--- license: apache-2.0 ---
drawing
GitHub: https://github.com/SalesforceAIResearch/xLAM Paper: https://arxiv.org/abs/2402.15506 License: apache-2.0 If you already know [Mixtral](https://huggingface.co/mistralai/Mixtral-8x7B-Instruct-v0.1), xLAM-v0.1 is a significant upgrade and better at many things. For the same number of parameters, the model have been fine-tuned across a wide range of agent tasks and scenarios, all while preserving the capabilities of the original model. ```python from transformers import AutoModelForCausalLM, AutoTokenizer tokenizer = AutoTokenizer.from_pretrained("Salesforce/xLAM-v0.1-r") model = AutoModelForCausalLM.from_pretrained("Salesforce/xLAM-v0.1-r", device_map="auto") messages = [ {"role": "user", "content": "What is your favourite condiment?"}, {"role": "assistant", "content": "Well, I'm quite partial to a good squeeze of fresh lemon juice. It adds just the right amount of zesty flavour to whatever I'm cooking up in the kitchen!"}, {"role": "user", "content": "Do you have mayonnaise recipes?"} ] inputs = tokenizer.apply_chat_template(messages, return_tensors="pt").to("cuda") outputs = model.generate(inputs, max_new_tokens=512) print(tokenizer.decode(outputs[0], skip_special_tokens=True)) ```