--- library_name: transformers base_model: IVN-RIN/bioBIT tags: - token-classification - generated_from_trainer datasets: - Rodrigo1771/drugtemist-it-fasttext-9-ner metrics: - precision - recall - f1 - accuracy model-index: - name: output results: - task: name: Token Classification type: token-classification dataset: name: Rodrigo1771/drugtemist-it-fasttext-9-ner type: Rodrigo1771/drugtemist-it-fasttext-9-ner config: DrugTEMIST Italian NER split: validation args: DrugTEMIST Italian NER metrics: - name: Precision type: precision value: 0.9168241965973535 - name: Recall type: recall value: 0.9390125847047435 - name: F1 type: f1 value: 0.9277857484457198 - name: Accuracy type: accuracy value: 0.9986691768371851 --- # output This model is a fine-tuned version of [IVN-RIN/bioBIT](https://huggingface.co/IVN-RIN/bioBIT) on the Rodrigo1771/drugtemist-it-fasttext-9-ner dataset. It achieves the following results on the evaluation set: - Loss: 0.0051 - Precision: 0.9168 - Recall: 0.9390 - F1: 0.9278 - Accuracy: 0.9987 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 32 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 64 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:------:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | No log | 0.9988 | 434 | 0.0046 | 0.8889 | 0.8829 | 0.8859 | 0.9982 | | 0.011 | 2.0 | 869 | 0.0039 | 0.9147 | 0.9138 | 0.9143 | 0.9985 | | 0.0034 | 2.9988 | 1303 | 0.0045 | 0.9317 | 0.8848 | 0.9076 | 0.9985 | | 0.0019 | 4.0 | 1738 | 0.0056 | 0.9309 | 0.9129 | 0.9218 | 0.9986 | | 0.0013 | 4.9988 | 2172 | 0.0051 | 0.9168 | 0.9390 | 0.9278 | 0.9987 | | 0.0008 | 6.0 | 2607 | 0.0071 | 0.9325 | 0.9100 | 0.9211 | 0.9986 | | 0.0005 | 6.9988 | 3041 | 0.0068 | 0.9291 | 0.9264 | 0.9278 | 0.9986 | | 0.0005 | 8.0 | 3476 | 0.0075 | 0.9226 | 0.9226 | 0.9226 | 0.9986 | | 0.0003 | 8.9988 | 3910 | 0.0080 | 0.9187 | 0.9293 | 0.9240 | 0.9986 | | 0.0002 | 9.9885 | 4340 | 0.0083 | 0.9282 | 0.9264 | 0.9273 | 0.9986 | ### Framework versions - Transformers 4.44.2 - Pytorch 2.4.0+cu121 - Datasets 2.21.0 - Tokenizers 0.19.1