
+
102
+ # Gets the default RoPE parameters
103
+ inv_freq, attention_factor = _compute_default_rope_parameters(config, device, seq_len, **rope_kwargs)
104
+
105
+ # Then applies linear scaling to the frequencies.
106
+ # NOTE: originally, scaling was applied to the position_ids. However, we get `embs = inv_freq @ position_ids`, so
107
+ # applying scaling to the inverse frequencies is equivalent.
108
+ inv_freq /= factor
109
+ return inv_freq, attention_factor
110
+
111
+
112
+ def _compute_dynamic_ntk_parameters(
113
+ config: Optional[PretrainedConfig] = None,
114
+ device: Optional["torch.device"] = None,
115
+ seq_len: Optional[int] = None,
116
+ **rope_kwargs,
117
+ ) -> Tuple["torch.Tensor", float]:
118
+ """
119
+ Computes the inverse frequencies with NTK scaling. Credits to the Reddit users /u/bloc97 and /u/emozilla
120
+ Args:
121
+ config ([`~transformers.PretrainedConfig`]):
122
+ The model configuration.
123
+ device (`torch.device`):
124
+ The device to use for initialization of the inverse frequencies.
125
+ seq_len (`int`, *optional*):
126
+ The current sequence length, used to update the dynamic RoPE at inference time.
127
+ rope_kwargs (`Dict`, *optional*):
128
+ BC compatibility with the previous RoPE class instantiation, will be removed in v4.45.
129
+ Returns:
130
+ Tuple of (`torch.Tensor`, `float`), containing the inverse frequencies for the RoPE embeddings and the
131
+ post-processing scaling factor applied to the computed cos/sin (unused in this type of RoPE).
132
+ """
133
+ # TODO (joao): use the new `original_max_position_embeddings` from rope_scaling
134
+ if config is not None and len(rope_kwargs) > 0:
135
+ raise ValueError(
136
+ "Unexpected arguments: `**rope_kwargs` and `config` are mutually exclusive in "
137
+ f"`_compute_dynamic_ntk_parameters`, got `rope_kwargs`={rope_kwargs} and `config`={config}"
138
+ )
139
+ if len(rope_kwargs) > 0:
140
+ base = rope_kwargs["base"]
141
+ dim = rope_kwargs["dim"]
142
+ max_position_embeddings = rope_kwargs["max_position_embeddings"]
143
+ factor = rope_kwargs["factor"]
144
+ elif config is not None:
145
+ base = config.rope_theta
146
+ partial_rotary_factor = config.partial_rotary_factor if hasattr(config, "partial_rotary_factor") else 1.0
147
+ head_dim = getattr(config, "head_dim", config.hidden_size // config.num_attention_heads)
148
+ dim = int(head_dim * partial_rotary_factor)
149
+ max_position_embeddings = config.max_position_embeddings
150
+ factor = config.rope_scaling["factor"]
151
+
152
+ attention_factor = 1.0 # Unused in this type of RoPE
153
+
154
+ # seq_len: default to max_position_embeddings, e.g. at init time
155
+ seq_len = seq_len if seq_len is not None and seq_len > max_position_embeddings else max_position_embeddings
156
+
157
+ # Compute the inverse frequencies
158
+ base = base * ((factor * seq_len / max_position_embeddings) - (factor - 1)) ** (dim / (dim - 2))
159
+ inv_freq = 1.0 / (base ** (torch.arange(0, dim, 2, dtype=torch.int64).float().to(device) / dim))
160
+ return inv_freq, attention_factor
161
+
162
+
163
+ def _compute_yarn_parameters(
164
+ config: PretrainedConfig, device: "torch.device", seq_len: Optional[int] = None, **rope_kwargs
165
+ ) -> Tuple["torch.Tensor", float]:
166
+ """
167
+ Computes the inverse frequencies with NTK scaling. Please refer to the
168
+ [original paper](https://arxiv.org/abs/2309.00071)
169
+ Args:
170
+ config ([`~transformers.PretrainedConfig`]):
171
+ The model configuration.
