--- license: mit tags: - generated_from_trainer model-index: - name: biomedical_question_answering results: [] --- # biomedical_question_answering This model is a fine-tuned version of [microsoft/BiomedNLP-PubMedBERT-base-uncased-abstract-fulltext](https://huggingface.co/microsoft/BiomedNLP-PubMedBERT-base-uncased-abstract-fulltext) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 2.6629 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | No log | 1.0 | 236 | 1.6866 | | No log | 2.0 | 472 | 1.5432 | | 0.737 | 3.0 | 708 | 1.7998 | | 0.737 | 4.0 | 944 | 1.9746 | | 0.2893 | 5.0 | 1180 | 1.9510 | | 0.2893 | 6.0 | 1416 | 2.1479 | | 0.1562 | 7.0 | 1652 | 2.3304 | | 0.1562 | 8.0 | 1888 | 2.5882 | | 0.0823 | 9.0 | 2124 | 2.6494 | | 0.0823 | 10.0 | 2360 | 2.6629 | ### Framework versions - Transformers 4.26.1 - Pytorch 1.13.1+cu116 - Datasets 2.9.0 - Tokenizers 0.13.2