metadata
base_model: BAAI/bge-base-en-v1.5
language:
- en
library_name: sentence-transformers
license: apache-2.0
metrics:
- cosine_accuracy@1
- cosine_accuracy@3
- cosine_accuracy@5
- cosine_accuracy@10
- cosine_precision@1
- cosine_precision@3
- cosine_precision@5
- cosine_precision@10
- cosine_recall@1
- cosine_recall@3
- cosine_recall@5
- cosine_recall@10
- cosine_ndcg@10
- cosine_mrr@10
- cosine_map@100
pipeline_tag: sentence-similarity
tags:
- sentence-transformers
- sentence-similarity
- feature-extraction
- generated_from_trainer
- dataset_size:6300
- loss:MatryoshkaLoss
- loss:MultipleNegativesRankingLoss
widget:
- source_sentence: Item 8 includes Financial Statements and Supplementary Data.
sentences:
- >-
What does the FDA label update for Yescarta include as of the latest
approval?
- What information can be found in Item 8 of a document?
- When does the Company's fiscal year end?
- source_sentence: >-
Item 8 in a financial document is designated for Financial Statements and
Supplementary Data.
sentences:
- What are the primary goals of AutoZone's store management system?
- What information is contained in Item 8 of a financial document?
- >-
What were the pre-tax earnings of the manufacturing sector in 2023,
2022, and 2021?
- source_sentence: >-
of approximately $1.0 billion in IBNR liabilities, producing a
corresponding decrease in pre-tax earnings. We believe it is reasonably
possible for these assumptions to increase at these rates.
sentences:
- >-
What was the decrease in pre-tax earnings due to the $1.0 billion in
IBNR liabilities?
- >-
What was the total long-term debt, including the current portion, for
AbbVie as of December 31, 2023?
- >-
What feature dedicated AI hardware in an x86 processor and uses the XDNA
architecture?
- source_sentence: >-
In the year ended December 31, 2023, sellers generated GMS of $13.2
billion, approximately 68% of which came from purchases made on mobile
devices.
sentences:
- >-
What was the change in the total balance of revolving credits from
December 31, 2022, to December 31, 2023?
- What are the purposes of borrowings under the 2021 credit facility?
- >-
What percentage of Etsy's Gross Merchandise Sales (GMS) in 2023 came
from mobile purchases?
- source_sentence: >-
As of December 31, 2023, approximately $1.80 billion is available to be
repatriated from Mainland China to the U.S.
sentences:
- >-
What is the total amount of unrestricted cash available for repatriation
from Mainland China to the U.S. as of the end of 2023?
- What is the focus of the company's research and development efforts?
- >-
Where does the Report of Independent Registered Public Accounting Firm
begin in this report?
model-index:
- name: BGE base Financial Matryoshka
results:
- task:
type: information-retrieval
name: Information Retrieval
dataset:
name: dim 768
type: dim_768
metrics:
- type: cosine_accuracy@1
value: 0.6771428571428572
name: Cosine Accuracy@1
- type: cosine_accuracy@3
value: 0.8142857142857143
name: Cosine Accuracy@3
- type: cosine_accuracy@5
value: 0.8642857142857143
name: Cosine Accuracy@5
- type: cosine_accuracy@10
value: 0.9142857142857143
name: Cosine Accuracy@10
- type: cosine_precision@1
value: 0.6771428571428572
name: Cosine Precision@1
- type: cosine_precision@3
value: 0.2714285714285714
name: Cosine Precision@3
- type: cosine_precision@5
value: 0.17285714285714282
name: Cosine Precision@5
- type: cosine_precision@10
