--- license: apache-2.0 tags: - generated_from_trainer datasets: - common_voice_11_0 metrics: - wer model-index: - name: openai/whisper-small results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: common_voice_11_0 type: common_voice_11_0 config: tr split: test args: tr metrics: - name: Wer type: wer value: 16.318103103769815 --- # openai/whisper-small This model is a fine-tuned version of [openai/whisper-small](https://huggingface.co/openai/whisper-small) on the common_voice_11_0 dataset. It achieves the following results on the evaluation set: - Loss: 0.2860 - Wer: 16.3181 - Cer: 4.1450 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - training_steps: 20000 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | Cer | |:-------------:|:-----:|:-----:|:---------------:|:-------:|:------:| | 0.1563 | 1.0 | 2500 | 0.2524 | 19.8570 | 5.1738 | | 0.032 | 2.01 | 5000 | 0.2567 | 18.5627 | 4.7793 | | 0.013 | 3.01 | 7500 | 0.2637 | 17.7723 | 4.6664 | | 0.0057 | 4.02 | 10000 | 0.2703 | 17.0596 | 4.3662 | | 0.0012 | 5.02 | 12500 | 0.2696 | 17.8322 | 5.2286 | | 0.003 | 6.03 | 15000 | 0.2800 | 16.7200 | 4.2972 | | 0.0003 | 7.03 | 17500 | 0.2834 | 16.4091 | 4.2018 | | 0.0002 | 8.04 | 20000 | 0.2860 | 16.3181 | 4.1450 | ### Framework versions - Transformers 4.27.0.dev0 - Pytorch 1.13.1+cu117 - Datasets 2.9.1.dev0 - Tokenizers 0.13.2