--- library_name: transformers license: mit base_model: openai/whisper-large-v3-turbo tags: - generated_from_trainer datasets: - common_voice_17_0 metrics: - wer model-index: - name: whisper-large-v3-turbo-ar results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: common_voice_17_0 type: common_voice_17_0 config: ar split: None args: ar metrics: - name: Wer type: wer value: 22.000337514766272 --- # whisper-large-v3-turbo-ar This model is a fine-tuned version of [openai/whisper-large-v3-turbo](https://huggingface.co/openai/whisper-large-v3-turbo) on the common_voice_17_0 dataset. It achieves the following results on the evaluation set: - Loss: 0.3025 - Wer Ortho: 28.1982 - Wer: 22.0003 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: constant_with_warmup - lr_scheduler_warmup_steps: 50 - training_steps: 500 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer Ortho | Wer | |:-------------:|:------:|:----:|:---------------:|:---------:|:-------:| | 0.2342 | 0.2059 | 500 | 0.3025 | 28.1982 | 22.0003 | ### Framework versions - Transformers 4.46.2 - Pytorch 2.5.1+cu121 - Datasets 3.1.0 - Tokenizers 0.20.3