value: 0.09142857142857141
name: Cosine Precision@10
- type: cosine_recall@1
value: 0.6771428571428572
name: Cosine Recall@1
- type: cosine_recall@3
value: 0.8142857142857143
name: Cosine Recall@3
- type: cosine_recall@5
value: 0.8642857142857143
name: Cosine Recall@5
- type: cosine_recall@10
value: 0.9142857142857143
name: Cosine Recall@10
- type: cosine_ndcg@10
value: 0.7948920706768223
name: Cosine Ndcg@10
- type: cosine_mrr@10
value: 0.7568055555555551
name: Cosine Mrr@10
- type: cosine_map@100
value: 0.7601580985784901
name: Cosine Map@100
- task:
type: information-retrieval
name: Information Retrieval
dataset:
name: dim 512
type: dim_512
metrics:
- type: cosine_accuracy@1
value: 0.6714285714285714
name: Cosine Accuracy@1
- type: cosine_accuracy@3
value: 0.8157142857142857
name: Cosine Accuracy@3
- type: cosine_accuracy@5
value: 0.8657142857142858
name: Cosine Accuracy@5
- type: cosine_accuracy@10
value: 0.92
name: Cosine Accuracy@10
- type: cosine_precision@1
value: 0.6714285714285714
name: Cosine Precision@1
- type: cosine_precision@3
value: 0.27190476190476187
name: Cosine Precision@3
- type: cosine_precision@5
value: 0.17314285714285713
name: Cosine Precision@5
- type: cosine_precision@10
value: 0.09199999999999998
name: Cosine Precision@10
- type: cosine_recall@1
value: 0.6714285714285714
name: Cosine Recall@1
- type: cosine_recall@3
value: 0.8157142857142857
name: Cosine Recall@3
- type: cosine_recall@5
value: 0.8657142857142858
name: Cosine Recall@5
- type: cosine_recall@10
value: 0.92
name: Cosine Recall@10
- type: cosine_ndcg@10
value: 0.7936366054643341
name: Cosine Ndcg@10
- type: cosine_mrr@10
value: 0.7534455782312921
name: Cosine Mrr@10
- type: cosine_map@100
value: 0.756388193211117
name: Cosine Map@100
- task:
type: information-retrieval
name: Information Retrieval
dataset:
name: dim 256
type: dim_256
metrics:
- type: cosine_accuracy@1
value: 0.6714285714285714
name: Cosine Accuracy@1
- type: cosine_accuracy@3
value: 0.8157142857142857
name: Cosine Accuracy@3
- type: cosine_accuracy@5
value: 0.8585714285714285
name: Cosine Accuracy@5
- type: cosine_accuracy@10
value: 0.9157142857142857
name: Cosine Accuracy@10
- type: cosine_precision@1
value: 0.6714285714285714
name: Cosine Precision@1
- type: cosine_precision@3
value: 0.27190476190476187
name: Cosine Precision@3
- type: cosine_precision@5
value: 0.1717142857142857
name: Cosine Precision@5
- type: cosine_precision@10
value: 0.09157142857142857
name: Cosine Precision@10
- type: cosine_recall@1
value: 0.6714285714285714
name: Cosine Recall@1
- type: cosine_recall@3
value: 0.8157142857142857
name: Cosine Recall@3
- type: cosine_recall@5
value: 0.8585714285714285
name: Cosine Recall@5
- type: cosine_recall@10
value: 0.9157142857142857
name: Cosine Recall@10
- type: cosine_ndcg@10
value: 0.7926136922070053
name: Cosine Ndcg@10
- type: cosine_mrr@10
value: 0.7535062358276641
name: Cosine Mrr@10
- type: cosine_map@100
value: 0.7564593466816174
name: Cosine Map@100
- task:
type: information-retrieval
name: Information Retrieval
dataset:
name: dim 128
type: dim_128
metrics:
- type: cosine_accuracy@1
value: 0.6614285714285715
name: Cosine Accuracy@1
- type: cosine_accuracy@3
value: 0.8
name: Cosine Accuracy@3
- type: cosine_accuracy@5
value: 0.8414285714285714
name: Cosine Accuracy@5
- type: cosine_accuracy@10
value: 0.8885714285714286
name: Cosine Accuracy@10
- type: cosine_precision@1
value: 0.6614285714285715
