--- library_name: transformers license: apache-2.0 base_model: michiyasunaga/BioLinkBERT-base tags: - token-classification - generated_from_trainer datasets: - Rodrigo1771/drugtemist-en-9-ner metrics: - precision - recall - f1 - accuracy model-index: - name: output results: - task: name: Token Classification type: token-classification dataset: name: Rodrigo1771/drugtemist-en-9-ner type: Rodrigo1771/drugtemist-en-9-ner config: DrugTEMIST English NER split: validation args: DrugTEMIST English NER metrics: - name: Precision type: precision value: 0.9297597042513863 - name: Recall type: recall value: 0.9375582479030755 - name: F1 type: f1 value: 0.9336426914153132 - name: Accuracy type: accuracy value: 0.9987999888371054 --- # output This model is a fine-tuned version of [michiyasunaga/BioLinkBERT-base](https://huggingface.co/michiyasunaga/BioLinkBERT-base) on the Rodrigo1771/drugtemist-en-9-ner dataset. It achieves the following results on the evaluation set: - Loss: 0.0046 - Precision: 0.9298 - Recall: 0.9376 - F1: 0.9336 - Accuracy: 0.9988 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 32 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 64 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | No log | 1.0 | 437 | 0.0047 | 0.8995 | 0.9254 | 0.9123 | 0.9985 | | 0.0144 | 2.0 | 874 | 0.0053 | 0.8960 | 0.9310 | 0.9132 | 0.9985 | | 0.0038 | 3.0 | 1311 | 0.0046 | 0.9298 | 0.9376 | 0.9336 | 0.9988 | | 0.0022 | 4.0 | 1748 | 0.0055 | 0.9202 | 0.9245 | 0.9224 | 0.9986 | | 0.0019 | 5.0 | 2185 | 0.0053 | 0.9118 | 0.9348 | 0.9231 | 0.9986 | | 0.0014 | 6.0 | 2622 | 0.0054 | 0.9194 | 0.9254 | 0.9224 | 0.9986 | | 0.0009 | 7.0 | 3059 | 0.0073 | 0.9324 | 0.9254 | 0.9289 | 0.9986 | | 0.0009 | 8.0 | 3496 | 0.0065 | 0.9341 | 0.9254 | 0.9298 | 0.9987 | | 0.0005 | 9.0 | 3933 | 0.0069 | 0.9326 | 0.9292 | 0.9309 | 0.9987 | | 0.0004 | 10.0 | 4370 | 0.0071 | 0.9249 | 0.9292 | 0.9270 | 0.9987 | ### Framework versions - Transformers 4.44.2 - Pytorch 2.4.0+cu121 - Datasets 2.21.0 - Tokenizers 0.19.1