--- base_model: aubmindlab/bert-base-arabertv02-twitter tags: - generated_from_trainer metrics: - f1 - accuracy model-index: - name: Model4_arabertv2_base_T2_WS_A100 results: [] --- # Model4_arabertv2_base_T2_WS_A100 This model is a fine-tuned version of [aubmindlab/bert-base-arabertv02-twitter](https://huggingface.co/aubmindlab/bert-base-arabertv02-twitter) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.0654 - F1: 0.8501 - Roc Auc: 0.9178 - Accuracy: 0.7616 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 15 ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 | Roc Auc | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:------:|:-------:|:--------:| | No log | 1.0 | 193 | 0.1020 | 0.7502 | 0.8274 | 0.6443 | | No log | 2.0 | 386 | 0.0759 | 0.8068 | 0.8678 | 0.7114 | | 0.1069 | 3.0 | 579 | 0.0728 | 0.8240 | 0.8890 | 0.7393 | | 0.1069 | 4.0 | 772 | 0.0670 | 0.8418 | 0.9112 | 0.7635 | | 0.1069 | 5.0 | 965 | 0.0654 | 0.8501 | 0.9178 | 0.7616 | | 0.0318 | 6.0 | 1158 | 0.0669 | 0.8467 | 0.9197 | 0.7579 | | 0.0318 | 7.0 | 1351 | 0.0686 | 0.8471 | 0.9190 | 0.7672 | | 0.0141 | 8.0 | 1544 | 0.0705 | 0.8493 | 0.9259 | 0.7561 | | 0.0141 | 9.0 | 1737 | 0.0732 | 0.8450 | 0.9248 | 0.7486 | ### Framework versions - Transformers 4.31.0 - Pytorch 2.0.1+cu118 - Datasets 2.14.4 - Tokenizers 0.13.3