import numpy as np from scipy.io.wavfile import read import torch from hparams import create_hparams #hparam = create_hparams() #hparam.cuda_enabled = False def get_mask_from_lengths(lengths): max_len = torch.max(lengths).item() #if hparam.cuda_enabled : if create_hparams.cuda_enabled : ids = torch.arange(0, max_len, out=torch.cuda.LongTensor(max_len)) mask = (ids < lengths.unsqueeze(1)).bool() else : ids = torch.arange(0, max_len, out=torch.LongTensor(max_len)) mask = (ids < lengths.unsqueeze(1)).bool() return mask def load_wav_to_torch(full_path): sampling_rate, data = read(full_path) return torch.FloatTensor(data.astype(np.float32)), sampling_rate def load_filepaths_and_text(filename, split="|"): with open(filename, encoding='utf-8') as f: filepaths_and_text = [line.strip().split(split) for line in f] return filepaths_and_text def to_gpu(x): x = x.contiguous() if torch.cuda.is_available(): x = x.cuda(non_blocking=True) return torch.autograd.Variable(x)