--- library_name: transformers language: - hi license: mit base_model: pyannote/speaker-diarization-3.1 tags: - speaker-diarization - speaker-segmentation - generated_from_trainer datasets: - Samyak29/synthetic-speaker-diarization-dataset-hindi-large model-index: - name: speaker-segmentation-fine-tuned-hindi results: [] --- # speaker-segmentation-fine-tuned-hindi This model is a fine-tuned version of [pyannote/speaker-diarization-3.1](https://huggingface.co/pyannote/speaker-diarization-3.1) on the Samyak29/synthetic-speaker-diarization-dataset-hindi-large dataset. It achieves the following results on the evaluation set: - Loss: 0.4284 - Model Preparation Time: 0.0095 - Der: 0.1417 - False Alarm: 0.0235 - Missed Detection: 0.0281 - Confusion: 0.0901 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.001 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Model Preparation Time | Der | False Alarm | Missed Detection | Confusion | |:-------------:|:-----:|:----:|:---------------:|:----------------------:|:------:|:-----------:|:----------------:|:---------:| | 0.4708 | 1.0 | 194 | 0.4808 | 0.0095 | 0.1613 | 0.0255 | 0.0323 | 0.1035 | | 0.388 | 2.0 | 388 | 0.4553 | 0.0095 | 0.1499 | 0.0225 | 0.0314 | 0.0960 | | 0.3654 | 3.0 | 582 | 0.4368 | 0.0095 | 0.1433 | 0.0242 | 0.0278 | 0.0913 | | 0.363 | 4.0 | 776 | 0.4296 | 0.0095 | 0.1410 | 0.0239 | 0.0279 | 0.0893 | | 0.3388 | 5.0 | 970 | 0.4284 | 0.0095 | 0.1417 | 0.0235 | 0.0281 | 0.0901 | ### Framework versions - Transformers 4.44.2 - Pytorch 2.5.0+cu121 - Datasets 3.1.0 - Tokenizers 0.19.1