--- license: apache-2.0 tags: - generated_from_trainer metrics: - accuracy model-index: - name: medqa_fine_tuned_generic_bert results: [] --- # medqa_fine_tuned_generic_bert This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 1.4239 - Accuracy: 0.2869 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - gradient_accumulation_steps: 8 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 100 - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | No log | 1.0 | 318 | 1.3851 | 0.2594 | | 1.3896 | 2.0 | 636 | 1.3805 | 0.2807 | | 1.3896 | 3.0 | 954 | 1.3852 | 0.2948 | | 1.3629 | 4.0 | 1272 | 1.3996 | 0.2980 | | 1.3068 | 5.0 | 1590 | 1.4239 | 0.2869 | ### Framework versions - Transformers 4.18.0 - Pytorch 1.11.0 - Datasets 2.3.2 - Tokenizers 0.11.0