--- library_name: transformers language: - fr license: mit base_model: pyannote/speaker-diarization-3.1 tags: - speaker-diarization - speaker-segmentation - generated_from_trainer datasets: - ESLO2 model-index: - name: speaker-segmentation-fine-tuned_ESLO2 results: [] --- # speaker-segmentation-fine-tuned_ESLO2 This model is a fine-tuned version of [pyannote/speaker-diarization-3.1](https://huggingface.co/pyannote/speaker-diarization-3.1) on the ESLO2 dataset. It achieves the following results on the evaluation set: - Loss: 1.0390 - Model Preparation Time: 0.004 - Der: 0.5468 - False Alarm: 0.1928 - Missed Detection: 0.2690 - Confusion: 0.0849 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.001 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Model Preparation Time | Der | False Alarm | Missed Detection | Confusion | |:-------------:|:-----:|:----:|:---------------:|:----------------------:|:------:|:-----------:|:----------------:|:---------:| | 1.0681 | 1.0 | 686 | 1.0642 | 0.004 | 0.5632 | 0.1931 | 0.2781 | 0.0921 | | 1.0147 | 2.0 | 1372 | 1.0523 | 0.004 | 0.5551 | 0.1887 | 0.2772 | 0.0893 | | 1.0044 | 3.0 | 2058 | 1.0445 | 0.004 | 0.5537 | 0.1887 | 0.2791 | 0.0859 | | 0.9801 | 4.0 | 2744 | 1.0352 | 0.004 | 0.5464 | 0.1934 | 0.2677 | 0.0853 | | 0.9866 | 5.0 | 3430 | 1.0390 | 0.004 | 0.5468 | 0.1928 | 0.2690 | 0.0849 | ### Framework versions - Transformers 4.45.2 - Pytorch 2.4.1+cu121 - Datasets 3.0.1 - Tokenizers 0.20.0