import base64 import io from typing import Any, Dict, List import requests import torch from PIL import Image from transformers import TrOCRProcessor, VisionEncoderDecoderModel device = "cuda" if torch.cuda.is_available() else "cpu" class EndpointHandler: def __init__(self, path=""): self.processor = TrOCRProcessor.from_pretrained(path) self.model = VisionEncoderDecoderModel.from_pretrained(path) self.model.to(device) def __call__(self, data: Dict[str, Any]) -> List[Dict[str, Any]]: inputs = data.pop("inputs", data) image_input = inputs.get("image") if not image_input: return {"error": "No image provided."} try: if image_input.startswith("http"): response = requests.get(image_input, stream=True) if response.status_code == 200: image = Image.open(response.raw).convert("RGB") else: return { "error": f"Failed to fetch image. Status code: {response.status_code}" } else: image_data = base64.b64decode(image_input) image = Image.open(io.BytesIO(image_data)).convert("RGB") except Exception as e: return {"error": f"Failed to process the image. Details: {str(e)}"} pixel_values = self.processor(images=image, return_tensors="pt").pixel_values generated_ids = self.model.generate(pixel_values.to(device)) prediction = self.processor.batch_decode( generated_ids, skip_special_tokens=True ) return {"text": prediction[0]}