metadata
library_name: transformers
license: apache-2.0
base_model: michiyasunaga/BioLinkBERT-base
tags:
- token-classification
- generated_from_trainer
datasets:
- Rodrigo1771/drugtemist-en-9-ner
metrics:
- precision
- recall
- f1
- accuracy
model-index:
- name: output
results:
- task:
name: Token Classification
type: token-classification
dataset:
name: Rodrigo1771/drugtemist-en-9-ner
type: Rodrigo1771/drugtemist-en-9-ner
config: DrugTEMIST English NER
split: validation
args: DrugTEMIST English NER
metrics:
- name: Precision
type: precision
value: 0.9297597042513863
- name: Recall
type: recall
value: 0.9375582479030755
- name: F1
type: f1
value: 0.9336426914153132
- name: Accuracy
type: accuracy
value: 0.9987999888371054
output
This model is a fine-tuned version of michiyasunaga/BioLinkBERT-base on the Rodrigo1771/drugtemist-en-9-ner dataset. It achieves the following results on the evaluation set:
- Loss: 0.0046
- Precision: 0.9298
- Recall: 0.9376
- F1: 0.9336
- Accuracy: 0.9988
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 32
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 64
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 10.0
Training results
Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
---|---|---|---|---|---|---|---|
No log | 1.0 | 437 | 0.0047 | 0.8995 | 0.9254 | 0.9123 | 0.9985 |
0.0144 | 2.0 | 874 | 0.0053 | 0.8960 | 0.9310 | 0.9132 | 0.9985 |
0.0038 | 3.0 | 1311 | 0.0046 | 0.9298 | 0.9376 | 0.9336 | 0.9988 |
0.0022 | 4.0 | 1748 | 0.0055 | 0.9202 | 0.9245 | 0.9224 | 0.9986 |
0.0019 | 5.0 | 2185 | 0.0053 | 0.9118 | 0.9348 | 0.9231 | 0.9986 |
0.0014 | 6.0 | 2622 | 0.0054 | 0.9194 | 0.9254 | 0.9224 | 0.9986 |
0.0009 | 7.0 | 3059 | 0.0073 | 0.9324 | 0.9254 | 0.9289 | 0.9986 |
0.0009 | 8.0 | 3496 | 0.0065 | 0.9341 | 0.9254 | 0.9298 | 0.9987 |
0.0005 | 9.0 | 3933 | 0.0069 | 0.9326 | 0.9292 | 0.9309 | 0.9987 |
0.0004 | 10.0 | 4370 | 0.0071 | 0.9249 | 0.9292 | 0.9270 | 0.9987 |
Framework versions
- Transformers 4.44.2
- Pytorch 2.4.0+cu121
- Datasets 2.21.0
- Tokenizers 0.19.1