--- language: en tags: - text-classification - onnx - emotions - multi-class-classification - multi-label-classification datasets: - go_emotions license: mit inference: false widget: - text: ONNX is so much faster, its very handy! --- ### Overview This is a multi-label, multi-class linear classifer for emotions that works with [sentence-transformers/all-MiniLM-L12-v2](https://huggingface.co/sentence-transformers/all-MiniLM-L12-v2), having been trained on the [go_emotions](https://huggingface.co/datasets/go_emotions) dataset. ### Labels The 28 labels from the [go_emotions](https://huggingface.co/datasets/go_emotions) dataset are: ``` ['admiration', 'amusement', 'anger', 'annoyance', 'approval', 'caring', 'confusion', 'curiosity', 'desire', 'disappointment', 'disapproval', 'disgust', 'embarrassment', 'excitement', 'fear', 'gratitude', 'grief', 'joy', 'love', 'nervousness', 'optimism', 'pride', 'realization', 'relief', 'remorse', 'sadness', 'surprise', 'neutral'] ``` ### Metrics (exact match of labels per item) This is a multi-label, multi-class dataset, so each label is effectively a separate binary classification. Evaluating across all labels per item in the go_emotions test split the metrics are shown below. Optimising the threshold per label to optimise the F1 metric, the metrics (evaluated on the go_emotions test split) are: - Precision: 0.378 - Recall: 0.438 - F1: 0.394 Weighted by the relative support of each label in the dataset, this is: - Precision: 0.424 - Recall: 0.590 - F1: 0.481 Using a fixed threshold of 0.5 to convert the scores to binary predictions for each label, the metrics (evaluated on the go_emotions test split, and unweighted by support) are: - Precision: 0.568 - Recall: 0.214 - F1: 0.260 ### Metrics (per-label) This is a multi-label, multi-class dataset, so each label is effectively a separate binary classification and metrics are better measured per label. Optimising the threshold per label to optimise the F1 metric, the metrics (evaluated on the go_emotions test split) are: | | f1 | precision | recall | support | threshold | | -------------- | ----- | --------- | ------ | ------- | --------- | | admiration | 0.540 | 0.463 | 0.649 | 504 | 0.20 | | amusement | 0.686 | 0.669 | 0.705 | 264 | 0.25 | | anger | 0.419 | 0.373 | 0.480 | 198 | 0.15 | | annoyance | 0.276 | 0.189 | 0.512 | 320 | 0.10 | | approval | 0.299 | 0.260 | 0.350 | 351 | 0.15 | | caring | 0.303 | 0.219 | 0.489 | 135 | 0.10 | | confusion | 0.284 | 0.269 | 0.301 | 153 | 0.15 | | curiosity | 0.365 | 0.310 | 0.444 | 284 | 0.15 | | desire | 0.274 | 0.237 | 0.325 | 83 | 0.15 | | disappointment | 0.188 | 0.292 | 0.139 | 151 | 0.20 | | disapproval | 0.305 | 0.257 | 0.375 | 267 | 0.15 | | disgust | 0.450 | 0.462 | 0.439 | 123 | 0.20 | | embarrassment | 0.348 | 0.375 | 0.324 | 37 | 0.30 | | excitement | 0.313 | 0.306 | 0.320 | 103 | 0.20 | | fear | 0.550 | 0.505 | 0.603 | 78 | 0.25 | | gratitude | 0.776 | 0.774 | 0.778 | 352 | 0.30 | | grief | 0.353 | 0.273 | 0.500 | 6 | 0.70 | | joy | 0.370 | 0.361 | 0.379 | 161 | 0.20 | | love | 0.626 | 0.717 | 0.555 | 238 | 0.35 | | nervousness | 0.308 | 0.276 | 0.348 | 23 | 0.55 | | optimism | 0.436 | 0.432 | 0.441 | 186 | 0.20 | | pride | 0.444 | 0.545 | 0.375 | 16 | 0.60 | | realization | 0.171 | 0.146 | 0.207 | 145 | 0.10 | | relief | 0.133 | 0.250 | 0.091 | 11 | 0.60 | | remorse | 0.468 | 0.426 | 0.518 | 56 | 0.30 | | sadness | 0.413 | 0.409 | 0.417 | 156 | 0.20 | | surprise | 0.314 | 0.303 | 0.326 | 141 | 0.15 | | neutral | 0.622 | 0.482 | 0.879 | 1787 | 0.25 | The thesholds are stored in `thresholds.json`. ### Use with ONNXRuntime The input to the model is called `logits`, and there is one output per label. Each output produces a 2d array, with 1 row per input row, and each row having 2 columns - the first being a proba output for the negative case, and the second being a proba output for the positive case. ```python # Assuming you have embeddings from all-MiniLM-L12-v2 for the input sentences # E.g. produced from sentence-transformers such as: # huggingface.co/sentence-transformers/all-MiniLM-L12-v2 # or from an ONNX version E.g. huggingface.co/Xenova/all-MiniLM-L12-v2 print(embeddings.shape) # E.g. a batch of 1 sentence > (1, 384) import onnxruntime as ort sess = ort.InferenceSession("path_to_model_dot_onnx", providers=['CPUExecutionProvider']) outputs = [o.name for o in sess.get_outputs()] # list of labels, in the order of the outputs preds_onnx = sess.run(_outputs, {'logits': embeddings}) # preds_onnx is a list with 28 entries, one per label, # each with a numpy array of shape (1, 2) given the input was a batch of 1 print(outputs[0]) > surprise print(preds_onnx[0]) > array([[0.97136074, 0.02863926]], dtype=float32) # load thresholds.json and use that (per label) to convert the positive case score to a binary prediction ``` ### Commentary on the dataset Some labels (E.g. gratitude) when considered independently perform very strongly, whilst others (E.g. relief) perform very poorly. This is a challenging dataset. Labels such as relief do have much fewer examples in the training data (less than 100 out of the 40k+, and only 11 in the test split). But there is also some ambiguity and/or labelling errors visible in the training data of go_emotions that is suspected to constrain the performance. Data cleaning on the dataset to reduce some of the mistakes, ambiguity, conflicts and duplication in the labelling would produce a higher performing model.