import os import torch import librosa import look2hear.models import soundfile as sf from tqdm.auto import tqdm import argparse import numpy as np import warnings warnings.filterwarnings("ignore") def load_audio(file_path): audio, samplerate = librosa.load(file_path, mono=False, sr=44100) print(f'INPUT audio.shape = {audio.shape} | samplerate = {samplerate}') #audio = dBgain(audio, -6) return torch.from_numpy(audio), samplerate def save_audio(file_path, audio, samplerate=44100): #audio = dBgain(audio, +6) sf.write(file_path, audio.T, samplerate, subtype="PCM_16") def process_chunk(chunk): chunk = chunk.unsqueeze(0).cuda() with torch.no_grad(): return model(chunk).squeeze(0).squeeze(0).cpu() def _getWindowingArray(window_size, fade_size): # no fades here in the end, removing the failed ending of the chunk fadein = torch.linspace(1, 1, fade_size) fadeout = torch.linspace(0, 0, fade_size) window = torch.ones(window_size) window[-fade_size:] *= fadeout window[:fade_size] *= fadein return window def dBgain(audio, volume_gain_dB): gain = 10 ** (volume_gain_dB / 20) gained_audio = audio * gain return gained_audio def main(input_wav, output_wav): os.environ['CUDA_VISIBLE_DEVICES'] = "0" global model model = look2hear.models.BaseModel.from_pretrain("/kaggle/working/Apollo/model/pytorch_model.bin", sr=44100, win=20, feature_dim=256, layer=6).cuda() test_data, samplerate = load_audio(input_wav) C = chunk_size * samplerate # chunk_size seconds to samples N = overlap step = C // N fade_size = 2 * 44100 # 2 seconds print(f"N = {N} | C = {C} | step = {step} | fade_size = {fade_size}") border = C - step # Pad the input if necessary if test_data.shape[1] > 2 * border and (border > 0): test_data = torch.nn.functional.pad(test_data, (border, border), mode='reflect') windowingArray = _getWindowingArray(C, fade_size) result = torch.zeros((1,) + tuple(test_data.shape), dtype=torch.float32) counter = torch.zeros((1,) + tuple(test_data.shape), dtype=torch.float32) i = 0 progress_bar = tqdm(total=test_data.shape[1], desc="Processing audio chunks", leave=False) while i < test_data.shape[1]: part = test_data[:, i:i + C] length = part.shape[-1] if length < C: if length > C // 2 + 1: part = torch.nn.functional.pad(input=part, pad=(0, C - length), mode='reflect') else: part = torch.nn.functional.pad(input=part, pad=(0, C - length, 0, 0), mode='constant', value=0) out = process_chunk(part) window = windowingArray if i == 0: # First audio chunk, no fadein window[:fade_size] = 1 elif i + C >= test_data.shape[1]: # Last audio chunk, no fadeout window[-fade_size:] = 1 result[..., i:i+length] += out[..., :length] * window[..., :length] counter[..., i:i+length] += window[..., :length] i += step progress_bar.update(step) progress_bar.close() final_output = result / counter final_output = final_output.squeeze(0).numpy() np.nan_to_num(final_output, copy=False, nan=0.0) # Remove padding if added earlier if test_data.shape[1] > 2 * border and (border > 0): final_output = final_output[..., border:-border] save_audio(output_wav, final_output, samplerate) print(f'Success! Output file saved as {output_wav}') # Memory clearing model.cpu() del model torch.cuda.empty_cache() if __name__ == "__main__": parser = argparse.ArgumentParser(description="Audio Inference Script") parser.add_argument("--in_wav", type=str, required=True, help="Path to input wav file") parser.add_argument("--out_wav", type=str, required=True, help="Path to output wav file") parser.add_argument("--chunk_size", type=int, help="chunk size value in seconds", default=3) parser.add_argument("--overlap", type=int, help="Overlap", default=2) args = parser.parse_args() chunk_size = args.chunk_size overlap = args.overlap print(f'chunk_size = {chunk_size}, overlap = {overlap}') main(args.in_wav, args.out_wav)