--- base_model: google/paligemma-3b-pt-224 library_name: peft license: gemma tags: - generated_from_trainer model-index: - name: paligemma_vqav2_lr1e_5 results: [] --- # paligemma_vqav2_lr1e_5 This model is a fine-tuned version of [google/paligemma-3b-pt-224](https://huggingface.co/google/paligemma-3b-pt-224) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.8757 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 10 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 40 - optimizer: Use OptimizerNames.ADAMW_HF with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 2 - num_epochs: 12 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-------:|:----:|:---------------:| | 4.8047 | 0.3125 | 100 | 2.7102 | | 2.5191 | 0.625 | 200 | 1.8346 | | 1.9491 | 0.9375 | 300 | 1.4737 | | 1.7149 | 1.25 | 400 | 1.2760 | | 1.638 | 1.5625 | 500 | 1.1683 | | 1.5128 | 1.875 | 600 | 1.1024 | | 1.4079 | 2.1875 | 700 | 1.0432 | | 1.3928 | 2.5 | 800 | 1.0078 | | 1.3355 | 2.8125 | 900 | 0.9682 | | 1.1662 | 3.125 | 1000 | 0.9412 | | 1.222 | 3.4375 | 1100 | 0.9246 | | 1.2254 | 3.75 | 1200 | 0.9102 | | 1.1127 | 4.0625 | 1300 | 0.8936 | | 1.0704 | 4.375 | 1400 | 0.8698 | | 1.0614 | 4.6875 | 1500 | 0.8617 | | 1.0572 | 5.0 | 1600 | 0.8531 | | 0.9373 | 5.3125 | 1700 | 0.8505 | | 0.9517 | 5.625 | 1800 | 0.8339 | | 0.9599 | 5.9375 | 1900 | 0.8308 | | 0.8669 | 6.25 | 2000 | 0.8364 | | 0.8671 | 6.5625 | 2100 | 0.8374 | | 0.8996 | 6.875 | 2200 | 0.8258 | | 0.7827 | 7.1875 | 2300 | 0.8214 | | 0.7874 | 7.5 | 2400 | 0.8343 | | 0.7524 | 7.8125 | 2500 | 0.8135 | | 0.7243 | 8.125 | 2600 | 0.8300 | | 0.6922 | 8.4375 | 2700 | 0.8323 | | 0.7111 | 8.75 | 2800 | 0.8259 | | 0.6894 | 9.0625 | 2900 | 0.8595 | | 0.6122 | 9.375 | 3000 | 0.8308 | | 0.6113 | 9.6875 | 3100 | 0.8358 | | 0.6199 | 10.0 | 3200 | 0.8371 | | 0.5587 | 10.3125 | 3300 | 0.8657 | | 0.5487 | 10.625 | 3400 | 0.8677 | | 0.5529 | 10.9375 | 3500 | 0.8612 | | 0.4998 | 11.25 | 3600 | 0.8937 | | 0.4999 | 11.5625 | 3700 | 0.8784 | | 0.4809 | 11.875 | 3800 | 0.8757 | ### Framework versions - PEFT 0.13.0 - Transformers 4.46.0.dev0 - Pytorch 2.4.1+cu121 - Datasets 3.0.1 - Tokenizers 0.20.0