--- license: apache-2.0 tags: - generated_from_trainer datasets: - marsyas/gtzan metrics: - accuracy base_model: ntu-spml/distilhubert model-index: - name: distilhubert-finetuned-gtzan results: [] --- # distilhubert-finetuned-gtzan This model is a fine-tuned version of [ntu-spml/distilhubert](https://huggingface.co/ntu-spml/distilhubert) on the GTZAN dataset. It achieves the following results on the evaluation set: - Loss: 0.5358 - Accuracy: 0.88 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 1.8758 | 1.0 | 57 | 1.7723 | 0.51 | | 1.2291 | 2.0 | 114 | 1.1713 | 0.69 | | 0.8029 | 3.0 | 171 | 0.8953 | 0.75 | | 0.7314 | 4.0 | 228 | 0.8242 | 0.73 | | 0.3424 | 5.0 | 285 | 0.6117 | 0.82 | | 0.229 | 6.0 | 342 | 0.5272 | 0.82 | | 0.1571 | 7.0 | 399 | 0.5470 | 0.87 | | 0.0777 | 8.0 | 456 | 0.5393 | 0.88 | | 0.0539 | 9.0 | 513 | 0.5087 | 0.88 | | 0.0688 | 10.0 | 570 | 0.5358 | 0.88 | ### Framework versions - Transformers 4.30.0.dev0 - Pytorch 2.0.1+cu117 - Datasets 2.13.1 - Tokenizers 0.13.3