--- license: gemma base_model: google/gemma-2-9b tags: - trl - sft - generated_from_trainer model-index: - name: collapse_gemma-2-9b_hs2_accumulate_iter2_sftsd2 results: [] --- # collapse_gemma-2-9b_hs2_accumulate_iter2_sftsd2 This model is a fine-tuned version of [google/gemma-2-9b](https://huggingface.co/google/gemma-2-9b) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.9422 - Num Input Tokens Seen: 9681676 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 8e-06 - train_batch_size: 4 - eval_batch_size: 16 - seed: 2 - gradient_accumulation_steps: 32 - total_train_batch_size: 128 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: constant_with_warmup - lr_scheduler_warmup_ratio: 0.05 - num_epochs: 1 ### Training results | Training Loss | Epoch | Step | Validation Loss | Input Tokens Seen | |:-------------:|:------:|:----:|:---------------:|:-----------------:| | No log | 0 | 0 | 1.2335 | 0 | | 1.2828 | 0.0271 | 5 | 1.1073 | 265560 | | 1.0134 | 0.0542 | 10 | 1.0202 | 534484 | | 1.033 | 0.0814 | 15 | 0.9863 | 798368 | | 0.8674 | 0.1085 | 20 | 0.9835 | 1059736 | | 0.8101 | 0.1356 | 25 | 0.9846 | 1317664 | | 0.7184 | 0.1627 | 30 | 0.9897 | 1578212 | | 0.7122 | 0.1899 | 35 | 0.9834 | 1838956 | | 0.7129 | 0.2170 | 40 | 0.9781 | 2102368 | | 0.643 | 0.2441 | 45 | 0.9751 | 2365072 | | 0.6169 | 0.2712 | 50 | 0.9738 | 2626376 | | 0.7176 | 0.2984 | 55 | 0.9700 | 2886524 | | 0.5972 | 0.3255 | 60 | 0.9665 | 3149448 | | 0.573 | 0.3526 | 65 | 0.9639 | 3415664 | | 0.6035 | 0.3797 | 70 | 0.9629 | 3676764 | | 0.6096 | 0.4068 | 75 | 0.9598 | 3940104 | | 0.5832 | 0.4340 | 80 | 0.9585 | 4204740 | | 0.6262 | 0.4611 | 85 | 0.9572 | 4467556 | | 0.6814 | 0.4882 | 90 | 0.9555 | 4731864 | | 0.6672 | 0.5153 | 95 | 0.9533 | 4997040 | | 0.5181 | 0.5425 | 100 | 0.9519 | 5263636 | | 0.5759 | 0.5696 | 105 | 0.9515 | 5527476 | | 0.597 | 0.5967 | 110 | 0.9507 | 5790324 | | 0.5898 | 0.6238 | 115 | 0.9501 | 6054116 | | 0.6857 | 0.6510 | 120 | 0.9496 | 6313184 | | 0.5666 | 0.6781 | 125 | 0.9490 | 6573064 | | 0.5007 | 0.7052 | 130 | 0.9491 | 6839704 | | 0.5295 | 0.7323 | 135 | 0.9473 | 7101760 | | 0.5782 | 0.7595 | 140 | 0.9458 | 7359916 | | 0.5476 | 0.7866 | 145 | 0.9456 | 7629448 | | 0.5752 | 0.8137 | 150 | 0.9457 | 7888404 | | 0.48 | 0.8408 | 155 | 0.9444 | 8151276 | | 0.6858 | 0.8679 | 160 | 0.9448 | 8410464 | | 0.569 | 0.8951 | 165 | 0.9454 | 8677664 | | 0.5906 | 0.9222 | 170 | 0.9441 | 8944556 | | 0.5673 | 0.9493 | 175 | 0.9441 | 9201860 | | 0.6069 | 0.9764 | 180 | 0.9446 | 9467072 | ### Framework versions - Transformers 4.44.0 - Pytorch 2.4.0+cu121 - Datasets 2.20.0 - Tokenizers 0.19.1