--- license: apache-2.0 base_model: distilbert-base-uncased tags: - generated_from_trainer datasets: - emotion metrics: - accuracy - f1 model-index: - name: distilbert-base-uncased-finetuned-emotion results: - task: name: Text Classification type: text-classification dataset: name: emotion type: emotion config: split split: validation args: split metrics: - name: Accuracy type: accuracy value: 0.9405 - name: F1 type: f1 value: 0.9405428930790032 --- # distilbert-base-uncased-finetuned-emotion This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the emotion dataset. It achieves the following results on the evaluation set: - Loss: 0.2602 - Accuracy: 0.9405 - F1: 0.9405 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 128 - eval_batch_size: 128 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:| | 0.04 | 1.0 | 125 | 0.2096 | 0.9385 | 0.9386 | | 0.041 | 2.0 | 250 | 0.2138 | 0.9395 | 0.9396 | | 0.0323 | 3.0 | 375 | 0.2165 | 0.94 | 0.9401 | | 0.024 | 4.0 | 500 | 0.2315 | 0.941 | 0.9412 | | 0.0229 | 5.0 | 625 | 0.2263 | 0.9375 | 0.9374 | | 0.0179 | 6.0 | 750 | 0.2561 | 0.9415 | 0.9418 | | 0.0149 | 7.0 | 875 | 0.2518 | 0.943 | 0.9433 | | 0.0144 | 8.0 | 1000 | 0.2574 | 0.941 | 0.9409 | | 0.011 | 9.0 | 1125 | 0.2598 | 0.943 | 0.9430 | | 0.009 | 10.0 | 1250 | 0.2602 | 0.9405 | 0.9405 | ### Framework versions - Transformers 4.34.1 - Pytorch 2.0.1 - Datasets 2.14.5 - Tokenizers 0.14.1