name: Cosine Precision@1
- type: cosine_precision@3
value: 0.26666666666666666
name: Cosine Precision@3
- type: cosine_precision@5
value: 0.16828571428571426
name: Cosine Precision@5
- type: cosine_precision@10
value: 0.08885714285714286
name: Cosine Precision@10
- type: cosine_recall@1
value: 0.6614285714285715
name: Cosine Recall@1
- type: cosine_recall@3
value: 0.8
name: Cosine Recall@3
- type: cosine_recall@5
value: 0.8414285714285714
name: Cosine Recall@5
- type: cosine_recall@10
value: 0.8885714285714286
name: Cosine Recall@10
- type: cosine_ndcg@10
value: 0.7767052058983972
name: Cosine Ndcg@10
- type: cosine_mrr@10
value: 0.7407840136054418
name: Cosine Mrr@10
- type: cosine_map@100
value: 0.7454236920389576
name: Cosine Map@100
- task:
type: information-retrieval
name: Information Retrieval
dataset:
name: dim 64
type: dim_64
metrics:
- type: cosine_accuracy@1
value: 0.6357142857142857
name: Cosine Accuracy@1
- type: cosine_accuracy@3
value: 0.7742857142857142
name: Cosine Accuracy@3
- type: cosine_accuracy@5
value: 0.8185714285714286
name: Cosine Accuracy@5
- type: cosine_accuracy@10
value: 0.8642857142857143
name: Cosine Accuracy@10
- type: cosine_precision@1
value: 0.6357142857142857
name: Cosine Precision@1
- type: cosine_precision@3
value: 0.2580952380952381
name: Cosine Precision@3
- type: cosine_precision@5
value: 0.1637142857142857
name: Cosine Precision@5
- type: cosine_precision@10
value: 0.08642857142857142
name: Cosine Precision@10
- type: cosine_recall@1
value: 0.6357142857142857
name: Cosine Recall@1
- type: cosine_recall@3
value: 0.7742857142857142
name: Cosine Recall@3
- type: cosine_recall@5
value: 0.8185714285714286
name: Cosine Recall@5
- type: cosine_recall@10
value: 0.8642857142857143
name: Cosine Recall@10
- type: cosine_ndcg@10
value: 0.7511926722277801
name: Cosine Ndcg@10
- type: cosine_mrr@10
value: 0.7148713151927435
name: Cosine Mrr@10
- type: cosine_map@100
value: 0.7199017346952273
name: Cosine Map@100
BGE base Financial Matryoshka
This is a sentence-transformers model finetuned from BAAI/bge-base-en-v1.5 on the json dataset. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
Model Details
Model Description
- Model Type: Sentence Transformer
- Base model: BAAI/bge-base-en-v1.5
- Maximum Sequence Length: 512 tokens
- Output Dimensionality: 768 dimensions
- Similarity Function: Cosine Similarity
- Training Dataset:
- json
- Language: en
- License: apache-2.0
Model Sources
- Documentation: Sentence Transformers Documentation
- Repository: Sentence Transformers on GitHub
- Hugging Face: Sentence Transformers on Hugging Face
Full Model Architecture
SentenceTransformer(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': True}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(2): Normalize()
)
Usage
Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("SMARTICT/bge-base-financial-matryoshka")
# Run inference
sentences = [
'As of December 31, 2023, approximately $1.80 billion is available to be repatriated from Mainland China to the U.S.',
'What is the total amount of unrestricted cash available for repatriation from Mainland China to the U.S. as of the end of 2023?',
"What is the focus of the company's research and development efforts?",
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
Evaluation
Metrics
Information Retrieval
- Datasets:
dim_768
,dim_512
,dim_256
,dim_128
anddim_64
- Evaluated with