172
+ device (`torch.device`):
173
+ The device to use for initialization of the inverse frequencies.
174
+ seq_len (`int`, *optional*):
175
+ The current sequence length. Unused for this type of RoPE.
176
+ rope_kwargs (`Dict`, *optional*):
177
+ BC compatibility with the previous RoPE class instantiation, will be removed in v4.45.
178
+ Returns:
179
+ Tuple of (`torch.Tensor`, `float`), containing the inverse frequencies for the RoPE embeddings and the
180
+ post-processing scaling factor applied to the computed cos/sin.
181
+ """
182
+ # No need to keep BC with yarn, unreleased when this new pattern was created.
183
+ if len(rope_kwargs) > 0:
184
+ raise ValueError(
185
+ f"Unexpected arguments: `**rope_kwargs` should be unset in `_compute_yarn_parameters`, got {rope_kwargs}"
186
+ )
187
+
188
+ base = config.rope_theta
189
+ partial_rotary_factor = config.partial_rotary_factor if hasattr(config, "partial_rotary_factor") else 1.0
190
+ head_dim = getattr(config, "head_dim", config.hidden_size // config.num_attention_heads)
191
+ dim = int(head_dim * partial_rotary_factor)
192
+ max_position_embeddings = config.max_position_embeddings
193
+ factor = config.rope_scaling["factor"]
194
+
195
+ # Sets the attention factor as suggested in the paper
196
+ attention_factor = config.rope_scaling.get("attention_factor")
197
+ if attention_factor is None:
198
+ attention_factor = 0.1 * math.log(factor) + 1.0
199
+
200
+ # Optional config options
201
+ # beta_fast/beta_slow: as suggested in the paper, default to 32/1 (correspondingly)
202
+ beta_fast = config.rope_scaling.get("beta_fast") or 32
203
+ beta_slow = config.rope_scaling.get("beta_slow") or 1
204
+
205
+ # Compute the inverse frequencies
206
+ def find_correction_dim(num_rotations, dim, base, max_position_embeddings):
207
+ """Inverse dimension formula to find the dimension based on the number of rotations"""
208
+ return (dim * math.log(max_position_embeddings / (num_rotations * 2 * math.pi))) / (2 * math.log(base))
209
+
210
+ def find_correction_range(low_rot, high_rot, dim, base, max_position_embeddings):
211
+ """Find dimension range bounds based on rotations"""
212
+ low = math.floor(find_correction_dim(low_rot, dim, base, max_position_embeddings))
213
+ high = math.ceil(find_correction_dim(high_rot, dim, base, max_position_embeddings))
214
+ return max(low, 0), min(high, dim - 1)
215
+
216
+ def linear_ramp_factor(min, max, dim):
217
+ if min == max:
218
+ max += 0.001 # Prevent singularity
219
+
220
+ linear_func = (torch.arange(dim, dtype=torch.float32) - min) / (max - min)
221
+ ramp_func = torch.clamp(linear_func, 0, 1)
222
+ return ramp_func
223
+
224
+ # Note on variable naming: "interpolation" comes from the original technique, where we interpolate the position IDs
225
+ # to expand the possible context length. In other words, interpolation = apply scaling factor.
