import torch import requests from PIL import Image import numpy as np from torchvision.utils import make_grid, save_image from diffusers import DiffusionPipeline # only tested on diffusers[torch]==0.19.3, may have conflicts with newer versions of diffusers def load_wonder3d_pipeline(): pipeline = DiffusionPipeline.from_pretrained( 'flamehaze1115/wonder3d-v1.0', # or use local checkpoint './ckpts' custom_pipeline='flamehaze1115/wonder3d-pipeline', torch_dtype=torch.float16 ) # enable xformers pipeline.unet.enable_xformers_memory_efficient_attention() if torch.cuda.is_available(): pipeline.to('cuda:0') return pipeline pipeline = load_wonder3d_pipeline() # Download an example image. cond = Image.open(requests.get("https://d.skis.ltd/nrp/sample-data/lysol.png", stream=True).raw) # The object should be located in the center and resized to 80% of image height. cond = Image.fromarray(np.array(cond)[:, :, :3]) # Run the pipeline! images = pipeline(cond, num_inference_steps=20, output_type='pt', guidance_scale=1.0).images result = make_grid(images, nrow=6, ncol=2, padding=0, value_range=(0, 1)) save_image(result, 'result.png')