InformationRetrievalEvaluator
Metric | dim_768 | dim_512 | dim_256 | dim_128 | dim_64 |
---|---|---|---|---|---|
cosine_accuracy@1 | 0.6771 | 0.6714 | 0.6714 | 0.6614 | 0.6357 |
cosine_accuracy@3 | 0.8143 | 0.8157 | 0.8157 | 0.8 | 0.7743 |
cosine_accuracy@5 | 0.8643 | 0.8657 | 0.8586 | 0.8414 | 0.8186 |
cosine_accuracy@10 | 0.9143 | 0.92 | 0.9157 | 0.8886 | 0.8643 |
cosine_precision@1 | 0.6771 | 0.6714 | 0.6714 | 0.6614 | 0.6357 |
cosine_precision@3 | 0.2714 | 0.2719 | 0.2719 | 0.2667 | 0.2581 |
cosine_precision@5 | 0.1729 | 0.1731 | 0.1717 | 0.1683 | 0.1637 |
cosine_precision@10 | 0.0914 | 0.092 | 0.0916 | 0.0889 | 0.0864 |
cosine_recall@1 | 0.6771 | 0.6714 | 0.6714 | 0.6614 | 0.6357 |
cosine_recall@3 | 0.8143 | 0.8157 | 0.8157 | 0.8 | 0.7743 |
cosine_recall@5 | 0.8643 | 0.8657 | 0.8586 | 0.8414 | 0.8186 |
cosine_recall@10 | 0.9143 | 0.92 | 0.9157 | 0.8886 | 0.8643 |
cosine_ndcg@10 | 0.7949 | 0.7936 | 0.7926 | 0.7767 | 0.7512 |
cosine_mrr@10 | 0.7568 | 0.7534 | 0.7535 | 0.7408 | 0.7149 |
cosine_map@100 | 0.7602 | 0.7564 | 0.7565 | 0.7454 | 0.7199 |
Training Details
Training Dataset
json
- Dataset: json
- Size: 6,300 training samples
- Columns:
positive
andanchor
- Approximate statistics based on the first 1000 samples:
positive anchor type string string details - min: 4 tokens
- mean: 46.71 tokens
- max: 281 tokens
- min: 7 tokens
- mean: 20.48 tokens
- max: 43 tokens
- Samples:
positive anchor Information on legal proceedings is included in Note 15 to the Consolidated Financial Statements.
What note in the Consolidated Financial Statements provides details on legal proceedings?
As of December 31, 2023, approximately $1.80 billion is available to be repatriated from Mainland China to the U.S.
What is the total amount of unrestricted cash available for repatriation from Mainland China to the U.S. as of the end of 2023?
Bank deposits amounted to $289,953 million as of December 31, 2023.
What was the balance of bank deposits at Charles Schwab Corporation as of December 31, 2023?
- Loss:
MatryoshkaLoss
with these parameters:{ "loss": "MultipleNegativesRankingLoss", "matryoshka_dims": [ 768, 512, 256, 128, 64 ], "matryoshka_weights": [ 1, 1, 1, 1, 1 ], "n_dims_per_step": -1 }
Training Hyperparameters
Non-Default Hyperparameters
eval_strategy
: epochper_device_train_batch_size
: 32per_device_eval_batch_size
: 16gradient_accumulation_steps
: 16learning_rate
: 2e-05num_train_epochs
: 4lr_scheduler_type
: cosinewarmup_ratio
: 0.1bf16
: Truetf32
: Trueload_best_model_at_end
: Trueoptim
: adamw_torch_fusedbatch_sampler
: no_duplicates
All Hyperparameters
Click to expand
overwrite_output_dir
: Falsedo_predict
: Falseeval_strategy
: epochprediction_loss_only
: Trueper_device_train_batch_size
: 32per_device_eval_batch_size
: 16per_gpu_train_batch_size
: Noneper_gpu_eval_batch_size
: Nonegradient_accumulation_steps
: 16eval_accumulation_steps
: Nonelearning_rate
: 2e-05weight_decay
: 0.0adam_beta1
: 0.9adam_beta2
: 0.999adam_epsilon
: 1e-08max_grad_norm
: 1.0num_train_epochs
: 4max_steps
: -1lr_scheduler_type
: cosinelr_scheduler_kwargs
: {}warmup_ratio
: 0.1warmup_steps
: 0log_level
: passivelog_level_replica
: warninglog_on_each_node
: Truelogging_nan_inf_filter
: Truesave_safetensors
: Truesave_on_each_node
: Falsesave_only_model
: Falserestore_callback_states_from_checkpoint
: Falseno_cuda
: Falseuse_cpu
: Falseuse_mps_device
: Falseseed
: 42data_seed
: Nonejit_mode_eval
: Falseuse_ipex