226
+ pos_freqs = base ** (torch.arange(0, dim, 2).float().to(device) / dim)
227
+ inv_freq_extrapolation = 1.0 / pos_freqs
228
+ inv_freq_interpolation = 1.0 / (factor * pos_freqs)
229
+
230
+ low, high = find_correction_range(beta_fast, beta_slow, dim, base, max_position_embeddings)
231
+
232
+ # Get n-dimensional rotational scaling corrected for extrapolation
233
+ inv_freq_extrapolation_factor = 1 - linear_ramp_factor(low, high, dim // 2).float().to(device)
234
+ inv_freq = (
235
+ inv_freq_interpolation * (1 - inv_freq_extrapolation_factor)
236
+ + inv_freq_extrapolation * inv_freq_extrapolation_factor
237
+ )
238
+
239
+ return inv_freq, attention_factor
240
+
241
+
242
+ def _compute_longrope_parameters(
243
+ config: PretrainedConfig, device: "torch.device", seq_len: Optional[int] = None, **rope_kwargs
244
+ ) -> Tuple["torch.Tensor", float]:
245
+ """
246
+ Computes the inverse frequencies with LongRoPE scaling. Please refer to the
247
+ [original implementation](https://github.com/microsoft/LongRoPE)
248
+ Args:
249
+ config ([`~transformers.PretrainedConfig`]):
250
+ The model configuration.
251
+ device (`torch.device`):
252
+ The device to use for initialization of the inverse frequencies.
253
+ seq_len (`int`, *optional*):
254
+ The current sequence length. Unused for this type of RoPE.
255
+ rope_kwargs (`Dict`, *optional*):
256
+ BC compatibility with the previous RoPE class instantiation, will be removed in v4.45.
257
+ Returns:
258
+ Tuple of (`torch.Tensor`, `float`), containing the inverse frequencies for the RoPE embeddings and the
259
+ post-processing scaling factor applied to the computed cos/sin.
260
+ """
261
+ # TODO (joao): use the new `original_max_position_embeddings` from rope_scaling
262
+ # No need to keep BC with longrope, unreleased when this new pattern was created.
263
+ if len(rope_kwargs) > 0:
264
+ raise ValueError(
265
+ "Unexpected arguments: `**rope_kwargs` should be unset in `_compute_longrope_parameters`, got "
266
+ f"{rope_kwargs}"
267
+ )
268
+
269
+ base = config.rope_theta
270
+ partial_rotary_factor = config.partial_rotary_factor if hasattr(config, "partial_rotary_factor") else 1.0
271
+ head_dim = getattr(config, "head_dim", config.hidden_size // config.num_attention_heads)
272
+ dim = int(head_dim * partial_rotary_factor)
273
+ long_factor = config.rope_scaling["long_factor"]
274
+ short_factor = config.rope_scaling["short_factor"]
275
+ factor = config.rope_scaling.get("factor")
276
+ attention_factor = config.rope_scaling.get("attention_factor")
277
+
278
+ # NOTE: Phi3 (and potentially other models) modify `max_position_embeddings` and have a
279
+ # `original_max_position_embeddings` field containing the pretrained value. They use the ratio between these two
280
+ # values to compute the default attention scaling factor, instead of using `factor`.
281
+ if hasattr(config, "original_max_position_embeddings"):
282
+ max_position_embeddings = config.original_max_position_embeddings
283
+ expanded_max_position_embeddings = config.max_position_embeddings
284
+ factor = expanded_max_position_embeddings / max_position_embeddings
285
+ else:
286
+ max_position_embeddings = config.max_position_embeddings
287
+ expanded_max_position_embeddings = max_position_embeddings * factor
288
+
289
+ # Sets the attention factor as suggested in the paper
290
+ if attention_factor is None:
291
+ if factor <= 1.0:
292
+ attention_factor = 1.0
293
+ else:
294
+ attention_factor = math.sqrt(1 + math.log(factor) / math.log(max_position_embeddings))
295
+
296
+ # Compute the inverse frequencies -- scaled based on the target sequence length
297
+ if expanded_max_position_embeddings > max_position_embeddings:
298
+ ext_factors = torch.tensor(long_factor, dtype=torch.float32, device=device)
299
+ else:
300
+ ext_factors = torch.tensor(short_factor, dtype=torch.float32, device=device)
301
+ inv_freq_shape = torch.arange(0, dim, 2, dtype=torch.int64, device=device).float() / dim
302
+ inv_freq = 1.0 / (ext_factors * base**inv_freq_shape)
303
+
304
+ return inv_freq, attention_factor
305
+
306
+
307
+ def _compute_llama3_parameters(
308
+ config: PretrainedConfig, device: "torch.device", seq_len: Optional[int] = None, **rope_kwargs
309
+ ) -> Tuple["torch.Tensor", float]:
310
+ """
311
+ Computes the inverse frequencies for llama 3.1.
