--- license: mit base_model: microsoft/MiniLM-L12-H384-uncased tags: - Language - image-Emotion - miniLM - PyTorch - Trainer - SequenceClassification - WeightedLoss - CrossEntropyLoss - F1Score - HuggingFaceHub - generated_from_trainer datasets: - emotion metrics: - f1 model-index: - name: miniLM_finetuned_Emotion_2024_06_15 results: - task: name: Text Classification type: text-classification dataset: name: emotion type: emotion config: split split: validation args: split metrics: - name: F1 type: f1 value: 0.927424135409491 --- # miniLM_finetuned_Emotion_2024_06_15 This model is a fine-tuned version of [microsoft/MiniLM-L12-H384-uncased](https://huggingface.co/microsoft/MiniLM-L12-H384-uncased) on the emotion dataset. It achieves the following results on the evaluation set: - Loss: 0.1881 - F1: 0.9274 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 | |:-------------:|:-----:|:----:|:---------------:|:------:| | 1.1887 | 1.0 | 250 | 0.7672 | 0.7461 | | 0.5641 | 2.0 | 500 | 0.3698 | 0.9058 | | 0.3151 | 3.0 | 750 | 0.2783 | 0.9244 | | 0.2074 | 4.0 | 1000 | 0.2417 | 0.9273 | | 0.1586 | 5.0 | 1250 | 0.1749 | 0.9301 | | 0.1287 | 6.0 | 1500 | 0.1945 | 0.9344 | | 0.1112 | 7.0 | 1750 | 0.2054 | 0.9313 | | 0.1031 | 8.0 | 2000 | 0.1677 | 0.9308 | | 0.0819 | 9.0 | 2250 | 0.1862 | 0.9279 | | 0.0743 | 10.0 | 2500 | 0.1881 | 0.9274 | ### Framework versions - Transformers 4.41.2 - Pytorch 2.3.1+cu121 - Datasets 2.20.0 - Tokenizers 0.19.1