: Falsebf16
: Truefp16
: Falsefp16_opt_level
: O1half_precision_backend
: autobf16_full_eval
: Falsefp16_full_eval
: Falsetf32
: Truelocal_rank
: 0ddp_backend
: Nonetpu_num_cores
: Nonetpu_metrics_debug
: Falsedebug
: []dataloader_drop_last
: Falsedataloader_num_workers
: 0dataloader_prefetch_factor
: Nonepast_index
: -1disable_tqdm
: Falseremove_unused_columns
: Truelabel_names
: Noneload_best_model_at_end
: Trueignore_data_skip
: Falsefsdp
: []fsdp_min_num_params
: 0fsdp_config
: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}fsdp_transformer_layer_cls_to_wrap
: Noneaccelerator_config
: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}deepspeed
: Nonelabel_smoothing_factor
: 0.0optim
: adamw_torch_fusedoptim_args
: Noneadafactor
: Falsegroup_by_length
: Falselength_column_name
: lengthddp_find_unused_parameters
: Noneddp_bucket_cap_mb
: Noneddp_broadcast_buffers
: Falsedataloader_pin_memory
: Truedataloader_persistent_workers
: Falseskip_memory_metrics
: Trueuse_legacy_prediction_loop
: Falsepush_to_hub
: Falseresume_from_checkpoint
: Nonehub_model_id
: Nonehub_strategy
: every_savehub_private_repo
: Falsehub_always_push
: Falsegradient_checkpointing
: Falsegradient_checkpointing_kwargs
: Noneinclude_inputs_for_metrics
: Falseeval_do_concat_batches
: Truefp16_backend
: autopush_to_hub_model_id
: Nonepush_to_hub_organization
: Nonemp_parameters
:auto_find_batch_size
: Falsefull_determinism
: Falsetorchdynamo
: Noneray_scope
: lastddp_timeout
: 1800torch_compile
: Falsetorch_compile_backend
: Nonetorch_compile_mode
: Nonedispatch_batches
: Nonesplit_batches
: Noneinclude_tokens_per_second
: Falseinclude_num_input_tokens_seen
: Falseneftune_noise_alpha
: Noneoptim_target_modules
: Nonebatch_eval_metrics
: Falseprompts
: Nonebatch_sampler
: no_duplicatesmulti_dataset_batch_sampler
: proportional
Training Logs
Epoch | Step | Training Loss | dim_768_cosine_ndcg@10 | dim_512_cosine_ndcg@10 | dim_256_cosine_ndcg@10 | dim_128_cosine_ndcg@10 | dim_64_cosine_ndcg@10 |
---|---|---|---|---|---|---|---|
0.8122 | 10 | 1.5517 | - | - | - | - | - |
0.9746 | 12 | - | 0.7830 | 0.7842 | 0.7814 | 0.7623 | 0.7215 |
1.6244 | 20 | 0.6616 | - | - | - | - | - |
1.9492 | 24 | - | 0.7918 | 0.7924 | 0.7884 | 0.7737 | 0.7429 |
2.4365 | 30 | 0.46 | - | - | - | - | - |
2.9239 | 36 | - | 0.7941 | 0.7920 | 0.7930 | 0.7764 | 0.7482 |
3.2487 | 40 | 0.3917 | - | - | - | - | - |
3.8985 | 48 | - | 0.7949 | 0.7936 | 0.7926 | 0.7767 | 0.7512 |
- The bold row denotes the saved checkpoint.
Framework Versions
- Python: 3.10.12
- Sentence Transformers: 3.3.1
- Transformers: 4.41.2
- PyTorch: 2.1.2+cu121
- Accelerate: 0.34.2
- Datasets: 2.19.1
- Tokenizers: 0.19.1
Citation
BibTeX
Sentence Transformers
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
MatryoshkaLoss
@misc{kusupati2024matryoshka,
title={Matryoshka Representation Learning},
author={Aditya Kusupati and Gantavya Bhatt and Aniket Rege and Matthew Wallingford and Aditya Sinha and Vivek Ramanujan and William Howard-Snyder and Kaifeng Chen and Sham Kakade and Prateek Jain and Ali Farhadi},
year={2024},
eprint={2205.13147},
archivePrefix={arXiv},
primaryClass={cs.LG}
}
MultipleNegativesRankingLoss
@misc{henderson2017efficient,
title={Efficient Natural Language Response Suggestion for Smart Reply},
author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
year={2017},
eprint={1705.00652},
archivePrefix={arXiv},
primaryClass={cs.CL}
}