--- {} --- # XGen-7B-8K-Inst Official research release for the family of **XGen** models (`7B`) by Salesforce AI Research: *Title*: [Long Sequence Modeling with XGen: A 7B LLM Trained on 8K Input Sequence Length](https://blog.salesforceairesearch.com/xgen/) *Authors*: [Erik Nijkamp](https://eriknijkamp.com)\*, Tian Xie\*, [Hiroaki Hayashi](https://hiroakih.me/)\*, [Bo Pang](https://scholar.google.com/citations?user=s9fNEVEAAAAJ&hl=en)\*, Congying Xia\*, Chen Xing, Rui Meng, Wojciech Kryscinski, Lifu Tu, Meghana Bhat, Semih Yavuz, Jesse Vig, Lidiya Murakhovs'ka, [Chien-Sheng Wu](https://jasonwu0731.github.io/), [Yingbo Zhou](https://scholar.google.com/citations?user=H_6RQ7oAAAAJ&hl=en), [Shafiq Rayhan Joty](https://raihanjoty.github.io/), [Caiming Xiong](http://cmxiong.com/), Silvio Savarese. (* indicates equal contribution) Correspondence to: [Shafiq Rayhan Joty](mailto:sjoty@salesforce.com), [Caiming Xiong](mailto:cxiong@salesforce.com) ## Models ### Base models * [XGen-7B-4K-Base](https://huggingface.co/Salesforce/xgen-7b-4k-base): XGen-7B model pre-trained under 4K sequence length. * License: Apache-2.0 * [XGen-7B-8K-Base](https://huggingface.co/Salesforce/xgen-7b-8k-base): XGen-7B model pre-trained under 8K sequence length. * License: Apache-2.0 ### Instruction-finetuned models Supervised finetuned model on public domain instructional data. Released for ***research purpose*** only. * [XGen-7B-8K-Inst](https://huggingface.co/Salesforce/xgen-7b-8k-inst) ## How to run The training data for the models are tokenized with OpenAI Tiktoken library. To use this model, install the package via `pip`: ```sh pip install tiktoken ``` The models can be used as auto-regressive samplers as follows: ```python import torch from transformers import AutoTokenizer, AutoModelForCausalLM tokenizer = AutoTokenizer.from_pretrained("Salesforce/xgen-7b-8k-inst", trust_remote_code=True) model = AutoModelForCausalLM.from_pretrained("Salesforce/xgen-7b-8k-inst", torch_dtype=torch.bfloat16) header = ( "A chat between a curious human and an artificial intelligence assistant. " "The assistant gives helpful, detailed, and polite answers to the human's questions.\n\n" ) article = "" # insert a document here prompt = f"### Human: Please summarize the following article.\n\n{article}.\n###" inputs = tokenizer(header + prompt, return_tensors="pt") sample = model.generate(**inputs, do_sample=True, max_new_tokens=2048, top_k=100, eos_token_id=50256) output = tokenizer.decode(sample[0]) print(output.strip().replace("Assistant:", "")) ``` ## Citation ```bibtex @misc{XGen, title={Long Sequence Modeling with XGen: A 7B LLM Trained on 8K Input Sequence Length}, author={Erik Nijkamp, Tian Xie, Hiroaki Hayashi, Bo Pang, Congying Xia, Chen Xing, Rui Meng, Wojciech Kryscinski, Lifu Tu, Meghana Bhat, Semih Yavuz, Jesse Vig, Lidiya Murakhovs'ka, Chien-Sheng Wu, Yingbo Zhou, Shafiq Rayhan Joty, Caiming Xiong, Silvio Savarese}, howpublished={Salesforce AI Research Blog}, year={2023}, url={https://blog.salesforceairesearch.com/xgen} } ```