--- language: - et license: apache-2.0 base_model: openai/whisper-small tags: - hf-asr-leaderboard - generated_from_trainer datasets: - mozilla-foundation/common_voice_11_0 metrics: - wer model-index: - name: Whisper Small Et - Hendrik results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Common Voice 11.0 type: mozilla-foundation/common_voice_11_0 config: et split: None args: 'config: et, split: test' metrics: - name: Wer type: wer value: 72.26277372262774 --- # Whisper Small Et - Hendrik This model is a fine-tuned version of [openai/whisper-small](https://huggingface.co/openai/whisper-small) on the Common Voice 11.0 dataset. It achieves the following results on the evaluation set: - Loss: 1.4159 - Wer: 72.2628 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 50 - training_steps: 500 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:-------:| | 0.2196 | 6.67 | 100 | 1.3895 | 71.5328 | | 0.0018 | 13.33 | 200 | 1.3312 | 69.7080 | | 0.0008 | 20.0 | 300 | 1.3874 | 71.8978 | | 0.0006 | 26.67 | 400 | 1.4088 | 72.2628 | | 0.0005 | 33.33 | 500 | 1.4159 | 72.2628 | ### Framework versions - Transformers 4.39.0.dev0 - Pytorch 2.1.0+cu121 - Datasets 2.18.0 - Tokenizers 0.15.2