312
+
313
+ Args:
314
+ config ([`~transformers.PretrainedConfig`]):
315
+ The model configuration.
316
+ device (`torch.device`):
317
+ The device to use for initialization of the inverse frequencies.
318
+ seq_len (`int`, *optional*):
319
+ The current sequence length. Unused for this type of RoPE.
320
+ rope_kwargs (`Dict`, *optional*):
321
+ BC compatibility with the previous RoPE class instantiation, will be removed in v4.45.
322
+ Returns:
323
+ Tuple of (`torch.Tensor`, `float`), containing the inverse frequencies for the RoPE embeddings and the
324
+ post-processing scaling factor applied to the computed cos/sin.
325
+ """
326
+ # Gets the default RoPE parameters
327
+ inv_freq, attention_factor = _compute_default_rope_parameters(config, device, seq_len, **rope_kwargs)
328
+
329
+ factor = config.rope_scaling["factor"] # `8` in the original implementation
330
+ low_freq_factor = config.rope_scaling["low_freq_factor"] # `1` in the original implementation
331
+ high_freq_factor = config.rope_scaling["high_freq_factor"] # `4` in the original implementation
332
+ old_context_len = config.rope_scaling["original_max_position_embeddings"] # `8192` in the original implementation
333
+
334
+ low_freq_wavelen = old_context_len / low_freq_factor
335
+ high_freq_wavelen = old_context_len / high_freq_factor
336
+
337
+ wavelen = 2 * math.pi / inv_freq
338
+ # wavelen < high_freq_wavelen: do nothing
339
+ # wavelen > low_freq_wavelen: divide by factor
340
+ inv_freq_llama = torch.where(wavelen > low_freq_wavelen, inv_freq / factor, inv_freq)
341
+ # otherwise: interpolate between the two, using a smooth factor
342
+ smooth_factor = (old_context_len / wavelen - low_freq_factor) / (high_freq_factor - low_freq_factor)
343
+ smoothed_inv_freq = (1 - smooth_factor) * inv_freq_llama / factor + smooth_factor * inv_freq_llama
344
+ is_medium_freq = ~(wavelen < high_freq_wavelen) * ~(wavelen > low_freq_wavelen)
345
+ inv_freq_llama = torch.where(is_medium_freq, smoothed_inv_freq, inv_freq_llama)
346
+
347
+ return inv_freq_llama, attention_factor
348
+
349
+
350
+ # This maps the "rope_type" string field in rope config to the corresponding function to compute the RoPE parameters
351
+ # from the model config. You can append new {'rope_type': callable} pairs to this dictionary to enable custom RoPE
352
+ # parameterizations, as long as the callable has the same signature.
