--- license: mit base_model: emilyalsentzer/Bio_ClinicalBERT tags: - generated_from_trainer datasets: - sem_eval_2024_task_2 metrics: - accuracy - precision - recall - f1 model-index: - name: run1 results: - task: name: Text Classification type: text-classification dataset: name: sem_eval_2024_task_2 type: sem_eval_2024_task_2 config: sem_eval_2024_task_2_source split: validation args: sem_eval_2024_task_2_source metrics: - name: Accuracy type: accuracy value: 0.575 - name: Precision type: precision value: 0.5800000000000001 - name: Recall type: recall value: 0.575 - name: F1 type: f1 value: 0.5682539682539682 --- # run1 This model is a fine-tuned version of [emilyalsentzer/Bio_ClinicalBERT](https://huggingface.co/emilyalsentzer/Bio_ClinicalBERT) on the sem_eval_2024_task_2 dataset. It achieves the following results on the evaluation set: - Loss: 1.2723 - Accuracy: 0.575 - Precision: 0.5800 - Recall: 0.575 - F1: 0.5683 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 64 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 20 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:---------:|:------:|:------:| | No log | 0.99 | 53 | 0.6960 | 0.52 | 0.5339 | 0.52 | 0.4652 | | 0.7039 | 2.0 | 107 | 0.6921 | 0.545 | 0.5451 | 0.5450 | 0.5447 | | 0.7039 | 2.99 | 160 | 0.6956 | 0.515 | 0.5436 | 0.515 | 0.4198 | | 0.6979 | 4.0 | 214 | 0.6857 | 0.555 | 0.5587 | 0.555 | 0.5479 | | 0.6979 | 4.99 | 267 | 0.6924 | 0.51 | 0.7525 | 0.51 | 0.3552 | | 0.6831 | 6.0 | 321 | 0.6603 | 0.575 | 0.5750 | 0.575 | 0.5750 | | 0.6831 | 6.99 | 374 | 0.6572 | 0.61 | 0.6116 | 0.6100 | 0.6086 | | 0.6346 | 8.0 | 428 | 0.6517 | 0.57 | 0.5700 | 0.5700 | 0.5700 | | 0.6346 | 8.99 | 481 | 0.7185 | 0.58 | 0.5849 | 0.58 | 0.5739 | | 0.5337 | 10.0 | 535 | 0.8220 | 0.565 | 0.5767 | 0.565 | 0.5478 | | 0.5337 | 10.99 | 588 | 0.8002 | 0.595 | 0.5958 | 0.595 | 0.5942 | | 0.4262 | 12.0 | 642 | 0.8661 | 0.595 | 0.5994 | 0.595 | 0.5905 | | 0.4262 | 12.99 | 695 | 0.9989 | 0.555 | 0.5608 | 0.5550 | 0.5440 | | 0.3379 | 14.0 | 749 | 1.0688 | 0.56 | 0.5651 | 0.5600 | 0.5512 | | 0.3379 | 14.99 | 802 | 1.0439 | 0.585 | 0.5865 | 0.585 | 0.5832 | | 0.2846 | 16.0 | 856 | 1.1091 | 0.575 | 0.5809 | 0.575 | 0.5671 | | 0.2846 | 16.99 | 909 | 1.2667 | 0.57 | 0.5791 | 0.5700 | 0.5572 | | 0.228 | 18.0 | 963 | 1.2367 | 0.58 | 0.5858 | 0.58 | 0.5728 | | 0.228 | 18.99 | 1016 | 1.2373 | 0.585 | 0.5889 | 0.585 | 0.5804 | | 0.2137 | 19.81 | 1060 | 1.2723 | 0.575 | 0.5800 | 0.575 | 0.5683 | ### Framework versions - Transformers 4.35.2 - Pytorch 2.1.0+cu121 - Datasets 2.15.0 - Tokenizers 0.15.0