--- license: apache-2.0 base_model: distilbert/distilbert-base-uncased tags: - generated_from_trainer metrics: - precision - recall - f1 - accuracy widget: - text: "पछि सडक निर्माण कार्य थप अनिश्चय तर्फ धकेलियो।" example_title: "Example-1" - text: "यदी बैंक को शाखा ले ऋण दिन नमाने मा वा प्रक्रिया को बारेमा बुझाउन नचाहे को खण्ड मा उजुरी समेत गर्न सकिने" example_title: "Example-2" model-index: - name: distilbert-Nepali-NER results: [] --- # distilbert-Nepali-NER This model is a fine-tuned version of [distilbert/distilbert-base-uncased](https://huggingface.co/distilbert/distilbert-base-uncased) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.2917 - Precision: 0.0843 - Recall: 0.0538 - F1: 0.0657 - Accuracy: 0.9259 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 64 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Accuracy | F1 | Validation Loss | Precision | Recall | |:-------------:|:-----:|:----:|:--------:|:------:|:---------------:|:---------:|:------:| | No log | 0.92 | 200 | 0.8685 | 0.0 | 0.4700 | 0.0 | 0.0 | | No log | 1.84 | 400 | 0.8984 | 0.0135 | 0.3581 | 0.0556 | 0.0077 | | 0.4549 | 2.76 | 600 | 0.9087 | 0.0361 | 0.3188 | 0.0833 | 0.0231 | | 0.4549 | 3.69 | 800 | 0.9111 | 0.0460 | 0.3040 | 0.0909 | 0.0308 | | 0.2088 | 4.61 | 1000 | 0.9173 | 0.0396 | 0.2972 | 0.0556 | 0.0308 | | 0.2088 | 5.53 | 1200 | 0.3065 | 0.0721 | 0.0615 | 0.0664 | 0.9100 | | 0.2088 | 6.45 | 1400 | 0.2924 | 0.1724 | 0.0769 | 0.1064 | 0.9212 | | 0.1601 | 7.37 | 1600 | 0.2929 | 0.0745 | 0.0538 | 0.0625 | 0.9234 | | 0.1601 | 8.29 | 1800 | 0.2903 | 0.0893 | 0.0385 | 0.0538 | 0.9257 | | 0.1114 | 9.22 | 2000 | 0.2917 | 0.0843 | 0.0538 | 0.0657 | 0.9259 | ### Framework versions - Transformers 4.39.1 - Pytorch 2.2.2+cu121 - Datasets 2.18.0 - Tokenizers 0.15.2