353
+ ROPE_INIT_FUNCTIONS = {
354
+ "default": _compute_default_rope_parameters,
355
+ "linear": _compute_linear_scaling_rope_parameters,
356
+ "dynamic": _compute_dynamic_ntk_parameters,
357
+ "yarn": _compute_yarn_parameters,
358
+ "longrope": _compute_longrope_parameters,
359
+ "llama3": _compute_llama3_parameters,
360
+ }
361
+
362
+
363
+ def _check_received_keys(rope_type: str, received_keys: set, required_keys: set, optional_keys: Optional[set] = None):
364
+ """Compare the received keys in `config.rope_scaling` against the expected and optional keys"""
365
+ # BC: "rope_type" was originally "type" -- let's gracefully handle it
366
+ if "rope_type" not in received_keys and "type" in received_keys:
367
+ received_keys -= {"type"}
368
+ received_keys.add("rope_type")
369
+
370
+ missing_keys = required_keys - received_keys
371
+ if missing_keys:
372
+ raise KeyError(f"Missing required keys in `rope_scaling` for 'rope_type'='{rope_type}': {missing_keys}")
373
+
374
+ if optional_keys is not None:
375
+ unused_keys = received_keys - required_keys - optional_keys
376
+ else:
377
+ unused_keys = received_keys - required_keys
378
+ if unused_keys:
379
+ logger.warning(f"Unrecognized keys in `rope_scaling` for 'rope_type'='{rope_type}': {unused_keys}")
380
+
381
+
382
+ def _validate_default_rope_parameters(config: PretrainedConfig):
383
+ rope_scaling = config.rope_scaling
384
+ rope_type = rope_scaling.get("rope_type", rope_scaling.get("type", None)) # BC: "rope_type" was originally "type"
385
+ required_keys = {"rope_type"}
386
+ received_keys = set(rope_scaling.keys())
387
+ _check_received_keys(rope_type, received_keys, required_keys)
388
+
389
+
390
+ def _validate_linear_scaling_rope_parameters(config: PretrainedConfig):
391
+ rope_scaling = config.rope_scaling
392
+ rope_type = rope_scaling.get("rope_type", rope_scaling.get("type", None)) # BC: "rope_type" was originally "type"
393
+ required_keys = {"rope_type", "factor"}
394
+ received_keys = set(rope_scaling.keys())
395
+ _check_received_keys(rope_type, received_keys, required_keys)
396
+
397
+ factor = rope_scaling["factor"]
398
+ if factor is None or not isinstance(factor, float) or factor < 1.0:
399
+ logger.warning(f"`rope_scaling`'s factor field must be a float >= 1, got {factor}")
400
+
401
+
402
+ def _validate_dynamic_scaling_rope_parameters(config: PretrainedConfig):
403
+ rope_scaling = config.rope_scaling
404
+ rope_type = rope_scaling.get("rope_type", rope_scaling.get("type", None)) # BC: "rope_type" was originally "type"
405
+ required_keys = {"rope_type", "factor"}
406
+ # TODO (joao): update logic for the inclusion of `original_max_position_embeddings`
407
+ optional_keys = {"original_max_position_embeddings"}
408
+ received_keys = set(rope_scaling.keys())
409
+ _check_received_keys(rope_type, received_keys, required_keys, optional_keys)
410
+
411
+ factor = rope_scaling["factor"]
412
+ if factor is None or not isinstance(factor, float) or factor < 1.0:
413
+ logger.warning(f"`rope_scaling`'s factor field must be a float >= 1, got {factor}")
414
+
415
+
416
+ def _validate_yarn_parameters(config: PretrainedConfig):
417
+ rope_scaling = config.rope_scaling
418
+ rope_type = rope_scaling.get("rope_type", rope_scaling.get("type", None)) # BC: "rope_type" was originally "type"
419
+ required_keys = {"rope_type", "factor"}
420
+ optional_keys = {"attention_factor", "beta_fast", "beta_slow"}
421
+ received_keys = set(rope_scaling.keys())
422
+ _check_received_keys(rope_type, received_keys, required_keys, optional_keys)
423
+
424
+ factor = rope_scaling["factor"]
425
