--- library_name: transformers base_model: IVN-RIN/bioBIT tags: - token-classification - generated_from_trainer datasets: - Rodrigo1771/drugtemist-it-85-ner metrics: - precision - recall - f1 - accuracy model-index: - name: output results: - task: name: Token Classification type: token-classification dataset: name: Rodrigo1771/drugtemist-it-85-ner type: Rodrigo1771/drugtemist-it-85-ner config: DrugTEMIST Italian NER split: validation args: DrugTEMIST Italian NER metrics: - name: Precision type: precision value: 0.9193083573487032 - name: Recall type: recall value: 0.9264278799612778 - name: F1 type: f1 value: 0.922854387656702 - name: Accuracy type: accuracy value: 0.9985847831732018 --- # output This model is a fine-tuned version of [IVN-RIN/bioBIT](https://huggingface.co/IVN-RIN/bioBIT) on the Rodrigo1771/drugtemist-it-85-ner dataset. It achieves the following results on the evaluation set: - Loss: 0.0061 - Precision: 0.9193 - Recall: 0.9264 - F1: 0.9229 - Accuracy: 0.9986 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 32 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 64 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | No log | 1.0 | 479 | 0.0052 | 0.8498 | 0.9313 | 0.8887 | 0.9983 | | 0.0127 | 2.0 | 958 | 0.0056 | 0.9063 | 0.9080 | 0.9072 | 0.9984 | | 0.0035 | 3.0 | 1437 | 0.0047 | 0.9211 | 0.9158 | 0.9184 | 0.9985 | | 0.002 | 4.0 | 1916 | 0.0065 | 0.9028 | 0.9080 | 0.9054 | 0.9984 | | 0.0014 | 5.0 | 2395 | 0.0061 | 0.9193 | 0.9264 | 0.9229 | 0.9986 | | 0.0007 | 6.0 | 2874 | 0.0069 | 0.9246 | 0.8906 | 0.9073 | 0.9984 | | 0.0004 | 7.0 | 3353 | 0.0071 | 0.8990 | 0.9216 | 0.9101 | 0.9985 | | 0.0003 | 8.0 | 3832 | 0.0076 | 0.9135 | 0.9303 | 0.9218 | 0.9986 | | 0.0001 | 9.0 | 4311 | 0.0080 | 0.9130 | 0.9245 | 0.9187 | 0.9986 | | 0.0001 | 10.0 | 4790 | 0.0080 | 0.9107 | 0.9284 | 0.9195 | 0.9986 | ### Framework versions - Transformers 4.44.2 - Pytorch 2.4.0+cu121 - Datasets 2.21.0 - Tokenizers 0.19.1