--- license: apache-2.0 library_name: peft tags: - generated_from_trainer metrics: - rouge base_model: google/bigbird-pegasus-large-bigpatent model-index: - name: bigbird_lora_multi_lexsum results: [] --- # bigbird_lora_multi_lexsum This model is a fine-tuned version of [google/bigbird-pegasus-large-bigpatent](https://huggingface.co/google/bigbird-pegasus-large-bigpatent) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 9.1007 - Rouge1: 0.197 - Rouge2: 0.0165 - Rougel: 0.1446 - Rougelsum: 0.1445 - Gen Len: 235.208 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 1 - eval_batch_size: 1 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.03 - num_epochs: 2 ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len | |:-------------:|:-----:|:----:|:---------------:|:------:|:------:|:------:|:---------:|:-------:| | 9.2003 | 1.0 | 850 | 9.1012 | 0.1982 | 0.0162 | 0.1439 | 0.1441 | 234.016 | | 9.151 | 2.0 | 1700 | 9.1007 | 0.197 | 0.0165 | 0.1446 | 0.1445 | 235.208 | ### Framework versions - PEFT 0.10.0 - Transformers 4.38.2 - Pytorch 2.2.1+cu121 - Datasets 2.18.0 - Tokenizers 0.15.2