+ if factor is None or not isinstance(factor, float) or factor < 1.0:
426
+ logger.warning(f"`rope_scaling`'s factor field must be a float >= 1, got {factor}")
427
+
428
+ attention_factor = rope_scaling.get("attention_factor")
429
+ if attention_factor is not None and (not isinstance(attention_factor, float) or attention_factor < 0):
430
+ logger.warning(
431
+ f"`rope_scaling`'s attention_factor field must be a float greater than 0, got {attention_factor}"
432
+ )
433
+ beta_fast = rope_scaling.get("beta_fast")
434
+ if beta_fast is not None and not isinstance(beta_fast, float):
435
+ logger.warning(f"`rope_scaling`'s beta_fast field must be a float, got {beta_fast}")
436
+ beta_slow = rope_scaling.get("beta_slow")
437
+ if beta_slow is not None and not isinstance(beta_slow, float):
438
+ logger.warning(f"`rope_scaling`'s beta_slow field must be a float, got {beta_slow}")
439
+
440
+ if (beta_fast or 32) < (beta_slow or 1):
441
+ logger.warning(
442
+ f"`rope_scaling`'s beta_fast field must be greater than beta_slow, got beta_fast={beta_fast} "
443
+ f"(defaults to 32 if None) and beta_slow={beta_slow} (defaults to 1 if None)"
444
+ )
445
+
446
+
447
+ def _validate_longrope_parameters(config: PretrainedConfig):
448
+ rope_scaling = config.rope_scaling
449
+ rope_type = rope_scaling.get("rope_type", rope_scaling.get("type", None)) # BC: "rope_type" was originally "type"
450
+ required_keys = {"rope_type", "short_factor", "long_factor"}
451
+ # TODO (joao): update logic for the inclusion of `original_max_position_embeddings`
452
+ optional_keys = {"attention_factor", "factor", "original_max_position_embeddings"}
453
+ received_keys = set(rope_scaling.keys())
454
+ _check_received_keys(rope_type, received_keys, required_keys, optional_keys)
455
+
456
+ partial_rotary_factor = config.partial_rotary_factor if hasattr(config, "partial_rotary_factor") else 1.0
457
+ head_dim = getattr(config, "head_dim", config.hidden_size // config.num_attention_heads)
458
+ dim = int(head_dim * partial_rotary_factor)
459
+
460
+ short_factor = rope_scaling.get("short_factor")
461
+ if not isinstance(short_factor, list) and all(isinstance(x, (int, float)) for x in short_factor):
462
+ logger.warning(f"`rope_scaling`'s short_factor field must be a list of numbers, got {short_factor}")
463
+ if not len(short_factor) == dim // 2:
464
+ logger.warning(f"`rope_scaling`'s short_factor field must have length {dim // 2}, got {len(short_factor)}")
465
+
466
+ long_factor = rope_scaling.get("long_factor")
467
+ if not isinstance(long_factor, list) and all(isinstance(x, (int, float)) for x in long_factor):
468
+ logger.warning(f"`rope_scaling`'s long_factor field must be a list of numbers, got {long_factor}")
469
+ if not len(long_factor) == dim // 2:
470
+ logger.warning(f"`rope_scaling`'s long_factor field must have length {dim // 2}, got {len(long_factor)}")
471
+
472
+ # Handle Phi3 divergence: prefer the use of `attention_factor` and/or `factor` over
473
+ # `original_max_position_embeddings` to compute internal variables. The latter lives outside `rope_scaling` and is
474
+ # unique to longrope (= undesirable)
475
+ if hasattr(config, "original_max_position_embeddings"):
476
+ logger.warning_once(
477
+ "This model has set a `original_max_position_embeddings` field, to be used together with "
478
+ "`max_position_embeddings` to determine a scaling factor. Please set the `factor` field of `rope_scaling`"
479
+ "with this ratio instead -- we recommend the use of this field over `original_max_position_embeddings`, "
480
+ "as it is compatible with most model architectures."
