# Generated 2023-09-08 from: # /gpfsssd/scratch/rech/nou/uzn19yk/switched_data/stac.yaml # yamllint disable # Generated 2023-08-03 from: # /home/salah/new_tunisian_model/hparams/train_tunisian_withwavlm.yaml # yamllint disable # ################################ # Model: wav2vec2 + DNN + CTC # Augmentation: SpecAugment # Authors: Titouan Parcollet 2021 # ################################ seed: 1994 __set_seed: !!python/object/apply:torch.manual_seed [1234] output_folder: results/non_semi_final_stac wer_file: results/non_semi_final_stac/wer.txt save_folder: results/non_semi_final_stac/save train_log: results/non_semi_final_stac/train_log.txt # Data files data_folder: junk # e.g, /localscratch/cv-corpus-5.1-2020-06-22/fr train_tsv_file: junk/train.tsv # Standard CommonVoice .tsv files dev_tsv_file: junk/dev.tsv # Standard CommonVoice .tsv files test_tsv_file: junk/test.tsv # Standard CommonVoice .tsv files accented_letters: true csv_folder: /gpfsscratch/rech/nou/uzn19yk/switched_data/extended_clean/ train_csv: /gpfsscratch/rech/nou/uzn19yk/switched_data/extended_clean//train.csv valid_csv: /gpfsscratch/rech/nou/uzn19yk/switched_data/extended_clean//dev.csv test_csv: - all_tests/cs_test.csv - all_tests/stac_test.csv # We remove utterance slonger than 10s in the train/dev/test sets as # longer sentences certainly correspond to "open microphones". avoid_if_longer_than: 13.0 avoid_if_shorter_than: 0.5 # Training parameters number_of_epochs: 20 lr: 0.0002 lr_weights: 0.01 sorting: ascending auto_mix_prec: false sample_rate: 16000 language_modelling: true ngram_lm_path: /gpfsstore/rech/nou/uzn19yk/switched_code_tunisian/train/tunisian_asr/arpas/pluslanguages_everything.arpa # With data_parallel batch_size is split into N jobs # With DDP batch_size is multiplied by N jobs # Must be 3 per GPU to fit 32GB of VRAM batch_size: 3 test_batch_size: 4 # Dataloader options dataloader_options: batch_size: 3 num_workers: 6 test_dataloader_options: batch_size: 4 num_workers: 6 # Model parameters activation: !name:torch.nn.Sigmoid dnn_layers: 1 dnn_neurons: 768 freeze_encoder: true # Outputs output_neurons: 76 # BPE size, index(blank/eos/bos) = 0 # Functions and classes # epoch_counter: &id006 !new:speechbrain.utils.epoch_loop.EpochCounter limit: 20 encoder_dim: 3217 enc: &id001 !new:speechbrain.nnet.RNN.LSTM input_shape: [null, null, 3217] num_layers: 2 bidirectional: true dropout: 0.2 hidden_size: 1024 ctc_lin: &id002 !new:speechbrain.nnet.linear.Linear input_size: 2048 n_neurons: 76 log_softmax: !new:speechbrain.nnet.activations.Softmax apply_log: true ctc_cost: !name:speechbrain.nnet.losses.ctc_loss blank_index: 0 modules: enc: *id001 ctc_lin: *id002 model: &id003 !new:torch.nn.ModuleList - [*id001, *id002] model_opt_class: !name:torch.optim.Adam lr: 0.0002 weights_opt_class: !name:torch.optim.Adam lr: 0.01 lr_annealing_model: &id004 !new:speechbrain.nnet.schedulers.NewBobScheduler initial_value: 0.0002 improvement_threshold: 0.0025 annealing_factor: 0.8 patient: 0 lr_annealing_weights: &id005 !new:speechbrain.nnet.schedulers.NewBobScheduler initial_value: 0.01 improvement_threshold: 0.0025 annealing_factor: 0.9 patient: 0 label_encoder: &id007 !new:speechbrain.dataio.encoder.CTCTextEncoder checkpointer: !new:speechbrain.utils.checkpoints.Checkpointer checkpoints_dir: results/non_semi_final_stac/save recoverables: model: *id003 scheduler_model: *id004 scheduler_encoder: *id005 counter: *id006 tokenizer: *id007 blank_index: 0 unk_index: 1 train_logger: !new:speechbrain.utils.train_logger.FileTrainLogger save_file: results/non_semi_final_stac/train_log.txt error_rate_computer: !name:speechbrain.utils.metric_stats.ErrorRateStats cer_computer: !name:speechbrain.utils.metric_stats.ErrorRateStats split_tokens: true