--- license: apache-2.0 base_model: KGSAGAR/distilhubert-finetuned-gtzan tags: - generated_from_trainer datasets: - marsyas/gtzan metrics: - accuracy model-index: - name: distilhubert-finetuned-gtzan-finetuned-gtzan-8 results: - task: name: Audio Classification type: audio-classification dataset: name: GTZAN type: marsyas/gtzan config: default split: train args: default metrics: - name: Accuracy type: accuracy value: 0.94 --- # distilhubert-finetuned-gtzan-finetuned-gtzan-8 This model is a fine-tuned version of [KGSAGAR/distilhubert-finetuned-gtzan](https://huggingface.co/KGSAGAR/distilhubert-finetuned-gtzan) on the GTZAN dataset. It achieves the following results on the evaluation set: - Loss: 0.2264 - Accuracy: 0.94 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 6e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 6 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.1439 | 1.0 | 57 | 0.1699 | 0.94 | | 0.2598 | 2.0 | 114 | 0.1954 | 0.95 | | 0.0094 | 3.0 | 171 | 0.2300 | 0.93 | | 0.0054 | 4.0 | 228 | 0.2589 | 0.95 | | 0.001 | 5.0 | 285 | 0.1919 | 0.96 | | 0.039 | 6.0 | 342 | 0.2264 | 0.94 | ### Framework versions - Transformers 4.33.0.dev0 - Pytorch 2.0.1+cu117 - Datasets 2.14.4 - Tokenizers 0.13.3