481
+ )
482
+ else:
483
+ factor = rope_scaling.get("factor")
484
+ if factor is None:
485
+ logger.warning("Missing required keys in `rope_scaling`: 'factor'")
486
+ elif not isinstance(factor, float) or factor < 1.0:
487
+ logger.warning(f"`rope_scaling`'s factor field must be a float >= 1, got {factor}")
488
+
489
+ attention_factor = rope_scaling.get("attention_factor")
490
+ if attention_factor is not None and not isinstance(attention_factor, float) or attention_factor < 0:
491
+ logger.warning(
492
+ f"`rope_scaling`'s attention_factor field must be a float greater than 0, got {attention_factor}"
493
+ )
494
+
495
+
496
+ def _validate_llama3_parameters(config: PretrainedConfig):
497
+ rope_scaling = config.rope_scaling
498
+ rope_type = rope_scaling.get("rope_type", rope_scaling.get("type", None)) # BC: "rope_type" was originally "type"
499
+ required_keys = {"rope_type", "factor", "original_max_position_embeddings", "low_freq_factor", "high_freq_factor"}
500
+ received_keys = set(rope_scaling.keys())
501
+ _check_received_keys(rope_type, received_keys, required_keys)
502
+
503
+ factor = rope_scaling["factor"]
504
+ if factor is None or not isinstance(factor, float) or factor < 1.0:
505
+ logger.warning(f"`rope_scaling`'s factor field must be a float >= 1, got {factor}")
506
+
507
+ low_freq_factor = rope_scaling["low_freq_factor"]
508
+ high_freq_factor = rope_scaling["high_freq_factor"]
509
+ if low_freq_factor is None or not isinstance(low_freq_factor, float):
510
+ logger.warning(f"`rope_scaling`'s low_freq_factor field must be a float, got {low_freq_factor}")
511
+ if high_freq_factor is None or not isinstance(high_freq_factor, float):
512
+ logger.warning(f"`rope_scaling`'s high_freq_factor field must be a float, got {high_freq_factor}")
513
+ if high_freq_factor <= low_freq_factor:
514
+ logger.warning(
515
+ "`rope_scaling`'s high_freq_factor field must be greater than low_freq_factor, got high_freq_factor="
516
+ f"{high_freq_factor} and low_freq_factor={low_freq_factor}"
517
+ )
518
+
519
+ original_max_position_embeddings = rope_scaling["original_max_position_embeddings"]
520
+ if original_max_position_embeddings is None or not isinstance(original_max_position_embeddings, int):
521
+ logger.warning(
522
+ "`rope_scaling`'s original_max_position_embeddings field must be an integer, got "
523
+ f"{original_max_position_embeddings}"
524
+ )
525
+ if original_max_position_embeddings >= config.max_position_embeddings:
526
+ logger.warning(
527
+ "`rope_scaling`'s original_max_position_embeddings field must be less than max_position_embeddings, got "
528
+ f"{original_max_position_embeddings} and max_position_embeddings={config.max_position_embeddings}"
529
+ )
530
+
531
+
532
+ # Like `ROPE_INIT_FUNCTIONS`, this validation function mapping can be dynamically updated for custom RoPE types.
533
+ ROPE_VALIDATION_FUNCTIONS = {
534
+ "default": _validate_default_rope_parameters,
535
+ "linear": _validate_linear_scaling_rope_parameters,
536
+ "dynamic": _validate_dynamic_scaling_rope_parameters,
537
+ "yarn": _validate_yarn_parameters,
538
+ "longrope": _validate_longrope_parameters,
539
+ "llama3": _validate_llama3_parameters,
540
+ }
541
+
542
+
543
+ def rope_config_validation(config: PretrainedConfig):
544
+ """
545
+ Validate the RoPE config arguments, given a `PretrainedConfig` object
546
+ """
547
+ rope_scaling = getattr(config, "rope_scaling", None) # not a default parameter in `PretrainedConfig`
548
+ if rope_scaling is None:
549
+ return
550
+
551
+ # BC: "rope_type" was originally "type"
552
+ rope_type = rope_scaling.get("rope_type", rope_scaling.get("type", "default"))
553
+ validation_fn = ROPE_VALIDATION_FUNCTIONS.get(rope_type)
554
+ if validation_fn is not None:
555
+ validation_fn(config)
556
+ else:
557
+ logger.warning(
558
+ f"Missing validation function mapping in `ROPE_VALIDATION_FUNCTIONS` for 'rope_type'='{rope_type}'"
559
+ )