--- base_model: yihongLiu/furina tags: - generated_from_trainer model-index: - name: furina_hau_corr_2e-05 results: [] --- # furina_hau_corr_2e-05 This model is a fine-tuned version of [yihongLiu/furina](https://huggingface.co/yihongLiu/furina) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.0209 - Spearman Corr: 0.7736 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 32 - eval_batch_size: 128 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 64 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 30 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Spearman Corr | |:-------------:|:-----:|:----:|:---------------:|:-------------:| | No log | 0.95 | 200 | 0.0214 | 0.7723 | | No log | 1.91 | 400 | 0.0225 | 0.7716 | | 0.0012 | 2.86 | 600 | 0.0211 | 0.7695 | | 0.0012 | 3.82 | 800 | 0.0207 | 0.7718 | | 0.0011 | 4.77 | 1000 | 0.0214 | 0.7723 | | 0.0011 | 5.73 | 1200 | 0.0209 | 0.7753 | | 0.001 | 6.68 | 1400 | 0.0210 | 0.7710 | | 0.001 | 7.64 | 1600 | 0.0204 | 0.7721 | | 0.0009 | 8.59 | 1800 | 0.0217 | 0.7731 | | 0.0009 | 9.55 | 2000 | 0.0216 | 0.7692 | | 0.0009 | 10.5 | 2200 | 0.0206 | 0.7724 | | 0.0009 | 11.46 | 2400 | 0.0213 | 0.7734 | | 0.0009 | 12.41 | 2600 | 0.0208 | 0.7725 | | 0.0009 | 13.37 | 2800 | 0.0207 | 0.7760 | | 0.0008 | 14.32 | 3000 | 0.0209 | 0.7724 | | 0.0008 | 15.27 | 3200 | 0.0208 | 0.7729 | | 0.0007 | 16.23 | 3400 | 0.0212 | 0.7732 | | 0.0007 | 17.18 | 3600 | 0.0209 | 0.7746 | | 0.0007 | 18.14 | 3800 | 0.0209 | 0.7745 | | 0.0007 | 19.09 | 4000 | 0.0202 | 0.7759 | | 0.0007 | 20.05 | 4200 | 0.0206 | 0.7750 | | 0.0007 | 21.0 | 4400 | 0.0209 | 0.7736 | ### Framework versions - Transformers 4.37.2 - Pytorch 2.2.0+cu121 - Datasets 2.17.0 - Tokenizers 0.15.2