|
--- |
|
library_name: transformers |
|
license: apache-2.0 |
|
base_model: michiyasunaga/BioLinkBERT-base |
|
tags: |
|
- token-classification |
|
- generated_from_trainer |
|
datasets: |
|
- Rodrigo1771/drugtemist-en-9-ner |
|
metrics: |
|
- precision |
|
- recall |
|
- f1 |
|
- accuracy |
|
model-index: |
|
- name: output |
|
results: |
|
- task: |
|
name: Token Classification |
|
type: token-classification |
|
dataset: |
|
name: Rodrigo1771/drugtemist-en-9-ner |
|
type: Rodrigo1771/drugtemist-en-9-ner |
|
config: DrugTEMIST English NER |
|
split: validation |
|
args: DrugTEMIST English NER |
|
metrics: |
|
- name: Precision |
|
type: precision |
|
value: 0.9297597042513863 |
|
- name: Recall |
|
type: recall |
|
value: 0.9375582479030755 |
|
- name: F1 |
|
type: f1 |
|
value: 0.9336426914153132 |
|
- name: Accuracy |
|
type: accuracy |
|
value: 0.9987999888371054 |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# output |
|
|
|
This model is a fine-tuned version of [michiyasunaga/BioLinkBERT-base](https://huggingface.co/michiyasunaga/BioLinkBERT-base) on the Rodrigo1771/drugtemist-en-9-ner dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.0046 |
|
- Precision: 0.9298 |
|
- Recall: 0.9376 |
|
- F1: 0.9336 |
|
- Accuracy: 0.9988 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 5e-05 |
|
- train_batch_size: 32 |
|
- eval_batch_size: 8 |
|
- seed: 42 |
|
- gradient_accumulation_steps: 2 |
|
- total_train_batch_size: 64 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- num_epochs: 10.0 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |
|
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| |
|
| No log | 1.0 | 437 | 0.0047 | 0.8995 | 0.9254 | 0.9123 | 0.9985 | |
|
| 0.0144 | 2.0 | 874 | 0.0053 | 0.8960 | 0.9310 | 0.9132 | 0.9985 | |
|
| 0.0038 | 3.0 | 1311 | 0.0046 | 0.9298 | 0.9376 | 0.9336 | 0.9988 | |
|
| 0.0022 | 4.0 | 1748 | 0.0055 | 0.9202 | 0.9245 | 0.9224 | 0.9986 | |
|
| 0.0019 | 5.0 | 2185 | 0.0053 | 0.9118 | 0.9348 | 0.9231 | 0.9986 | |
|
| 0.0014 | 6.0 | 2622 | 0.0054 | 0.9194 | 0.9254 | 0.9224 | 0.9986 | |
|
| 0.0009 | 7.0 | 3059 | 0.0073 | 0.9324 | 0.9254 | 0.9289 | 0.9986 | |
|
| 0.0009 | 8.0 | 3496 | 0.0065 | 0.9341 | 0.9254 | 0.9298 | 0.9987 | |
|
| 0.0005 | 9.0 | 3933 | 0.0069 | 0.9326 | 0.9292 | 0.9309 | 0.9987 | |
|
| 0.0004 | 10.0 | 4370 | 0.0071 | 0.9249 | 0.9292 | 0.9270 | 0.9987 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.44.2 |
|
- Pytorch 2.4.0+cu121 |
|
- Datasets 2.21.0 |
|
- Tokenizers 0.19.1 |
|
|